Abstract

Underwater wireless optical communication (UWOC) has attracted increasing interest in various underwater activities because of its order-of-magnitude higher bandwidth compared to acoustic and radio-frequency technologies. Testbeds and pre-aligned UWOC links were constructed for physical layer evaluation, which verified that UWOC systems can operate at tens of gigabits per second or close to a hundred meters of distance. This holds promise for realizing a globally connected Internet of Underwater Things (IoUT). However, due to the fundamental complexity of the ocean water environment, there are considerable practical challenges in establishing reliable UWOC links. Thus, in addition to providing an exhaustive overview of recent advances in UWOC, this article addresses various underwater challenges and offers insights into the solutions. In particular, oceanic turbulence, which induces scintillation and misalignment in underwater links, is one of the key factors in degrading UWOC performance. Novel solutions are proposed to ease the requirements on pointing, acquisition, and tracking (PAT) for establishing robustness in UWOC links. The solutions include light-scattering-based non-line-of-sight (NLOS) communication modality as well as PAT-relieving scintillating-fiber-based photoreceiver and large-photovoltaic cells as the optical signal detectors. Naturally, the dual-function photovoltaic–photodetector device readily offers a means of energy harvesting for powering up the future IoUT sensors.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Urick, Principles of Underwater Sound. Los Altos, CA, USA: Peninsula, 1983.
  2. A. Zielinski, Y.-H. Young-Hoon Yoon, and L. Lixue Wu, “Performance analysis of digital acoustic communication in a shallow water channel,” IEEE J. Ocean. Eng., vol. 20, no. 4, pp. 293–299, 1995.
  3. M. Stojanovic, “Recent advances in high-speed underwater acoustic communications,” IEEE J. Ocean. Eng., vol. 21, no. 2, pp. 125–136, 1996.
  4. H. Ochi, Y. Watanabe, and T. Shimura, “Basic study of underwater acoustic communication using 32-quadrature amplitude modulation,” Japanese J. Appl. Phys., vol. 44, no. 6B, pp. 4689–4693, 2005.
  5. H. C. Song and W. S. Hodgkiss, “Efficient use of bandwidth for underwater acoustic communication,” J. Acoust. Soc. America, vol. 134, no. 2, pp. 905–908, 2013.
  6. C. Pelekanakis, M. Stojanovic, and L. Freitag, “High rate acoustic link for underwater video transmission,” in Proc. IEEE Oceans Conf. Record, vol. 2, 2003, pp. 1091–1097.
  7. A. Song, M. Stojanovic, and M. Chitre, “Editorial underwater acoustic communications: Where we stand and what is next?,” IEEE J. Ocean. Eng., vol. 44, no. 1, pp. 1–6, 2019.
  8. J. H. Fischer, K. R. Bennett, S. A. Reible, J. H. Cafarella, and Iwen Yao, “A high data rate, underwater acoustic data-communications transceiver,” in Proc. OCEANS: Mastering Oceans Through Technol., vol. 2, 1992, pp. 571–576.
  9. A. Goalic, J. Labat, J. Trubuil, S. Saoudi, and D. Rioualen, “Toward a digital acoustic underwater phone,” in Proc. OCEANS, vol. III, pp. 489–494, 1994.
  10. D. B. Kilfoyle and A. B. Baggeroer, “State of the art in underwater acoustic telemetry,” IEEE J. Ocean. Eng., vol. 25, no. 1, pp. 4–27, 2000.
  11. C. Petrioli, “The SUNRISE GATE: Accessing the SUNRISE federation of facilities to test solutions for the Internet of Underwater Things,” in Proc. Underwater Commun. Netw., 2014, vol. 3, pp. 1–4.
  12. J. Alves, J. Potter, P. Guerrini, G. Zappa, and K. Lepage, “The LOON in 2014: Test bed description,” in Proc. Underwater Commun. Netw., 2014, pp. 1–4.
  13. D. A. Real-arce, T. Morales, C. Barrera, J. Hernandez, and O. Llinas, “Smart and networking UnderWAter robots in cooperation meshes - The SWARMs ECSEL-H2020 project,” in Proc. Int. Workshop Marine Technol., 2016, pp. 7–8.
  14. M. Stojanovic and P.-P. J. Beaujean, “Acoustic communication,” in Springer Handbook of Ocean Engineering, Berlin, Germany: Springer, 2016, pp. 359–386.
  15. K. Pelekanakis and A. B. Baggeroer, “Exploiting space-time-frequency diversity with MIMO-OFDM for underwater acoustic communications,” IEEE J. Ocean. Eng., vol. 36, no. 4, pp. 502–513, 2011.
  16. Y. Huang, J. Benesty, and J. Chen, “Identification of acoustic MIMO systems: Challenges and opportunities,” Signal Process., vol. 86, no. 6, pp. 1278–1295, 2006.
  17. T. Kundu, “Acoustic source localization,” Ultrasonics, vol. 54, no. 1, pp. 25–38, 2014.
  18. S. T. Birchfield and R. Gangishetty, “Acoustic localization by interaural level difference,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2005, pp. iv/1109–iv/1112.
  19. S. A. Kalaiselvan and V. Parthasarathy, “Location verification based neighbord discovery for shortest routing in underwater acoustic sensor network,” Adv. Environ. Biol., vol. 9, no. 14, pp. 117–121, 2015.
  20. F. U. Khan and Izhar, “State of the art in acoustic energy harvesting,” J. Micromech. Microeng., vol. 25, no. 2, 2015, Art. no. .
  21. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks a survey,” Comput. Netw., vol. 38, pp. 393–422, 2002.
  22. J. Tiusanen, “Wireless soil scout prototype radio signal reception compared to the attenuation model,” Precis. Agriculture, vol. 10, no. 5, pp. 372–381, 2009.
  23. E. P. Stuntebeck, D. Pompili, and T. Melodia, “Wireless underground sensor networks using commodity terrestrial motes,” in Proc. 2nd IEEE Workshop Wireless Mesh Netw., 2007, pp. 112–114.
  24. A. Palmeiro, M. Martín, I. Crowther, and M. Rhodes, “Underwater radio frequency communications,” in Proc. Ocean., 2011, pp. 1–8.
  25. J. Lloret, S. Sendra, M. Ardid, and J. J. P. C. Rodrigues, “Underwater wireless sensor communications in the 2.4 GHz ISM frequency band,” Sensors, vol. 12, no. 4, pp. 4237–4264, 2012.
  26. D. Eswara Chaitanya, C. Vasavi Sridevi, and G. S. B. Rao, “Path loss analysis of underwater communication systems,” in Proc. IEEE Technol. Students Symp., 2011, pp. 65–70.
  27. A. Shaw, A. I. Al-Shamma'a, S. R. Wylie, and D. Toal, “Experimental investigations of electromagnetic wave propagation in seawater,” in Proc. 36th Eur. Microw. Conf., 2007, pp. 572–575.
  28. A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag., vol. 53, no. 11, pp. 49–55, 2015.
  29. A. A Huurdeman, The Worldwide History of Telecommunications. Hoboken, NJ, USA: Wiley, 2003.
  30. S. P. Thompson, “The photophone,” Nature, vol. 22, no. 569, 1880, Art. no. .
  31. S. A. Hamilton, B. S. Robinson, S. Member, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb / s optical time-division multiplexed networks,” J. Lightw. Technol., vol. 20, no. 12, pp. 2086–2100, 2002.
  32. J. Söderberg, “Free space optics in the czech wireless community: Shedding some light on the role of normativity for user-initiated innovations,” Sci. Technol. Human Values, vol. 36, no. 4, pp. 423–450, 2010.
  33. Y. Wang, Li Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photon. J., vol. 7, no. 6, pp. 1–7, 2015.
  34. C. Shen, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Exp., vol. 24, no. 18, 2016, Art. no. .
  35. S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes. Boca Raton, FL, USA: CRC, 2000.
  36. K.-T. Ho, “32 Gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector,” Opt. Exp., vol. 26, no. 3, 2018, Art. no. .
  37. C. Shen, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photon., vol. 3, no. 2, pp. 262–268, 2016.
  38. C. Shen, “Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system,” Appl. Phys. Exp., vol. 10, no. 4, 2017, Art. no. .
  39. D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): Towards all-optical networking,” Proc. SPIE, vol. 9007, 2004, Art. no. .
  40. J. B. Snow, “Underwater propagation of high-data- rate laser communications pulses,” Proc. SPIE, vol. 1750, pp. 419–427, 1992.
  41. N. Farr, “Optical modem technology for seafloor observatories,” in Proc. Ocean., 2006, pp. 1–7.
  42. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt., vol. 47, no. 2, 2008, Art. no. .
  43. M. Bass, G. Li, and E. W. Van Stryland, Handbook of Optics. Volume IV, Optical Properties of Materials, Nonlinear Optics, Quantum Optics. New York, NY, USA: McGraw-Hill, 2010.
  44. Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 204–238, 2017.
  45. S. A. Hamilton, “Undersea narrow-beam optical communications field demonstration,” Proc. SPIE, vol. 10186, 2017, Art. no. .
  46. J. Xu, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Exp., vol. 24, no. 8, 2016, Art. no. .
  47. I. E. Lee, Y. Guo, T. K. Ng, K. H. Park, M. S. Alouini, and B. S. Ooi, “Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel,” in Proc. Conf. Lasers Electro Opt. Pacific Rim, 2017, pp. 1–5.
  48. A. Al-Halafi, H. M. Oubei, B. S. Ooi, and B. Shihada, “Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode,” J. Opt. Commun. Netw., vol. 9, no. 10, 2017, Art. no. .
  49. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 gbps,” Sci. Rep., vol. 7, pp. 1–10, 2017.
  50. N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Exp., vol. 26, no. 20, 2018, Art. no. .
  51. C. Fei, “16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization,” Opt. Exp., vol. 26, no. 26, 2018, Art. no. .
  52. C. Y. Li, “A 5 m/25 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 10, no. 3, pp. 1–9, 2018.
  53. T. Sawa, “Study of adaptive underwater optical wireless communication with photomultiplier tube,” Japan Agency for Marine-Earth Science and Technology, Suruga bay, Japan, KR17-11 Leg2, Jul. 26, 2017. [Online]. Avaliable: http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/KR17-11_leg2_all.pdf
  54. S. Hu, L. Mi, T. Zhou, and W. Chen, “Underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.
  55. J. Shen, “Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter,” Opt. Exp., vol. 26, no. 18, 2018, Art. no. .
  56. H. M. Oubei, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Exp., vol. 23, no. 18, 2015, Art. no. .
  57. H. M. Oubei, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Proc. Conf. Lasers Electro Opt., 2016, Paper SW1F.1.
  58. J. Shen, “Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output,” Opt. Commun., vol. 438, pp. 78–82, 2019.
  59. C. Shen, “20-meter underwater wireless optical communication link with 15 Gbps data rate,” Opt. Exp., vol. 24, no. 22, 2016, Art. no. .
  60. J. Xu, “Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication,” Opt. Lett., vol. 42, no. 9, pp. 1664–1667, 2017.
  61. Y. Chen, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Exp., vol. 25, no. 13, pp. 14760–14765, 2017.
  62. H. H. Lu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 8, no. 5, pp. 1–7, Oct. 2016.
  63. C.-Y. Li, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Exp., vol. 25, no. 10, 2017, Art. no. .
  64. C. Y. Li and W. S. Tsai, “A UWOC system based on a 6 m/5.2 Gbps 680 nm vertical-cavity surface-emitting laser,” Laser Phys., vol. 28, no. 2, pp. 2–6, 2018.
  65. M. Kong, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Exp., vol. 25, no. 17, pp. 20829–20834, 2017.
  66. Y.-F. Huang, C.-T. Tsai, Y.-C. Chi, D.-W. Huang, and G.-R. Lin, “Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission,” J. Lightw. Technol., vol. 36, no. 9, pp. 1739–1745, 2018.
  67. H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Exp., vol. 23, no. 16, 2015, Art. no. .
  68. S. Hu, L. Mi, T. Zhou, and W. Chen, “35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.
  69. X. Liu, S. Yi, R. Liu, L. Zheng, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser with NRZ-OOK modulation,” in Proc. 14th China Int. Forum Solid State Light. Int. Forum Wide Bandgap Semicond., 2018, pp. 60–61.
  70. K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Exp., vol. 23, no. 2, pp. 1558–1566, 2015.
  71. G. Nootz, E. Jarosz, F. R. Dalgleish, and W. Hou, “Quantification of optical turbulence in the ocean and its effects on beam propagation,” Appl. Opt., vol. 55, no. 31, pp. 8813–8820, 2016.
  72. E. Zedini, H. M. Oubei, A. Kammoun, M. Hamdi, B. S. Ooi, and M. Alouini, “Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2893–2907, 2019.
  73. M. V. Jamali, “Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4706–4723, 2018.
  74. H. M. Oubei, “Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems,” Opt. Lett., vol. 42, no. 13, pp. 2455–2458, 2017.
  75. M. Elamassie and M. Uysal, “Performance characterization of vertical underwater VLC links in the presence of turbulence,” in Proc. 11th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2018, pp. 1–6.
  76. M. C. Gökçe and Y. Baykal, “Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence,” Opt. Commun., vol. 410, pp. 830–835, 2018.
  77. H. M. Oubei, R. T. ElAfandy, K. Park, T. K. Ng, M. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.
  78. Y. Dong and J. Liu, “On BER performance of underwater wireless optical MISO links under weak turbulence,” in Proc. OCEANS, Shanghai, China, 2016, pp. 1–4.
  79. M. V Jamali, P. Nabavi, and J. A. Salehi, “MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8223–8237, 2018.
  80. H. M. Oubei, X. Sun, T. K. Ng, O. Alkhazragi, M.-S. Alouini, and S. Boon Ooi, “Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence,” in Proc. 4th Underwater Commun. Netw. Conf., 2018, pp. 1–4.
  81. Y. Guo, “On the reciprocity of underwater turbulent channels,” IEEE Photon. J., vol. 11, no. 2, 2019, Art no. .
  82. B. Cochenour, L. Mullen, and A. Laux, “Phase coherent digital communications for wireless optical links in turbid underwater environments,” in Proc. OCEANS, 2007, pp. 1–5.
  83. X. Sun, “375-nm ultraviolet-laser based non-line-of-sight underwater optical communication,” Opt. Exp., vol. 26, no. 10, 2018, Art. no. .
  84. S. Tang, Y. Dong, and X. Zhang, “On path loss of NLOS underwater wireless optical communication links,” in Proc. MTS/IEEE OCEANS, 2013, pp. 1–3.
  85. W. Liu, D. Zou, Z. Xu, and J. Yu, “Non-line-of-sight scattering channel modeling for underwater optical wireless communication,” in Proc. IEEE Int. Conf. Cyber Technol. Autom. Control Intell. Syst., 2015, pp. 1265–1268.
  86. A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Amer. J. Phys., vol. 70, no. 6, pp. 620–625, 2002.
  87. C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw., vol. 5, no. 1, pp. 1–12, 2013.
  88. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters by Curtis D. Mobley. New York, NY, USA: Academic, 1994.
  89. V. K. Jagadeesh, K. V Naveen, and P. Muthuchidambaranathan, “BER performance of NLOS underwater wireless optical communication with multiple scattering,” Int. J. Electron. Commun. Eng., vol. 9, no. 2, pp. 563–566, 2015.
  90. A. Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Pathloss analysis of NLOS underwater wireless optical communication channel,” in Proc. Int. Conf. Electron. Commun. Syst., 2014, pp. 1–4.
  91. G. Wang, K. Wang, C. Gong, D. Zou, Z. Jiang, and Z. Xu, “A 1 Mbps real-time NLOS UV scattering communication system with receiver diversity over 1 km,” IEEE Photon. J., vol. 10, no. 2, pp. 1–13, 2018.
  92. H. M. Oubei, “Light based underwater wireless communications,” Japanese J. Appl. Phys., vol. 57, no. 8, pp. 08PA06-1–08PA06-18, 2018.
  93. Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, 2017, Art. no. .
  94. R. Mangeret, J. Farenc, B. Ai, P. Destruel, D. Puretolas, and J. Casanovas, “Optical detection of partial discharges using fluorescent fiber,” IEEE Trans. Elect. Insul., vol. 26, no. 4, pp. 783–789, 1991.
  95. J. Farenc, R. Mangeret, A. Boulanger, P. Destruel, and M. Lescure, “A fluorescent plastic optical fiber sensor for the detection of corona discharges in high voltage electrical equipment,” Rev. Sci. Instrum., vol. 65, no. 1, pp. 155–160, 1994.
  96. J. C. Goldschmidt, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 2, pp. 176–182, 2009.
  97. Y. Dong, “Nanopatterned luminescent concentrators for visible light communications,” Opt. Exp., vol. 25, no. 18, 2017, Art. no. .
  98. S. Collins, D. C. O'Brien, and A. Watt, “High gain, wide field of view concentrator for optical communications,” Opt. Lett., vol. 39, no. 7, 2014, Art. no. .
  99. F. Purcell-Milton and Y. K. Gun'ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem., vol. 22, no. 33, 2012, Art. no. .
  100. T. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke, “Luminescent detector for free-space optical communication,” Optica, vol. 3, no. 7, 2016, Art. no. .
  101. C. H. Kang, “Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication,” Opt. Exp., vol. 27, no. 21, 2019, Art. no. .
  102. A. Messa, “Sea-trial of optical ethernet modems for underwater wireless communications,” J. Lightw. Technol., vol. 36, no. 23, pp. 5371–5380, 2018.
  103. M. Kong, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun., vol. 426, pp. 94–98, 2018.
  104. C. H. Kang, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl., vol. 8, no. 1, 2019, Art. no. .
  105. J.-W. Min, “Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices,” J. Nanophoton., vol. 12, no. 4, pp. 043511-1–043511-38, 2018.
  106. L. Sang, M. Liao, M. Sumiya, L. Sang, M. Liao, and M. Sumiya, “A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures,” Sensors, vol. 13, no. 8, pp. 10482–10518, 2013.
  107. H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi, and X. Fang, “New concept ultraviolet photodetectors,” Mater. Today, vol. 18, no. 9, pp. 493–502, 2015.
  108. S.-M. Kim, J.-S. Won, and S.-H. Nahm, “Simultaneous reception of solar power and visible light communication using a solar cell,” Opt. Eng., vol. 53, no. 4, 2014, Art. no. .
  109. Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3348–3353.
  110. W.-H. Shin, S.-H. Yang, D.-H. Kwon, and S.-K. Han, “Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting,” Opt. Exp., vol. 24, no. 22, 2016, Art. no. .
  111. S. Zhang, “Organic solar cells as high-speed data detectors for visible light communication,” Optica, vol. 2, no. 7, pp. 607–610, 2015.
  112. H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper M3G.2.
  113. J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett., vol. 30, no. 9, pp. 841–844, 2018.
  114. S. M. Kim and J. S. Won, “Simultaneous reception of visible light communication and optical energy using a solar cell receiver,” in Proc. Int. Conf. ICT Convergence, 2013, pp. 896–897.
  115. Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3348–3353.
  116. Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1612–1623, 2015.
  117. H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 5–7.
  118. M. Kong, “Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells,” Opt. Exp., vol. 27, pp. 34542–34551, 2019.

2019 (7)

A. Song, M. Stojanovic, and M. Chitre, “Editorial underwater acoustic communications: Where we stand and what is next?,” IEEE J. Ocean. Eng., vol. 44, no. 1, pp. 1–6, 2019.

J. Shen, “Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output,” Opt. Commun., vol. 438, pp. 78–82, 2019.

E. Zedini, H. M. Oubei, A. Kammoun, M. Hamdi, B. S. Ooi, and M. Alouini, “Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2893–2907, 2019.

Y. Guo, “On the reciprocity of underwater turbulent channels,” IEEE Photon. J., vol. 11, no. 2, 2019, Art no. .

C. H. Kang, “Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication,” Opt. Exp., vol. 27, no. 21, 2019, Art. no. .

C. H. Kang, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl., vol. 8, no. 1, 2019, Art. no. .

M. Kong, “Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells,” Opt. Exp., vol. 27, pp. 34542–34551, 2019.

2018 (19)

J.-W. Min, “Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices,” J. Nanophoton., vol. 12, no. 4, pp. 043511-1–043511-38, 2018.

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett., vol. 30, no. 9, pp. 841–844, 2018.

A. Messa, “Sea-trial of optical ethernet modems for underwater wireless communications,” J. Lightw. Technol., vol. 36, no. 23, pp. 5371–5380, 2018.

M. Kong, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun., vol. 426, pp. 94–98, 2018.

X. Sun, “375-nm ultraviolet-laser based non-line-of-sight underwater optical communication,” Opt. Exp., vol. 26, no. 10, 2018, Art. no. .

M. V Jamali, P. Nabavi, and J. A. Salehi, “MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8223–8237, 2018.

G. Wang, K. Wang, C. Gong, D. Zou, Z. Jiang, and Z. Xu, “A 1 Mbps real-time NLOS UV scattering communication system with receiver diversity over 1 km,” IEEE Photon. J., vol. 10, no. 2, pp. 1–13, 2018.

H. M. Oubei, “Light based underwater wireless communications,” Japanese J. Appl. Phys., vol. 57, no. 8, pp. 08PA06-1–08PA06-18, 2018.

M. V. Jamali, “Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4706–4723, 2018.

M. C. Gökçe and Y. Baykal, “Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence,” Opt. Commun., vol. 410, pp. 830–835, 2018.

Y.-F. Huang, C.-T. Tsai, Y.-C. Chi, D.-W. Huang, and G.-R. Lin, “Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission,” J. Lightw. Technol., vol. 36, no. 9, pp. 1739–1745, 2018.

S. Hu, L. Mi, T. Zhou, and W. Chen, “35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.

C. Y. Li and W. S. Tsai, “A UWOC system based on a 6 m/5.2 Gbps 680 nm vertical-cavity surface-emitting laser,” Laser Phys., vol. 28, no. 2, pp. 2–6, 2018.

K.-T. Ho, “32 Gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector,” Opt. Exp., vol. 26, no. 3, 2018, Art. no. .

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Exp., vol. 26, no. 20, 2018, Art. no. .

C. Fei, “16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization,” Opt. Exp., vol. 26, no. 26, 2018, Art. no. .

C. Y. Li, “A 5 m/25 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 10, no. 3, pp. 1–9, 2018.

S. Hu, L. Mi, T. Zhou, and W. Chen, “Underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.

J. Shen, “Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter,” Opt. Exp., vol. 26, no. 18, 2018, Art. no. .

2017 (13)

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 204–238, 2017.

S. A. Hamilton, “Undersea narrow-beam optical communications field demonstration,” Proc. SPIE, vol. 10186, 2017, Art. no. .

A. Al-Halafi, H. M. Oubei, B. S. Ooi, and B. Shihada, “Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode,” J. Opt. Commun. Netw., vol. 9, no. 10, 2017, Art. no. .

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 gbps,” Sci. Rep., vol. 7, pp. 1–10, 2017.

C. Shen, “Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system,” Appl. Phys. Exp., vol. 10, no. 4, 2017, Art. no. .

M. Kong, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Exp., vol. 25, no. 17, pp. 20829–20834, 2017.

C.-Y. Li, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Exp., vol. 25, no. 10, 2017, Art. no. .

J. Xu, “Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication,” Opt. Lett., vol. 42, no. 9, pp. 1664–1667, 2017.

Y. Chen, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Exp., vol. 25, no. 13, pp. 14760–14765, 2017.

H. M. Oubei, R. T. ElAfandy, K. Park, T. K. Ng, M. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

H. M. Oubei, “Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems,” Opt. Lett., vol. 42, no. 13, pp. 2455–2458, 2017.

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, 2017, Art. no. .

Y. Dong, “Nanopatterned luminescent concentrators for visible light communications,” Opt. Exp., vol. 25, no. 18, 2017, Art. no. .

2016 (8)

G. Nootz, E. Jarosz, F. R. Dalgleish, and W. Hou, “Quantification of optical turbulence in the ocean and its effects on beam propagation,” Appl. Opt., vol. 55, no. 31, pp. 8813–8820, 2016.

H. H. Lu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 8, no. 5, pp. 1–7, Oct. 2016.

C. Shen, “20-meter underwater wireless optical communication link with 15 Gbps data rate,” Opt. Exp., vol. 24, no. 22, 2016, Art. no. .

C. Shen, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photon., vol. 3, no. 2, pp. 262–268, 2016.

C. Shen, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Exp., vol. 24, no. 18, 2016, Art. no. .

J. Xu, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Exp., vol. 24, no. 8, 2016, Art. no. .

W.-H. Shin, S.-H. Yang, D.-H. Kwon, and S.-K. Han, “Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting,” Opt. Exp., vol. 24, no. 22, 2016, Art. no. .

T. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke, “Luminescent detector for free-space optical communication,” Optica, vol. 3, no. 7, 2016, Art. no. .

2015 (11)

S. Zhang, “Organic solar cells as high-speed data detectors for visible light communication,” Optica, vol. 2, no. 7, pp. 607–610, 2015.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1612–1623, 2015.

H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi, and X. Fang, “New concept ultraviolet photodetectors,” Mater. Today, vol. 18, no. 9, pp. 493–502, 2015.

H. M. Oubei, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Exp., vol. 23, no. 18, 2015, Art. no. .

Y. Wang, Li Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photon. J., vol. 7, no. 6, pp. 1–7, 2015.

S. A. Kalaiselvan and V. Parthasarathy, “Location verification based neighbord discovery for shortest routing in underwater acoustic sensor network,” Adv. Environ. Biol., vol. 9, no. 14, pp. 117–121, 2015.

F. U. Khan and Izhar, “State of the art in acoustic energy harvesting,” J. Micromech. Microeng., vol. 25, no. 2, 2015, Art. no. .

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag., vol. 53, no. 11, pp. 49–55, 2015.

K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Exp., vol. 23, no. 2, pp. 1558–1566, 2015.

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Exp., vol. 23, no. 16, 2015, Art. no. .

V. K. Jagadeesh, K. V Naveen, and P. Muthuchidambaranathan, “BER performance of NLOS underwater wireless optical communication with multiple scattering,” Int. J. Electron. Commun. Eng., vol. 9, no. 2, pp. 563–566, 2015.

2014 (3)

S. Collins, D. C. O'Brien, and A. Watt, “High gain, wide field of view concentrator for optical communications,” Opt. Lett., vol. 39, no. 7, 2014, Art. no. .

T. Kundu, “Acoustic source localization,” Ultrasonics, vol. 54, no. 1, pp. 25–38, 2014.

S.-M. Kim, J.-S. Won, and S.-H. Nahm, “Simultaneous reception of solar power and visible light communication using a solar cell,” Opt. Eng., vol. 53, no. 4, 2014, Art. no. .

2013 (3)

L. Sang, M. Liao, M. Sumiya, L. Sang, M. Liao, and M. Sumiya, “A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures,” Sensors, vol. 13, no. 8, pp. 10482–10518, 2013.

H. C. Song and W. S. Hodgkiss, “Efficient use of bandwidth for underwater acoustic communication,” J. Acoust. Soc. America, vol. 134, no. 2, pp. 905–908, 2013.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw., vol. 5, no. 1, pp. 1–12, 2013.

2012 (2)

F. Purcell-Milton and Y. K. Gun'ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem., vol. 22, no. 33, 2012, Art. no. .

J. Lloret, S. Sendra, M. Ardid, and J. J. P. C. Rodrigues, “Underwater wireless sensor communications in the 2.4 GHz ISM frequency band,” Sensors, vol. 12, no. 4, pp. 4237–4264, 2012.

2011 (1)

K. Pelekanakis and A. B. Baggeroer, “Exploiting space-time-frequency diversity with MIMO-OFDM for underwater acoustic communications,” IEEE J. Ocean. Eng., vol. 36, no. 4, pp. 502–513, 2011.

2010 (1)

J. Söderberg, “Free space optics in the czech wireless community: Shedding some light on the role of normativity for user-initiated innovations,” Sci. Technol. Human Values, vol. 36, no. 4, pp. 423–450, 2010.

2009 (2)

J. Tiusanen, “Wireless soil scout prototype radio signal reception compared to the attenuation model,” Precis. Agriculture, vol. 10, no. 5, pp. 372–381, 2009.

J. C. Goldschmidt, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 2, pp. 176–182, 2009.

2008 (1)

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt., vol. 47, no. 2, 2008, Art. no. .

2006 (1)

Y. Huang, J. Benesty, and J. Chen, “Identification of acoustic MIMO systems: Challenges and opportunities,” Signal Process., vol. 86, no. 6, pp. 1278–1295, 2006.

2005 (1)

H. Ochi, Y. Watanabe, and T. Shimura, “Basic study of underwater acoustic communication using 32-quadrature amplitude modulation,” Japanese J. Appl. Phys., vol. 44, no. 6B, pp. 4689–4693, 2005.

2004 (1)

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): Towards all-optical networking,” Proc. SPIE, vol. 9007, 2004, Art. no. .

2003 (1)

C. Pelekanakis, M. Stojanovic, and L. Freitag, “High rate acoustic link for underwater video transmission,” in Proc. IEEE Oceans Conf. Record, vol. 2, 2003, pp. 1091–1097.

2002 (3)

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks a survey,” Comput. Netw., vol. 38, pp. 393–422, 2002.

S. A. Hamilton, B. S. Robinson, S. Member, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb / s optical time-division multiplexed networks,” J. Lightw. Technol., vol. 20, no. 12, pp. 2086–2100, 2002.

A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Amer. J. Phys., vol. 70, no. 6, pp. 620–625, 2002.

2000 (1)

D. B. Kilfoyle and A. B. Baggeroer, “State of the art in underwater acoustic telemetry,” IEEE J. Ocean. Eng., vol. 25, no. 1, pp. 4–27, 2000.

1996 (1)

M. Stojanovic, “Recent advances in high-speed underwater acoustic communications,” IEEE J. Ocean. Eng., vol. 21, no. 2, pp. 125–136, 1996.

1995 (1)

A. Zielinski, Y.-H. Young-Hoon Yoon, and L. Lixue Wu, “Performance analysis of digital acoustic communication in a shallow water channel,” IEEE J. Ocean. Eng., vol. 20, no. 4, pp. 293–299, 1995.

1994 (1)

J. Farenc, R. Mangeret, A. Boulanger, P. Destruel, and M. Lescure, “A fluorescent plastic optical fiber sensor for the detection of corona discharges in high voltage electrical equipment,” Rev. Sci. Instrum., vol. 65, no. 1, pp. 155–160, 1994.

1992 (1)

J. B. Snow, “Underwater propagation of high-data- rate laser communications pulses,” Proc. SPIE, vol. 1750, pp. 419–427, 1992.

1991 (1)

R. Mangeret, J. Farenc, B. Ai, P. Destruel, D. Puretolas, and J. Casanovas, “Optical detection of partial discharges using fluorescent fiber,” IEEE Trans. Elect. Insul., vol. 26, no. 4, pp. 783–789, 1991.

1880 (1)

S. P. Thompson, “The photophone,” Nature, vol. 22, no. 569, 1880, Art. no. .

Ai, B.

R. Mangeret, J. Farenc, B. Ai, P. Destruel, D. Puretolas, and J. Casanovas, “Optical detection of partial discharges using fluorescent fiber,” IEEE Trans. Elect. Insul., vol. 26, no. 4, pp. 783–789, 1991.

Akyildiz, I. F.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks a survey,” Comput. Netw., vol. 38, pp. 393–422, 2002.

Al-Ghamdi, A. A.

H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi, and X. Fang, “New concept ultraviolet photodetectors,” Mater. Today, vol. 18, no. 9, pp. 493–502, 2015.

Al-Halafi, A.

A. Al-Halafi, H. M. Oubei, B. S. Ooi, and B. Shihada, “Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode,” J. Opt. Commun. Netw., vol. 9, no. 10, 2017, Art. no. .

Alkhazragi, O.

H. M. Oubei, X. Sun, T. K. Ng, O. Alkhazragi, M.-S. Alouini, and S. Boon Ooi, “Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence,” in Proc. 4th Underwater Commun. Netw. Conf., 2018, pp. 1–4.

Alouini, M.

E. Zedini, H. M. Oubei, A. Kammoun, M. Hamdi, B. S. Ooi, and M. Alouini, “Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2893–2907, 2019.

H. M. Oubei, R. T. ElAfandy, K. Park, T. K. Ng, M. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

Alouini, M. S.

I. E. Lee, Y. Guo, T. K. Ng, K. H. Park, M. S. Alouini, and B. S. Ooi, “Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel,” in Proc. Conf. Lasers Electro Opt. Pacific Rim, 2017, pp. 1–5.

Alouini, M.-S.

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Exp., vol. 23, no. 16, 2015, Art. no. .

H. M. Oubei, X. Sun, T. K. Ng, O. Alkhazragi, M.-S. Alouini, and S. Boon Ooi, “Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence,” in Proc. 4th Underwater Commun. Netw. Conf., 2018, pp. 1–4.

Al-Shamma'a, A. I.

A. Shaw, A. I. Al-Shamma'a, S. R. Wylie, and D. Toal, “Experimental investigations of electromagnetic wave propagation in seawater,” in Proc. 36th Eur. Microw. Conf., 2007, pp. 572–575.

Alves, J.

J. Alves, J. Potter, P. Guerrini, G. Zappa, and K. Lepage, “The LOON in 2014: Test bed description,” in Proc. Underwater Commun. Netw., 2014, pp. 1–4.

Ardid, M.

J. Lloret, S. Sendra, M. Ardid, and J. J. P. C. Rodrigues, “Underwater wireless sensor communications in the 2.4 GHz ISM frequency band,” Sensors, vol. 12, no. 4, pp. 4237–4264, 2012.

Baggeroer, A. B.

K. Pelekanakis and A. B. Baggeroer, “Exploiting space-time-frequency diversity with MIMO-OFDM for underwater acoustic communications,” IEEE J. Ocean. Eng., vol. 36, no. 4, pp. 502–513, 2011.

D. B. Kilfoyle and A. B. Baggeroer, “State of the art in underwater acoustic telemetry,” IEEE J. Ocean. Eng., vol. 25, no. 1, pp. 4–27, 2000.

Barrera, C.

D. A. Real-arce, T. Morales, C. Barrera, J. Hernandez, and O. Llinas, “Smart and networking UnderWAter robots in cooperation meshes - The SWARMs ECSEL-H2020 project,” in Proc. Int. Workshop Marine Technol., 2016, pp. 7–8.

Bass, M.

M. Bass, G. Li, and E. W. Van Stryland, Handbook of Optics. Volume IV, Optical Properties of Materials, Nonlinear Optics, Quantum Optics. New York, NY, USA: McGraw-Hill, 2010.

Baykal, Y.

M. C. Gökçe and Y. Baykal, “Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence,” Opt. Commun., vol. 410, pp. 830–835, 2018.

Beaujean, P.-P. J.

M. Stojanovic and P.-P. J. Beaujean, “Acoustic communication,” in Springer Handbook of Ocean Engineering, Berlin, Germany: Springer, 2016, pp. 359–386.

Benesty, J.

Y. Huang, J. Benesty, and J. Chen, “Identification of acoustic MIMO systems: Challenges and opportunities,” Signal Process., vol. 86, no. 6, pp. 1278–1295, 2006.

Bennett, K. R.

J. H. Fischer, K. R. Bennett, S. A. Reible, J. H. Cafarella, and Iwen Yao, “A high data rate, underwater acoustic data-communications transceiver,” in Proc. OCEANS: Mastering Oceans Through Technol., vol. 2, 1992, pp. 571–576.

Birchfield, S. T.

S. T. Birchfield and R. Gangishetty, “Acoustic localization by interaural level difference,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2005, pp. iv/1109–iv/1112.

Boon Ooi, S.

H. M. Oubei, X. Sun, T. K. Ng, O. Alkhazragi, M.-S. Alouini, and S. Boon Ooi, “Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence,” in Proc. 4th Underwater Commun. Netw. Conf., 2018, pp. 1–4.

Boulanger, A.

J. Farenc, R. Mangeret, A. Boulanger, P. Destruel, and M. Lescure, “A fluorescent plastic optical fiber sensor for the detection of corona discharges in high voltage electrical equipment,” Rev. Sci. Instrum., vol. 65, no. 1, pp. 155–160, 1994.

Bourennane, S.

Cafarella, J. H.

J. H. Fischer, K. R. Bennett, S. A. Reible, J. H. Cafarella, and Iwen Yao, “A high data rate, underwater acoustic data-communications transceiver,” in Proc. OCEANS: Mastering Oceans Through Technol., vol. 2, 1992, pp. 571–576.

Casanovas, J.

R. Mangeret, J. Farenc, B. Ai, P. Destruel, D. Puretolas, and J. Casanovas, “Optical detection of partial discharges using fluorescent fiber,” IEEE Trans. Elect. Insul., vol. 26, no. 4, pp. 783–789, 1991.

Cayirci, E.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks a survey,” Comput. Netw., vol. 38, pp. 393–422, 2002.

Chen, H.

H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi, and X. Fang, “New concept ultraviolet photodetectors,” Mater. Today, vol. 18, no. 9, pp. 493–502, 2015.

Chen, J.

Y. Huang, J. Benesty, and J. Chen, “Identification of acoustic MIMO systems: Challenges and opportunities,” Signal Process., vol. 86, no. 6, pp. 1278–1295, 2006.

Chen, W.

S. Hu, L. Mi, T. Zhou, and W. Chen, “Underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.

S. Hu, L. Mi, T. Zhou, and W. Chen, “35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.

Chen, Y.

Y. Chen, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Exp., vol. 25, no. 13, pp. 14760–14765, 2017.

Cheng, J.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 204–238, 2017.

Chi, N.

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Exp., vol. 26, no. 20, 2018, Art. no. .

Y. Wang, Li Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photon. J., vol. 7, no. 6, pp. 1–7, 2015.

Chi, Y. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 gbps,” Sci. Rep., vol. 7, pp. 1–10, 2017.

Chi, Y.-C.

Y.-F. Huang, C.-T. Tsai, Y.-C. Chi, D.-W. Huang, and G.-R. Lin, “Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission,” J. Lightw. Technol., vol. 36, no. 9, pp. 1739–1745, 2018.

Chichibu, S. F.

S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes. Boca Raton, FL, USA: CRC, 2000.

Chitre, M.

A. Song, M. Stojanovic, and M. Chitre, “Editorial underwater acoustic communications: Where we stand and what is next?,” IEEE J. Ocean. Eng., vol. 44, no. 1, pp. 1–6, 2019.

Choudhary, A.

A. Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Pathloss analysis of NLOS underwater wireless optical communication channel,” in Proc. Int. Conf. Electron. Commun. Syst., 2014, pp. 1–4.

Cochenour, B.

B. Cochenour, L. Mullen, and A. Laux, “Phase coherent digital communications for wireless optical links in turbid underwater environments,” in Proc. OCEANS, 2007, pp. 1–5.

Collins, S.

S. Collins, D. C. O'Brien, and A. Watt, “High gain, wide field of view concentrator for optical communications,” Opt. Lett., vol. 39, no. 7, 2014, Art. no. .

Cox, A. J.

A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Amer. J. Phys., vol. 70, no. 6, pp. 620–625, 2002.

Crowther, I.

A. Palmeiro, M. Martín, I. Crowther, and M. Rhodes, “Underwater radio frequency communications,” in Proc. Ocean., 2011, pp. 1–8.

Dalgleish, F. R.

Das, S.

H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper M3G.2.

H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 5–7.

Destruel, P.

J. Farenc, R. Mangeret, A. Boulanger, P. Destruel, and M. Lescure, “A fluorescent plastic optical fiber sensor for the detection of corona discharges in high voltage electrical equipment,” Rev. Sci. Instrum., vol. 65, no. 1, pp. 155–160, 1994.

R. Mangeret, J. Farenc, B. Ai, P. Destruel, D. Puretolas, and J. Casanovas, “Optical detection of partial discharges using fluorescent fiber,” IEEE Trans. Elect. Insul., vol. 26, no. 4, pp. 783–789, 1991.

DeWeerd, A. J.

A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Amer. J. Phys., vol. 70, no. 6, pp. 620–625, 2002.

Dong, Y.

Y. Dong, “Nanopatterned luminescent concentrators for visible light communications,” Opt. Exp., vol. 25, no. 18, 2017, Art. no. .

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 204–238, 2017.

S. Tang, Y. Dong, and X. Zhang, “On path loss of NLOS underwater wireless optical communication links,” in Proc. MTS/IEEE OCEANS, 2013, pp. 1–3.

Y. Dong and J. Liu, “On BER performance of underwater wireless optical MISO links under weak turbulence,” in Proc. OCEANS, Shanghai, China, 2016, pp. 1–4.

ElAfandy, R. T.

H. M. Oubei, R. T. ElAfandy, K. Park, T. K. Ng, M. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

Elamassie, M.

M. Elamassie and M. Uysal, “Performance characterization of vertical underwater VLC links in the presence of turbulence,” in Proc. 11th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2018, pp. 1–6.

Eswara Chaitanya, D.

D. Eswara Chaitanya, C. Vasavi Sridevi, and G. S. B. Rao, “Path loss analysis of underwater communication systems,” in Proc. IEEE Technol. Students Symp., 2011, pp. 65–70.

Fakidis, J.

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett., vol. 30, no. 9, pp. 841–844, 2018.

H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper M3G.2.

H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 5–7.

Fang, X.

H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi, and X. Fang, “New concept ultraviolet photodetectors,” Mater. Today, vol. 18, no. 9, pp. 493–502, 2015.

Farenc, J.

J. Farenc, R. Mangeret, A. Boulanger, P. Destruel, and M. Lescure, “A fluorescent plastic optical fiber sensor for the detection of corona discharges in high voltage electrical equipment,” Rev. Sci. Instrum., vol. 65, no. 1, pp. 155–160, 1994.

R. Mangeret, J. Farenc, B. Ai, P. Destruel, D. Puretolas, and J. Casanovas, “Optical detection of partial discharges using fluorescent fiber,” IEEE Trans. Elect. Insul., vol. 26, no. 4, pp. 783–789, 1991.

Farr, N.

N. Farr, “Optical modem technology for seafloor observatories,” in Proc. Ocean., 2006, pp. 1–7.

Fei, C.

C. Fei, “16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization,” Opt. Exp., vol. 26, no. 26, 2018, Art. no. .

Fischer, J. H.

J. H. Fischer, K. R. Bennett, S. A. Reible, J. H. Cafarella, and Iwen Yao, “A high data rate, underwater acoustic data-communications transceiver,” in Proc. OCEANS: Mastering Oceans Through Technol., vol. 2, 1992, pp. 571–576.

Fletcher, A. S.

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag., vol. 53, no. 11, pp. 49–55, 2015.

Freitag, L.

C. Pelekanakis, M. Stojanovic, and L. Freitag, “High rate acoustic link for underwater video transmission,” in Proc. IEEE Oceans Conf. Record, vol. 2, 2003, pp. 1091–1097.

Fu, S.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 204–238, 2017.

Gabriel, C.

Gangishetty, R.

S. T. Birchfield and R. Gangishetty, “Acoustic localization by interaural level difference,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2005, pp. iv/1109–iv/1112.

Goalic, A.

A. Goalic, J. Labat, J. Trubuil, S. Saoudi, and D. Rioualen, “Toward a digital acoustic underwater phone,” in Proc. OCEANS, vol. III, pp. 489–494, 1994.

Gökçe, M. C.

M. C. Gökçe and Y. Baykal, “Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence,” Opt. Commun., vol. 410, pp. 830–835, 2018.

Goldschmidt, J. C.

J. C. Goldschmidt, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 2, pp. 176–182, 2009.

Gong, C.

G. Wang, K. Wang, C. Gong, D. Zou, Z. Jiang, and Z. Xu, “A 1 Mbps real-time NLOS UV scattering communication system with receiver diversity over 1 km,” IEEE Photon. J., vol. 10, no. 2, pp. 1–13, 2018.

Guerrini, P.

J. Alves, J. Potter, P. Guerrini, G. Zappa, and K. Lepage, “The LOON in 2014: Test bed description,” in Proc. Underwater Commun. Netw., 2014, pp. 1–4.

Gun'ko, Y. K.

F. Purcell-Milton and Y. K. Gun'ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem., vol. 22, no. 33, 2012, Art. no. .

Guo, Y.

Y. Guo, “On the reciprocity of underwater turbulent channels,” IEEE Photon. J., vol. 11, no. 2, 2019, Art no. .

I. E. Lee, Y. Guo, T. K. Ng, K. H. Park, M. S. Alouini, and B. S. Ooi, “Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel,” in Proc. Conf. Lasers Electro Opt. Pacific Rim, 2017, pp. 1–5.

Haas, H.

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett., vol. 30, no. 9, pp. 841–844, 2018.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1612–1623, 2015.

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): Towards all-optical networking,” Proc. SPIE, vol. 9007, 2004, Art. no. .

H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 5–7.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3348–3353.

H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper M3G.2.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3348–3353.

Hamdi, M.

E. Zedini, H. M. Oubei, A. Kammoun, M. Hamdi, B. S. Ooi, and M. Alouini, “Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2893–2907, 2019.

Hamilton, S. A.

S. A. Hamilton, “Undersea narrow-beam optical communications field demonstration,” Proc. SPIE, vol. 10186, 2017, Art. no. .

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag., vol. 53, no. 11, pp. 49–55, 2015.

S. A. Hamilton, B. S. Robinson, S. Member, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb / s optical time-division multiplexed networks,” J. Lightw. Technol., vol. 20, no. 12, pp. 2086–2100, 2002.

Han, S.-K.

W.-H. Shin, S.-H. Yang, D.-H. Kwon, and S.-K. Han, “Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting,” Opt. Exp., vol. 24, no. 22, 2016, Art. no. .

Hanawa, M.

K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Exp., vol. 23, no. 2, pp. 1558–1566, 2015.

Hanson, F.

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt., vol. 47, no. 2, 2008, Art. no. .

Helmers, H.

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett., vol. 30, no. 9, pp. 841–844, 2018.

Hernandez, J.

D. A. Real-arce, T. Morales, C. Barrera, J. Hernandez, and O. Llinas, “Smart and networking UnderWAter robots in cooperation meshes - The SWARMs ECSEL-H2020 project,” in Proc. Int. Workshop Marine Technol., 2016, pp. 7–8.

Ho, K.-T.

K.-T. Ho, “32 Gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector,” Opt. Exp., vol. 26, no. 3, 2018, Art. no. .

Hodgkiss, W. S.

H. C. Song and W. S. Hodgkiss, “Efficient use of bandwidth for underwater acoustic communication,” J. Acoust. Soc. America, vol. 134, no. 2, pp. 905–908, 2013.

Hou, W.

Hu, L.

H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi, and X. Fang, “New concept ultraviolet photodetectors,” Mater. Today, vol. 18, no. 9, pp. 493–502, 2015.

Hu, S.

S. Hu, L. Mi, T. Zhou, and W. Chen, “35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.

S. Hu, L. Mi, T. Zhou, and W. Chen, “Underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.

Huang, D.-W.

Y.-F. Huang, C.-T. Tsai, Y.-C. Chi, D.-W. Huang, and G.-R. Lin, “Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission,” J. Lightw. Technol., vol. 36, no. 9, pp. 1739–1745, 2018.

Huang, X.

Y. Wang, Li Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photon. J., vol. 7, no. 6, pp. 1–7, 2015.

Huang, Y.

Y. Huang, J. Benesty, and J. Chen, “Identification of acoustic MIMO systems: Challenges and opportunities,” Signal Process., vol. 86, no. 6, pp. 1278–1295, 2006.

Huang, Y.-F.

Y.-F. Huang, C.-T. Tsai, Y.-C. Chi, D.-W. Huang, and G.-R. Lin, “Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission,” J. Lightw. Technol., vol. 36, no. 9, pp. 1739–1745, 2018.

Huurdeman, A. A

A. A Huurdeman, The Worldwide History of Telecommunications. Hoboken, NJ, USA: Wiley, 2003.

Ippen, E. P.

S. A. Hamilton, B. S. Robinson, S. Member, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb / s optical time-division multiplexed networks,” J. Lightw. Technol., vol. 20, no. 12, pp. 2086–2100, 2002.

Izhar,

F. U. Khan and Izhar, “State of the art in acoustic energy harvesting,” J. Micromech. Microeng., vol. 25, no. 2, 2015, Art. no. .

Jagadeesh, V. K.

V. K. Jagadeesh, K. V Naveen, and P. Muthuchidambaranathan, “BER performance of NLOS underwater wireless optical communication with multiple scattering,” Int. J. Electron. Commun. Eng., vol. 9, no. 2, pp. 563–566, 2015.

A. Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Pathloss analysis of NLOS underwater wireless optical communication channel,” in Proc. Int. Conf. Electron. Commun. Syst., 2014, pp. 1–4.

Jamali, M. V

M. V Jamali, P. Nabavi, and J. A. Salehi, “MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8223–8237, 2018.

Jamali, M. V.

M. V. Jamali, “Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4706–4723, 2018.

Jarosz, E.

Jiang, Z.

G. Wang, K. Wang, C. Gong, D. Zou, Z. Jiang, and Z. Xu, “A 1 Mbps real-time NLOS UV scattering communication system with receiver diversity over 1 km,” IEEE Photon. J., vol. 10, no. 2, pp. 1–13, 2018.

Kalaiselvan, S. A.

S. A. Kalaiselvan and V. Parthasarathy, “Location verification based neighbord discovery for shortest routing in underwater acoustic sensor network,” Adv. Environ. Biol., vol. 9, no. 14, pp. 117–121, 2015.

Kammoun, A.

E. Zedini, H. M. Oubei, A. Kammoun, M. Hamdi, B. S. Ooi, and M. Alouini, “Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2893–2907, 2019.

Kang, C. H.

C. H. Kang, “Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication,” Opt. Exp., vol. 27, no. 21, 2019, Art. no. .

C. H. Kang, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl., vol. 8, no. 1, 2019, Art. no. .

Khalighi, M. A.

Khan, F. U.

F. U. Khan and Izhar, “State of the art in acoustic energy harvesting,” J. Micromech. Microeng., vol. 25, no. 2, 2015, Art. no. .

Kilfoyle, D. B.

D. B. Kilfoyle and A. B. Baggeroer, “State of the art in underwater acoustic telemetry,” IEEE J. Ocean. Eng., vol. 25, no. 1, pp. 4–27, 2000.

Kim, S. M.

S. M. Kim and J. S. Won, “Simultaneous reception of visible light communication and optical energy using a solar cell receiver,” in Proc. Int. Conf. ICT Convergence, 2013, pp. 896–897.

Kim, S.-M.

S.-M. Kim, J.-S. Won, and S.-H. Nahm, “Simultaneous reception of solar power and visible light communication using a solar cell,” Opt. Eng., vol. 53, no. 4, 2014, Art. no. .

Kong, M.

M. Kong, “Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells,” Opt. Exp., vol. 27, pp. 34542–34551, 2019.

M. Kong, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun., vol. 426, pp. 94–98, 2018.

M. Kong, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Exp., vol. 25, no. 17, pp. 20829–20834, 2017.

Kundu, T.

T. Kundu, “Acoustic source localization,” Ultrasonics, vol. 54, no. 1, pp. 25–38, 2014.

Kwon, D.-H.

W.-H. Shin, S.-H. Yang, D.-H. Kwon, and S.-K. Han, “Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting,” Opt. Exp., vol. 24, no. 22, 2016, Art. no. .

Labat, J.

A. Goalic, J. Labat, J. Trubuil, S. Saoudi, and D. Rioualen, “Toward a digital acoustic underwater phone,” in Proc. OCEANS, vol. III, pp. 489–494, 1994.

Laux, A.

B. Cochenour, L. Mullen, and A. Laux, “Phase coherent digital communications for wireless optical links in turbid underwater environments,” in Proc. OCEANS, 2007, pp. 1–5.

Lee, I. E.

I. E. Lee, Y. Guo, T. K. Ng, K. H. Park, M. S. Alouini, and B. S. Ooi, “Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel,” in Proc. Conf. Lasers Electro Opt. Pacific Rim, 2017, pp. 1–5.

Léon, P.

Lepage, K.

J. Alves, J. Potter, P. Guerrini, G. Zappa, and K. Lepage, “The LOON in 2014: Test bed description,” in Proc. Underwater Commun. Netw., 2014, pp. 1–4.

Lescure, M.

J. Farenc, R. Mangeret, A. Boulanger, P. Destruel, and M. Lescure, “A fluorescent plastic optical fiber sensor for the detection of corona discharges in high voltage electrical equipment,” Rev. Sci. Instrum., vol. 65, no. 1, pp. 155–160, 1994.

Li, C.

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Exp., vol. 23, no. 16, 2015, Art. no. .

Li, C. Y.

C. Y. Li and W. S. Tsai, “A UWOC system based on a 6 m/5.2 Gbps 680 nm vertical-cavity surface-emitting laser,” Laser Phys., vol. 28, no. 2, pp. 2–6, 2018.

C. Y. Li, “A 5 m/25 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 10, no. 3, pp. 1–9, 2018.

Li, C.-Y.

C.-Y. Li, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Exp., vol. 25, no. 10, 2017, Art. no. .

Li, G.

M. Bass, G. Li, and E. W. Van Stryland, Handbook of Optics. Volume IV, Optical Properties of Materials, Nonlinear Optics, Quantum Optics. New York, NY, USA: McGraw-Hill, 2010.

Liao, M.

L. Sang, M. Liao, M. Sumiya, L. Sang, M. Liao, and M. Sumiya, “A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures,” Sensors, vol. 13, no. 8, pp. 10482–10518, 2013.

L. Sang, M. Liao, M. Sumiya, L. Sang, M. Liao, and M. Sumiya, “A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures,” Sensors, vol. 13, no. 8, pp. 10482–10518, 2013.

Lin, G. R.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 gbps,” Sci. Rep., vol. 7, pp. 1–10, 2017.

Lin, G.-R.

Y.-F. Huang, C.-T. Tsai, Y.-C. Chi, D.-W. Huang, and G.-R. Lin, “Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission,” J. Lightw. Technol., vol. 36, no. 9, pp. 1739–1745, 2018.

Linden, J.

A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Amer. J. Phys., vol. 70, no. 6, pp. 620–625, 2002.

Liu, J.

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, 2017, Art. no. .

Y. Dong and J. Liu, “On BER performance of underwater wireless optical MISO links under weak turbulence,” in Proc. OCEANS, Shanghai, China, 2016, pp. 1–4.

Liu, K.

H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi, and X. Fang, “New concept ultraviolet photodetectors,” Mater. Today, vol. 18, no. 9, pp. 493–502, 2015.

Liu, R.

X. Liu, S. Yi, R. Liu, L. Zheng, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser with NRZ-OOK modulation,” in Proc. 14th China Int. Forum Solid State Light. Int. Forum Wide Bandgap Semicond., 2018, pp. 60–61.

Liu, W.

W. Liu, D. Zou, Z. Xu, and J. Yu, “Non-line-of-sight scattering channel modeling for underwater optical wireless communication,” in Proc. IEEE Int. Conf. Cyber Technol. Autom. Control Intell. Syst., 2015, pp. 1265–1268.

Liu, X.

X. Liu, S. Yi, R. Liu, L. Zheng, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser with NRZ-OOK modulation,” in Proc. 14th China Int. Forum Solid State Light. Int. Forum Wide Bandgap Semicond., 2018, pp. 60–61.

Liu, Y.

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, 2017, Art. no. .

Lixue Wu, L.

A. Zielinski, Y.-H. Young-Hoon Yoon, and L. Lixue Wu, “Performance analysis of digital acoustic communication in a shallow water channel,” IEEE J. Ocean. Eng., vol. 20, no. 4, pp. 293–299, 1995.

Llinas, O.

D. A. Real-arce, T. Morales, C. Barrera, J. Hernandez, and O. Llinas, “Smart and networking UnderWAter robots in cooperation meshes - The SWARMs ECSEL-H2020 project,” in Proc. Int. Workshop Marine Technol., 2016, pp. 7–8.

Lloret, J.

J. Lloret, S. Sendra, M. Ardid, and J. J. P. C. Rodrigues, “Underwater wireless sensor communications in the 2.4 GHz ISM frequency band,” Sensors, vol. 12, no. 4, pp. 4237–4264, 2012.

Lu, H. H.

H. H. Lu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 8, no. 5, pp. 1–7, Oct. 2016.

Lu, X.

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Exp., vol. 26, no. 20, 2018, Art. no. .

Mangeret, R.

J. Farenc, R. Mangeret, A. Boulanger, P. Destruel, and M. Lescure, “A fluorescent plastic optical fiber sensor for the detection of corona discharges in high voltage electrical equipment,” Rev. Sci. Instrum., vol. 65, no. 1, pp. 155–160, 1994.

R. Mangeret, J. Farenc, B. Ai, P. Destruel, D. Puretolas, and J. Casanovas, “Optical detection of partial discharges using fluorescent fiber,” IEEE Trans. Elect. Insul., vol. 26, no. 4, pp. 783–789, 1991.

Martín, M.

A. Palmeiro, M. Martín, I. Crowther, and M. Rhodes, “Underwater radio frequency communications,” in Proc. Ocean., 2011, pp. 1–8.

Melodia, T.

E. P. Stuntebeck, D. Pompili, and T. Melodia, “Wireless underground sensor networks using commodity terrestrial motes,” in Proc. 2nd IEEE Workshop Wireless Mesh Netw., 2007, pp. 112–114.

Member, S.

S. A. Hamilton, B. S. Robinson, S. Member, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb / s optical time-division multiplexed networks,” J. Lightw. Technol., vol. 20, no. 12, pp. 2086–2100, 2002.

Messa, A.

A. Messa, “Sea-trial of optical ethernet modems for underwater wireless communications,” J. Lightw. Technol., vol. 36, no. 23, pp. 5371–5380, 2018.

Mi, L.

S. Hu, L. Mi, T. Zhou, and W. Chen, “35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.

S. Hu, L. Mi, T. Zhou, and W. Chen, “Underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.

Min, J.-W.

J.-W. Min, “Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices,” J. Nanophoton., vol. 12, no. 4, pp. 043511-1–043511-38, 2018.

Mizukoshi, I.

K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Exp., vol. 23, no. 2, pp. 1558–1566, 2015.

Mobley, C. D.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters by Curtis D. Mobley. New York, NY, USA: Academic, 1994.

Moores, J. D.

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag., vol. 53, no. 11, pp. 49–55, 2015.

Morales, T.

D. A. Real-arce, T. Morales, C. Barrera, J. Hernandez, and O. Llinas, “Smart and networking UnderWAter robots in cooperation meshes - The SWARMs ECSEL-H2020 project,” in Proc. Int. Workshop Marine Technol., 2016, pp. 7–8.

Mullen, L.

B. Cochenour, L. Mullen, and A. Laux, “Phase coherent digital communications for wireless optical links in turbid underwater environments,” in Proc. OCEANS, 2007, pp. 1–5.

Murphy, T. E.

S. A. Hamilton, B. S. Robinson, S. Member, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb / s optical time-division multiplexed networks,” J. Lightw. Technol., vol. 20, no. 12, pp. 2086–2100, 2002.

Muthuchidambaranathan, P.

V. K. Jagadeesh, K. V Naveen, and P. Muthuchidambaranathan, “BER performance of NLOS underwater wireless optical communication with multiple scattering,” Int. J. Electron. Commun. Eng., vol. 9, no. 2, pp. 563–566, 2015.

A. Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Pathloss analysis of NLOS underwater wireless optical communication channel,” in Proc. Int. Conf. Electron. Commun. Syst., 2014, pp. 1–4.

Nabavi, P.

M. V Jamali, P. Nabavi, and J. A. Salehi, “MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8223–8237, 2018.

Nahm, S.-H.

S.-M. Kim, J.-S. Won, and S.-H. Nahm, “Simultaneous reception of solar power and visible light communication using a solar cell,” Opt. Eng., vol. 53, no. 4, 2014, Art. no. .

Nakamura, K.

K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Exp., vol. 23, no. 2, pp. 1558–1566, 2015.

Nakamura, S.

S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes. Boca Raton, FL, USA: CRC, 2000.

Naveen, K. V

V. K. Jagadeesh, K. V Naveen, and P. Muthuchidambaranathan, “BER performance of NLOS underwater wireless optical communication with multiple scattering,” Int. J. Electron. Commun. Eng., vol. 9, no. 2, pp. 563–566, 2015.

Ng, T. K.

H. M. Oubei, R. T. ElAfandy, K. Park, T. K. Ng, M. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Exp., vol. 23, no. 16, 2015, Art. no. .

H. M. Oubei, X. Sun, T. K. Ng, O. Alkhazragi, M.-S. Alouini, and S. Boon Ooi, “Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence,” in Proc. 4th Underwater Commun. Netw. Conf., 2018, pp. 1–4.

I. E. Lee, Y. Guo, T. K. Ng, K. H. Park, M. S. Alouini, and B. S. Ooi, “Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel,” in Proc. Conf. Lasers Electro Opt. Pacific Rim, 2017, pp. 1–5.

Nootz, G.

O'Brien, D. C.

S. Collins, D. C. O'Brien, and A. Watt, “High gain, wide field of view concentrator for optical communications,” Opt. Lett., vol. 39, no. 7, 2014, Art. no. .

Ochi, H.

H. Ochi, Y. Watanabe, and T. Shimura, “Basic study of underwater acoustic communication using 32-quadrature amplitude modulation,” Japanese J. Appl. Phys., vol. 44, no. 6B, pp. 4689–4693, 2005.

Ooi, B. S.

E. Zedini, H. M. Oubei, A. Kammoun, M. Hamdi, B. S. Ooi, and M. Alouini, “Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2893–2907, 2019.

H. M. Oubei, R. T. ElAfandy, K. Park, T. K. Ng, M. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

A. Al-Halafi, H. M. Oubei, B. S. Ooi, and B. Shihada, “Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode,” J. Opt. Commun. Netw., vol. 9, no. 10, 2017, Art. no. .

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Exp., vol. 23, no. 16, 2015, Art. no. .

I. E. Lee, Y. Guo, T. K. Ng, K. H. Park, M. S. Alouini, and B. S. Ooi, “Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel,” in Proc. Conf. Lasers Electro Opt. Pacific Rim, 2017, pp. 1–5.

Oubei, H. M.

E. Zedini, H. M. Oubei, A. Kammoun, M. Hamdi, B. S. Ooi, and M. Alouini, “Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2893–2907, 2019.

H. M. Oubei, “Light based underwater wireless communications,” Japanese J. Appl. Phys., vol. 57, no. 8, pp. 08PA06-1–08PA06-18, 2018.

H. M. Oubei, “Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems,” Opt. Lett., vol. 42, no. 13, pp. 2455–2458, 2017.

H. M. Oubei, R. T. ElAfandy, K. Park, T. K. Ng, M. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

A. Al-Halafi, H. M. Oubei, B. S. Ooi, and B. Shihada, “Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode,” J. Opt. Commun. Netw., vol. 9, no. 10, 2017, Art. no. .

H. M. Oubei, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Exp., vol. 23, no. 18, 2015, Art. no. .

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Exp., vol. 23, no. 16, 2015, Art. no. .

H. M. Oubei, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Proc. Conf. Lasers Electro Opt., 2016, Paper SW1F.1.

H. M. Oubei, X. Sun, T. K. Ng, O. Alkhazragi, M.-S. Alouini, and S. Boon Ooi, “Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence,” in Proc. 4th Underwater Commun. Netw. Conf., 2018, pp. 1–4.

Palmeiro, A.

A. Palmeiro, M. Martín, I. Crowther, and M. Rhodes, “Underwater radio frequency communications,” in Proc. Ocean., 2011, pp. 1–8.

Park, K.

H. M. Oubei, R. T. ElAfandy, K. Park, T. K. Ng, M. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

Park, K. H.

I. E. Lee, Y. Guo, T. K. Ng, K. H. Park, M. S. Alouini, and B. S. Ooi, “Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel,” in Proc. Conf. Lasers Electro Opt. Pacific Rim, 2017, pp. 1–5.

Park, K.-H.

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Exp., vol. 23, no. 16, 2015, Art. no. .

Parthasarathy, V.

S. A. Kalaiselvan and V. Parthasarathy, “Location verification based neighbord discovery for shortest routing in underwater acoustic sensor network,” Adv. Environ. Biol., vol. 9, no. 14, pp. 117–121, 2015.

Pelekanakis, C.

C. Pelekanakis, M. Stojanovic, and L. Freitag, “High rate acoustic link for underwater video transmission,” in Proc. IEEE Oceans Conf. Record, vol. 2, 2003, pp. 1091–1097.

Pelekanakis, K.

K. Pelekanakis and A. B. Baggeroer, “Exploiting space-time-frequency diversity with MIMO-OFDM for underwater acoustic communications,” IEEE J. Ocean. Eng., vol. 36, no. 4, pp. 502–513, 2011.

Petrioli, C.

C. Petrioli, “The SUNRISE GATE: Accessing the SUNRISE federation of facilities to test solutions for the Internet of Underwater Things,” in Proc. Underwater Commun. Netw., 2014, vol. 3, pp. 1–4.

Peyronel, T.

T. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke, “Luminescent detector for free-space optical communication,” Optica, vol. 3, no. 7, 2016, Art. no. .

Pompili, D.

E. P. Stuntebeck, D. Pompili, and T. Melodia, “Wireless underground sensor networks using commodity terrestrial motes,” in Proc. 2nd IEEE Workshop Wireless Mesh Netw., 2007, pp. 112–114.

Potter, J.

J. Alves, J. Potter, P. Guerrini, G. Zappa, and K. Lepage, “The LOON in 2014: Test bed description,” in Proc. Underwater Commun. Netw., 2014, pp. 1–4.

Purcell-Milton, F.

F. Purcell-Milton and Y. K. Gun'ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem., vol. 22, no. 33, 2012, Art. no. .

Puretolas, D.

R. Mangeret, J. Farenc, B. Ai, P. Destruel, D. Puretolas, and J. Casanovas, “Optical detection of partial discharges using fluorescent fiber,” IEEE Trans. Elect. Insul., vol. 26, no. 4, pp. 783–789, 1991.

Quirk, K. J.

T. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke, “Luminescent detector for free-space optical communication,” Optica, vol. 3, no. 7, 2016, Art. no. .

Radic, S.

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt., vol. 47, no. 2, 2008, Art. no. .

Rao, G. S. B.

D. Eswara Chaitanya, C. Vasavi Sridevi, and G. S. B. Rao, “Path loss analysis of underwater communication systems,” in Proc. IEEE Technol. Students Symp., 2011, pp. 65–70.

Real-arce, D. A.

D. A. Real-arce, T. Morales, C. Barrera, J. Hernandez, and O. Llinas, “Smart and networking UnderWAter robots in cooperation meshes - The SWARMs ECSEL-H2020 project,” in Proc. Int. Workshop Marine Technol., 2016, pp. 7–8.

Reible, S. A.

J. H. Fischer, K. R. Bennett, S. A. Reible, J. H. Cafarella, and Iwen Yao, “A high data rate, underwater acoustic data-communications transceiver,” in Proc. OCEANS: Mastering Oceans Through Technol., vol. 2, 1992, pp. 571–576.

Rhodes, M.

A. Palmeiro, M. Martín, I. Crowther, and M. Rhodes, “Underwater radio frequency communications,” in Proc. Ocean., 2011, pp. 1–8.

Rigaud, V.

Rioualen, D.

A. Goalic, J. Labat, J. Trubuil, S. Saoudi, and D. Rioualen, “Toward a digital acoustic underwater phone,” in Proc. OCEANS, vol. III, pp. 489–494, 1994.

Robinson, B. S.

S. A. Hamilton, B. S. Robinson, S. Member, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb / s optical time-division multiplexed networks,” J. Lightw. Technol., vol. 20, no. 12, pp. 2086–2100, 2002.

Rodrigues, J. J. P. C.

J. Lloret, S. Sendra, M. Ardid, and J. J. P. C. Rodrigues, “Underwater wireless sensor communications in the 2.4 GHz ISM frequency band,” Sensors, vol. 12, no. 4, pp. 4237–4264, 2012.

Salehi, J. A.

M. V Jamali, P. Nabavi, and J. A. Salehi, “MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8223–8237, 2018.

Sang, L.

L. Sang, M. Liao, M. Sumiya, L. Sang, M. Liao, and M. Sumiya, “A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures,” Sensors, vol. 13, no. 8, pp. 10482–10518, 2013.

L. Sang, M. Liao, M. Sumiya, L. Sang, M. Liao, and M. Sumiya, “A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures,” Sensors, vol. 13, no. 8, pp. 10482–10518, 2013.

Sankarasubramaniam, Y.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks a survey,” Comput. Netw., vol. 38, pp. 393–422, 2002.

Saoudi, S.

A. Goalic, J. Labat, J. Trubuil, S. Saoudi, and D. Rioualen, “Toward a digital acoustic underwater phone,” in Proc. OCEANS, vol. III, pp. 489–494, 1994.

Savage, S. J.

S. A. Hamilton, B. S. Robinson, S. Member, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb / s optical time-division multiplexed networks,” J. Lightw. Technol., vol. 20, no. 12, pp. 2086–2100, 2002.

Sawa, T.

T. Sawa, “Study of adaptive underwater optical wireless communication with photomultiplier tube,” Japan Agency for Marine-Earth Science and Technology, Suruga bay, Japan, KR17-11 Leg2, Jul. 26, 2017. [Online]. Avaliable: http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/KR17-11_leg2_all.pdf

Sendra, S.

J. Lloret, S. Sendra, M. Ardid, and J. J. P. C. Rodrigues, “Underwater wireless sensor communications in the 2.4 GHz ISM frequency band,” Sensors, vol. 12, no. 4, pp. 4237–4264, 2012.

Shaw, A.

A. Shaw, A. I. Al-Shamma'a, S. R. Wylie, and D. Toal, “Experimental investigations of electromagnetic wave propagation in seawater,” in Proc. 36th Eur. Microw. Conf., 2007, pp. 572–575.

Shen, C.

C. Shen, “Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system,” Appl. Phys. Exp., vol. 10, no. 4, 2017, Art. no. .

C. Shen, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photon., vol. 3, no. 2, pp. 262–268, 2016.

C. Shen, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Exp., vol. 24, no. 18, 2016, Art. no. .

C. Shen, “20-meter underwater wireless optical communication link with 15 Gbps data rate,” Opt. Exp., vol. 24, no. 22, 2016, Art. no. .

Shen, J.

J. Shen, “Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output,” Opt. Commun., vol. 438, pp. 78–82, 2019.

J. Shen, “Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter,” Opt. Exp., vol. 26, no. 18, 2018, Art. no. .

Shi, J.

Y. Wang, Li Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photon. J., vol. 7, no. 6, pp. 1–7, 2015.

Shi, M.

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Exp., vol. 26, no. 20, 2018, Art. no. .

Shihada, B.

A. Al-Halafi, H. M. Oubei, B. S. Ooi, and B. Shihada, “Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode,” J. Opt. Commun. Netw., vol. 9, no. 10, 2017, Art. no. .

Shimura, T.

H. Ochi, Y. Watanabe, and T. Shimura, “Basic study of underwater acoustic communication using 32-quadrature amplitude modulation,” Japanese J. Appl. Phys., vol. 44, no. 6B, pp. 4689–4693, 2005.

Shin, W.-H.

W.-H. Shin, S.-H. Yang, D.-H. Kwon, and S.-K. Han, “Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting,” Opt. Exp., vol. 24, no. 22, 2016, Art. no. .

Snow, J. B.

J. B. Snow, “Underwater propagation of high-data- rate laser communications pulses,” Proc. SPIE, vol. 1750, pp. 419–427, 1992.

Söderberg, J.

J. Söderberg, “Free space optics in the czech wireless community: Shedding some light on the role of normativity for user-initiated innovations,” Sci. Technol. Human Values, vol. 36, no. 4, pp. 423–450, 2010.

Song, A.

A. Song, M. Stojanovic, and M. Chitre, “Editorial underwater acoustic communications: Where we stand and what is next?,” IEEE J. Ocean. Eng., vol. 44, no. 1, pp. 1–6, 2019.

Song, H. C.

H. C. Song and W. S. Hodgkiss, “Efficient use of bandwidth for underwater acoustic communication,” J. Acoust. Soc. America, vol. 134, no. 2, pp. 905–908, 2013.

Stewart, H.

H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper M3G.2.

H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 5–7.

Stojanovic, M.

A. Song, M. Stojanovic, and M. Chitre, “Editorial underwater acoustic communications: Where we stand and what is next?,” IEEE J. Ocean. Eng., vol. 44, no. 1, pp. 1–6, 2019.

C. Pelekanakis, M. Stojanovic, and L. Freitag, “High rate acoustic link for underwater video transmission,” in Proc. IEEE Oceans Conf. Record, vol. 2, 2003, pp. 1091–1097.

M. Stojanovic, “Recent advances in high-speed underwater acoustic communications,” IEEE J. Ocean. Eng., vol. 21, no. 2, pp. 125–136, 1996.

M. Stojanovic and P.-P. J. Beaujean, “Acoustic communication,” in Springer Handbook of Ocean Engineering, Berlin, Germany: Springer, 2016, pp. 359–386.

Stuntebeck, E. P.

E. P. Stuntebeck, D. Pompili, and T. Melodia, “Wireless underground sensor networks using commodity terrestrial motes,” in Proc. 2nd IEEE Workshop Wireless Mesh Netw., 2007, pp. 112–114.

Su, W.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks a survey,” Comput. Netw., vol. 38, pp. 393–422, 2002.

Sumiya, M.

L. Sang, M. Liao, M. Sumiya, L. Sang, M. Liao, and M. Sumiya, “A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures,” Sensors, vol. 13, no. 8, pp. 10482–10518, 2013.

L. Sang, M. Liao, M. Sumiya, L. Sang, M. Liao, and M. Sumiya, “A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures,” Sensors, vol. 13, no. 8, pp. 10482–10518, 2013.

Sun, X.

X. Sun, “375-nm ultraviolet-laser based non-line-of-sight underwater optical communication,” Opt. Exp., vol. 26, no. 10, 2018, Art. no. .

H. M. Oubei, X. Sun, T. K. Ng, O. Alkhazragi, M.-S. Alouini, and S. Boon Ooi, “Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence,” in Proc. 4th Underwater Commun. Netw. Conf., 2018, pp. 1–4.

Tang, S.

S. Tang, Y. Dong, and X. Zhang, “On path loss of NLOS underwater wireless optical communication links,” in Proc. MTS/IEEE OCEANS, 2013, pp. 1–3.

Tao, Li

Y. Wang, Li Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photon. J., vol. 7, no. 6, pp. 1–7, 2015.

Thompson, S. P.

S. P. Thompson, “The photophone,” Nature, vol. 22, no. 569, 1880, Art. no. .

Tian, P.

X. Liu, S. Yi, R. Liu, L. Zheng, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser with NRZ-OOK modulation,” in Proc. 14th China Int. Forum Solid State Light. Int. Forum Wide Bandgap Semicond., 2018, pp. 60–61.

Tiecke, T. G.

T. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke, “Luminescent detector for free-space optical communication,” Optica, vol. 3, no. 7, 2016, Art. no. .

Tiusanen, J.

J. Tiusanen, “Wireless soil scout prototype radio signal reception compared to the attenuation model,” Precis. Agriculture, vol. 10, no. 5, pp. 372–381, 2009.

Toal, D.

A. Shaw, A. I. Al-Shamma'a, S. R. Wylie, and D. Toal, “Experimental investigations of electromagnetic wave propagation in seawater,” in Proc. 36th Eur. Microw. Conf., 2007, pp. 572–575.

Trubuil, J.

A. Goalic, J. Labat, J. Trubuil, S. Saoudi, and D. Rioualen, “Toward a digital acoustic underwater phone,” in Proc. OCEANS, vol. III, pp. 489–494, 1994.

Tsai, C. T.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 gbps,” Sci. Rep., vol. 7, pp. 1–10, 2017.

Tsai, C.-T.

Y.-F. Huang, C.-T. Tsai, Y.-C. Chi, D.-W. Huang, and G.-R. Lin, “Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission,” J. Lightw. Technol., vol. 36, no. 9, pp. 1739–1745, 2018.

Tsai, W. S.

C. Y. Li and W. S. Tsai, “A UWOC system based on a 6 m/5.2 Gbps 680 nm vertical-cavity surface-emitting laser,” Laser Phys., vol. 28, no. 2, pp. 2–6, 2018.

Tsonev, D.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1612–1623, 2015.

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): Towards all-optical networking,” Proc. SPIE, vol. 9007, 2004, Art. no. .

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3348–3353.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3348–3353.

Urick, R. J.

R. J. Urick, Principles of Underwater Sound. Los Altos, CA, USA: Peninsula, 1983.

Uysal, M.

M. Elamassie and M. Uysal, “Performance characterization of vertical underwater VLC links in the presence of turbulence,” in Proc. 11th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2018, pp. 1–6.

Van Stryland, E. W.

M. Bass, G. Li, and E. W. Van Stryland, Handbook of Optics. Volume IV, Optical Properties of Materials, Nonlinear Optics, Quantum Optics. New York, NY, USA: McGraw-Hill, 2010.

Vasavi Sridevi, C.

D. Eswara Chaitanya, C. Vasavi Sridevi, and G. S. B. Rao, “Path loss analysis of underwater communication systems,” in Proc. IEEE Technol. Students Symp., 2011, pp. 65–70.

Videv, S.

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett., vol. 30, no. 9, pp. 841–844, 2018.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1612–1623, 2015.

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): Towards all-optical networking,” Proc. SPIE, vol. 9007, 2004, Art. no. .

H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 5–7.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3348–3353.

H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper M3G.2.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3348–3353.

Wang, G.

G. Wang, K. Wang, C. Gong, D. Zou, Z. Jiang, and Z. Xu, “A 1 Mbps real-time NLOS UV scattering communication system with receiver diversity over 1 km,” IEEE Photon. J., vol. 10, no. 2, pp. 1–13, 2018.

Wang, H. Y.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 gbps,” Sci. Rep., vol. 7, pp. 1–10, 2017.

Wang, K.

G. Wang, K. Wang, C. Gong, D. Zou, Z. Jiang, and Z. Xu, “A 1 Mbps real-time NLOS UV scattering communication system with receiver diversity over 1 km,” IEEE Photon. J., vol. 10, no. 2, pp. 1–13, 2018.

Wang, S. C.

T. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke, “Luminescent detector for free-space optical communication,” Optica, vol. 3, no. 7, 2016, Art. no. .

Wang, Y.

Y. Wang, Li Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photon. J., vol. 7, no. 6, pp. 1–7, 2015.

Wang, Z.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1612–1623, 2015.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3348–3353.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3348–3353.

Watanabe, Y.

H. Ochi, Y. Watanabe, and T. Shimura, “Basic study of underwater acoustic communication using 32-quadrature amplitude modulation,” Japanese J. Appl. Phys., vol. 44, no. 6B, pp. 4689–4693, 2005.

Watt, A.

S. Collins, D. C. O'Brien, and A. Watt, “High gain, wide field of view concentrator for optical communications,” Opt. Lett., vol. 39, no. 7, 2014, Art. no. .

Won, J. S.

S. M. Kim and J. S. Won, “Simultaneous reception of visible light communication and optical energy using a solar cell receiver,” in Proc. Int. Conf. ICT Convergence, 2013, pp. 896–897.

Won, J.-S.

S.-M. Kim, J.-S. Won, and S.-H. Nahm, “Simultaneous reception of solar power and visible light communication using a solar cell,” Opt. Eng., vol. 53, no. 4, 2014, Art. no. .

Wu, T. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 gbps,” Sci. Rep., vol. 7, pp. 1–10, 2017.

Wylie, S. R.

A. Shaw, A. I. Al-Shamma'a, S. R. Wylie, and D. Toal, “Experimental investigations of electromagnetic wave propagation in seawater,” in Proc. 36th Eur. Microw. Conf., 2007, pp. 572–575.

Xu, J.

J. Xu, “Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication,” Opt. Lett., vol. 42, no. 9, pp. 1664–1667, 2017.

J. Xu, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Exp., vol. 24, no. 8, 2016, Art. no. .

Xu, Z.

G. Wang, K. Wang, C. Gong, D. Zou, Z. Jiang, and Z. Xu, “A 1 Mbps real-time NLOS UV scattering communication system with receiver diversity over 1 km,” IEEE Photon. J., vol. 10, no. 2, pp. 1–13, 2018.

W. Liu, D. Zou, Z. Xu, and J. Yu, “Non-line-of-sight scattering channel modeling for underwater optical wireless communication,” in Proc. IEEE Int. Conf. Cyber Technol. Autom. Control Intell. Syst., 2015, pp. 1265–1268.

Yang, S.-H.

W.-H. Shin, S.-H. Yang, D.-H. Kwon, and S.-K. Han, “Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting,” Opt. Exp., vol. 24, no. 22, 2016, Art. no. .

Yao, Iwen

J. H. Fischer, K. R. Bennett, S. A. Reible, J. H. Cafarella, and Iwen Yao, “A high data rate, underwater acoustic data-communications transceiver,” in Proc. OCEANS: Mastering Oceans Through Technol., vol. 2, 1992, pp. 571–576.

Yi, S.

X. Liu, S. Yi, R. Liu, L. Zheng, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser with NRZ-OOK modulation,” in Proc. 14th China Int. Forum Solid State Light. Int. Forum Wide Bandgap Semicond., 2018, pp. 60–61.

Young-Hoon Yoon, Y.-H.

A. Zielinski, Y.-H. Young-Hoon Yoon, and L. Lixue Wu, “Performance analysis of digital acoustic communication in a shallow water channel,” IEEE J. Ocean. Eng., vol. 20, no. 4, pp. 293–299, 1995.

Yu, J.

W. Liu, D. Zou, Z. Xu, and J. Yu, “Non-line-of-sight scattering channel modeling for underwater optical wireless communication,” in Proc. IEEE Int. Conf. Cyber Technol. Autom. Control Intell. Syst., 2015, pp. 1265–1268.

Zappa, G.

J. Alves, J. Potter, P. Guerrini, G. Zappa, and K. Lepage, “The LOON in 2014: Test bed description,” in Proc. Underwater Commun. Netw., 2014, pp. 1–4.

Zedini, E.

E. Zedini, H. M. Oubei, A. Kammoun, M. Hamdi, B. S. Ooi, and M. Alouini, “Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2893–2907, 2019.

Zeng, Z.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 204–238, 2017.

Zhang, H.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 204–238, 2017.

Zhang, S.

Zhang, X.

S. Tang, Y. Dong, and X. Zhang, “On path loss of NLOS underwater wireless optical communication links,” in Proc. MTS/IEEE OCEANS, 2013, pp. 1–3.

Zhao, Y.

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Exp., vol. 26, no. 20, 2018, Art. no. .

Zhao, Z.

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, 2017, Art. no. .

Zheng, L.

X. Liu, S. Yi, R. Liu, L. Zheng, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser with NRZ-OOK modulation,” in Proc. 14th China Int. Forum Solid State Light. Int. Forum Wide Bandgap Semicond., 2018, pp. 60–61.

Zhou, T.

S. Hu, L. Mi, T. Zhou, and W. Chen, “35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.

S. Hu, L. Mi, T. Zhou, and W. Chen, “Underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.

Zhu, N.

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, 2017, Art. no. .

Zielinski, A.

A. Zielinski, Y.-H. Young-Hoon Yoon, and L. Lixue Wu, “Performance analysis of digital acoustic communication in a shallow water channel,” IEEE J. Ocean. Eng., vol. 20, no. 4, pp. 293–299, 1995.

Zou, D.

G. Wang, K. Wang, C. Gong, D. Zou, Z. Jiang, and Z. Xu, “A 1 Mbps real-time NLOS UV scattering communication system with receiver diversity over 1 km,” IEEE Photon. J., vol. 10, no. 2, pp. 1–13, 2018.

W. Liu, D. Zou, Z. Xu, and J. Yu, “Non-line-of-sight scattering channel modeling for underwater optical wireless communication,” in Proc. IEEE Int. Conf. Cyber Technol. Autom. Control Intell. Syst., 2015, pp. 1265–1268.

Zou, P.

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Exp., vol. 26, no. 20, 2018, Art. no. .

ACS Photon. (1)

C. Shen, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photon., vol. 3, no. 2, pp. 262–268, 2016.

Adv. Environ. Biol. (1)

S. A. Kalaiselvan and V. Parthasarathy, “Location verification based neighbord discovery for shortest routing in underwater acoustic sensor network,” Adv. Environ. Biol., vol. 9, no. 14, pp. 117–121, 2015.

Amer. J. Phys. (1)

A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Amer. J. Phys., vol. 70, no. 6, pp. 620–625, 2002.

Appl. Opt. (2)

Appl. Phys. Exp. (1)

C. Shen, “Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system,” Appl. Phys. Exp., vol. 10, no. 4, 2017, Art. no. .

Comput. Netw. (1)

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks a survey,” Comput. Netw., vol. 38, pp. 393–422, 2002.

IEEE Commun. Mag. (1)

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag., vol. 53, no. 11, pp. 49–55, 2015.

IEEE Commun. Surv. Tut. (1)

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 204–238, 2017.

IEEE J. Ocean. Eng. (5)

A. Song, M. Stojanovic, and M. Chitre, “Editorial underwater acoustic communications: Where we stand and what is next?,” IEEE J. Ocean. Eng., vol. 44, no. 1, pp. 1–6, 2019.

K. Pelekanakis and A. B. Baggeroer, “Exploiting space-time-frequency diversity with MIMO-OFDM for underwater acoustic communications,” IEEE J. Ocean. Eng., vol. 36, no. 4, pp. 502–513, 2011.

A. Zielinski, Y.-H. Young-Hoon Yoon, and L. Lixue Wu, “Performance analysis of digital acoustic communication in a shallow water channel,” IEEE J. Ocean. Eng., vol. 20, no. 4, pp. 293–299, 1995.

M. Stojanovic, “Recent advances in high-speed underwater acoustic communications,” IEEE J. Ocean. Eng., vol. 21, no. 2, pp. 125–136, 1996.

D. B. Kilfoyle and A. B. Baggeroer, “State of the art in underwater acoustic telemetry,” IEEE J. Ocean. Eng., vol. 25, no. 1, pp. 4–27, 2000.

IEEE J. Sel. Areas Commun. (1)

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1612–1623, 2015.

IEEE Photon. J (1)

Y. Wang, Li Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photon. J., vol. 7, no. 6, pp. 1–7, 2015.

IEEE Photon. J. (5)

C. Y. Li, “A 5 m/25 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 10, no. 3, pp. 1–9, 2018.

H. H. Lu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 8, no. 5, pp. 1–7, Oct. 2016.

G. Wang, K. Wang, C. Gong, D. Zou, Z. Jiang, and Z. Xu, “A 1 Mbps real-time NLOS UV scattering communication system with receiver diversity over 1 km,” IEEE Photon. J., vol. 10, no. 2, pp. 1–13, 2018.

H. M. Oubei, R. T. ElAfandy, K. Park, T. K. Ng, M. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photon. J., vol. 9, no. 2, pp. 1–9, 2017.

Y. Guo, “On the reciprocity of underwater turbulent channels,” IEEE Photon. J., vol. 11, no. 2, 2019, Art no. .

IEEE Photon. Technol. Lett. (1)

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett., vol. 30, no. 9, pp. 841–844, 2018.

IEEE Trans. Commun. (2)

E. Zedini, H. M. Oubei, A. Kammoun, M. Hamdi, B. S. Ooi, and M. Alouini, “Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2893–2907, 2019.

M. V. Jamali, “Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4706–4723, 2018.

IEEE Trans. Elect. Insul. (1)

R. Mangeret, J. Farenc, B. Ai, P. Destruel, D. Puretolas, and J. Casanovas, “Optical detection of partial discharges using fluorescent fiber,” IEEE Trans. Elect. Insul., vol. 26, no. 4, pp. 783–789, 1991.

IEEE Trans. Veh. Technol. (1)

M. V Jamali, P. Nabavi, and J. A. Salehi, “MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8223–8237, 2018.

Int. J. Electron. Commun. Eng. (1)

V. K. Jagadeesh, K. V Naveen, and P. Muthuchidambaranathan, “BER performance of NLOS underwater wireless optical communication with multiple scattering,” Int. J. Electron. Commun. Eng., vol. 9, no. 2, pp. 563–566, 2015.

J. Acoust. Soc. America (1)

H. C. Song and W. S. Hodgkiss, “Efficient use of bandwidth for underwater acoustic communication,” J. Acoust. Soc. America, vol. 134, no. 2, pp. 905–908, 2013.

J. Lightw. Technol. (3)

S. A. Hamilton, B. S. Robinson, S. Member, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb / s optical time-division multiplexed networks,” J. Lightw. Technol., vol. 20, no. 12, pp. 2086–2100, 2002.

Y.-F. Huang, C.-T. Tsai, Y.-C. Chi, D.-W. Huang, and G.-R. Lin, “Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission,” J. Lightw. Technol., vol. 36, no. 9, pp. 1739–1745, 2018.

A. Messa, “Sea-trial of optical ethernet modems for underwater wireless communications,” J. Lightw. Technol., vol. 36, no. 23, pp. 5371–5380, 2018.

J. Mater. Chem. (1)

F. Purcell-Milton and Y. K. Gun'ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem., vol. 22, no. 33, 2012, Art. no. .

J. Micromech. Microeng. (1)

F. U. Khan and Izhar, “State of the art in acoustic energy harvesting,” J. Micromech. Microeng., vol. 25, no. 2, 2015, Art. no. .

J. Nanophoton. (1)

J.-W. Min, “Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices,” J. Nanophoton., vol. 12, no. 4, pp. 043511-1–043511-38, 2018.

J. Opt. Commun. Netw. (2)

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw., vol. 5, no. 1, pp. 1–12, 2013.

A. Al-Halafi, H. M. Oubei, B. S. Ooi, and B. Shihada, “Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode,” J. Opt. Commun. Netw., vol. 9, no. 10, 2017, Art. no. .

J. Semicond. (1)

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, 2017, Art. no. .

Japanese J. Appl. Phys. (2)

H. M. Oubei, “Light based underwater wireless communications,” Japanese J. Appl. Phys., vol. 57, no. 8, pp. 08PA06-1–08PA06-18, 2018.

H. Ochi, Y. Watanabe, and T. Shimura, “Basic study of underwater acoustic communication using 32-quadrature amplitude modulation,” Japanese J. Appl. Phys., vol. 44, no. 6B, pp. 4689–4693, 2005.

Laser Phys. (1)

C. Y. Li and W. S. Tsai, “A UWOC system based on a 6 m/5.2 Gbps 680 nm vertical-cavity surface-emitting laser,” Laser Phys., vol. 28, no. 2, pp. 2–6, 2018.

Light Sci. Appl. (1)

C. H. Kang, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl., vol. 8, no. 1, 2019, Art. no. .

Mater. Today (1)

H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi, and X. Fang, “New concept ultraviolet photodetectors,” Mater. Today, vol. 18, no. 9, pp. 493–502, 2015.

Nature (1)

S. P. Thompson, “The photophone,” Nature, vol. 22, no. 569, 1880, Art. no. .

Opt. Commun. (3)

J. Shen, “Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output,” Opt. Commun., vol. 438, pp. 78–82, 2019.

M. C. Gökçe and Y. Baykal, “Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence,” Opt. Commun., vol. 410, pp. 830–835, 2018.

M. Kong, “Underwater wireless optical communication using a lens-free solar panel receiver,” Opt. Commun., vol. 426, pp. 94–98, 2018.

Opt. Eng. (1)

S.-M. Kim, J.-S. Won, and S.-H. Nahm, “Simultaneous reception of solar power and visible light communication using a solar cell,” Opt. Eng., vol. 53, no. 4, 2014, Art. no. .

Opt. Exp. (20)

W.-H. Shin, S.-H. Yang, D.-H. Kwon, and S.-K. Han, “Self-reverse-biased solar panel optical receiver for simultaneous visible light communication and energy harvesting,” Opt. Exp., vol. 24, no. 22, 2016, Art. no. .

C. H. Kang, “Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication,” Opt. Exp., vol. 27, no. 21, 2019, Art. no. .

Y. Dong, “Nanopatterned luminescent concentrators for visible light communications,” Opt. Exp., vol. 25, no. 18, 2017, Art. no. .

X. Sun, “375-nm ultraviolet-laser based non-line-of-sight underwater optical communication,” Opt. Exp., vol. 26, no. 10, 2018, Art. no. .

M. Kong, “Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells,” Opt. Exp., vol. 27, pp. 34542–34551, 2019.

K.-T. Ho, “32 Gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector,” Opt. Exp., vol. 26, no. 3, 2018, Art. no. .

K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Exp., vol. 23, no. 2, pp. 1558–1566, 2015.

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Exp., vol. 23, no. 16, 2015, Art. no. .

S. Hu, L. Mi, T. Zhou, and W. Chen, “35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.

C. Shen, “20-meter underwater wireless optical communication link with 15 Gbps data rate,” Opt. Exp., vol. 24, no. 22, 2016, Art. no. .

Y. Chen, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Exp., vol. 25, no. 13, pp. 14760–14765, 2017.

M. Kong, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Exp., vol. 25, no. 17, pp. 20829–20834, 2017.

C.-Y. Li, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Exp., vol. 25, no. 10, 2017, Art. no. .

N. Chi, Y. Zhao, M. Shi, P. Zou, and X. Lu, “Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system,” Opt. Exp., vol. 26, no. 20, 2018, Art. no. .

C. Fei, “16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization,” Opt. Exp., vol. 26, no. 26, 2018, Art. no. .

S. Hu, L. Mi, T. Zhou, and W. Chen, “Underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.

J. Shen, “Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter,” Opt. Exp., vol. 26, no. 18, 2018, Art. no. .

H. M. Oubei, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Exp., vol. 23, no. 18, 2015, Art. no. .

C. Shen, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Exp., vol. 24, no. 18, 2016, Art. no. .

J. Xu, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Exp., vol. 24, no. 8, 2016, Art. no. .

Opt. Lett. (3)

Optica (2)

T. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke, “Luminescent detector for free-space optical communication,” Optica, vol. 3, no. 7, 2016, Art. no. .

S. Zhang, “Organic solar cells as high-speed data detectors for visible light communication,” Optica, vol. 2, no. 7, pp. 607–610, 2015.

Precis. Agriculture (1)

J. Tiusanen, “Wireless soil scout prototype radio signal reception compared to the attenuation model,” Precis. Agriculture, vol. 10, no. 5, pp. 372–381, 2009.

Proc. IEEE Oceans Conf. Record (1)

C. Pelekanakis, M. Stojanovic, and L. Freitag, “High rate acoustic link for underwater video transmission,” in Proc. IEEE Oceans Conf. Record, vol. 2, 2003, pp. 1091–1097.

Proc. SPIE (3)

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): Towards all-optical networking,” Proc. SPIE, vol. 9007, 2004, Art. no. .

J. B. Snow, “Underwater propagation of high-data- rate laser communications pulses,” Proc. SPIE, vol. 1750, pp. 419–427, 1992.

S. A. Hamilton, “Undersea narrow-beam optical communications field demonstration,” Proc. SPIE, vol. 10186, 2017, Art. no. .

Rev. Sci. Instrum. (1)

J. Farenc, R. Mangeret, A. Boulanger, P. Destruel, and M. Lescure, “A fluorescent plastic optical fiber sensor for the detection of corona discharges in high voltage electrical equipment,” Rev. Sci. Instrum., vol. 65, no. 1, pp. 155–160, 1994.

Sci. Rep. (1)

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 gbps,” Sci. Rep., vol. 7, pp. 1–10, 2017.

Sci. Technol. Human Values (1)

J. Söderberg, “Free space optics in the czech wireless community: Shedding some light on the role of normativity for user-initiated innovations,” Sci. Technol. Human Values, vol. 36, no. 4, pp. 423–450, 2010.

Sensors (2)

J. Lloret, S. Sendra, M. Ardid, and J. J. P. C. Rodrigues, “Underwater wireless sensor communications in the 2.4 GHz ISM frequency band,” Sensors, vol. 12, no. 4, pp. 4237–4264, 2012.

L. Sang, M. Liao, M. Sumiya, L. Sang, M. Liao, and M. Sumiya, “A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures,” Sensors, vol. 13, no. 8, pp. 10482–10518, 2013.

Signal Process. (1)

Y. Huang, J. Benesty, and J. Chen, “Identification of acoustic MIMO systems: Challenges and opportunities,” Signal Process., vol. 86, no. 6, pp. 1278–1295, 2006.

Sol. Energy Mater. Sol. Cells (1)

J. C. Goldschmidt, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 2, pp. 176–182, 2009.

Ultrasonics (1)

T. Kundu, “Acoustic source localization,” Ultrasonics, vol. 54, no. 1, pp. 25–38, 2014.

Other (33)

S. T. Birchfield and R. Gangishetty, “Acoustic localization by interaural level difference,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2005, pp. iv/1109–iv/1112.

J. H. Fischer, K. R. Bennett, S. A. Reible, J. H. Cafarella, and Iwen Yao, “A high data rate, underwater acoustic data-communications transceiver,” in Proc. OCEANS: Mastering Oceans Through Technol., vol. 2, 1992, pp. 571–576.

A. Goalic, J. Labat, J. Trubuil, S. Saoudi, and D. Rioualen, “Toward a digital acoustic underwater phone,” in Proc. OCEANS, vol. III, pp. 489–494, 1994.

C. Petrioli, “The SUNRISE GATE: Accessing the SUNRISE federation of facilities to test solutions for the Internet of Underwater Things,” in Proc. Underwater Commun. Netw., 2014, vol. 3, pp. 1–4.

J. Alves, J. Potter, P. Guerrini, G. Zappa, and K. Lepage, “The LOON in 2014: Test bed description,” in Proc. Underwater Commun. Netw., 2014, pp. 1–4.

D. A. Real-arce, T. Morales, C. Barrera, J. Hernandez, and O. Llinas, “Smart and networking UnderWAter robots in cooperation meshes - The SWARMs ECSEL-H2020 project,” in Proc. Int. Workshop Marine Technol., 2016, pp. 7–8.

M. Stojanovic and P.-P. J. Beaujean, “Acoustic communication,” in Springer Handbook of Ocean Engineering, Berlin, Germany: Springer, 2016, pp. 359–386.

D. Eswara Chaitanya, C. Vasavi Sridevi, and G. S. B. Rao, “Path loss analysis of underwater communication systems,” in Proc. IEEE Technol. Students Symp., 2011, pp. 65–70.

A. Shaw, A. I. Al-Shamma'a, S. R. Wylie, and D. Toal, “Experimental investigations of electromagnetic wave propagation in seawater,” in Proc. 36th Eur. Microw. Conf., 2007, pp. 572–575.

A. A Huurdeman, The Worldwide History of Telecommunications. Hoboken, NJ, USA: Wiley, 2003.

E. P. Stuntebeck, D. Pompili, and T. Melodia, “Wireless underground sensor networks using commodity terrestrial motes,” in Proc. 2nd IEEE Workshop Wireless Mesh Netw., 2007, pp. 112–114.

A. Palmeiro, M. Martín, I. Crowther, and M. Rhodes, “Underwater radio frequency communications,” in Proc. Ocean., 2011, pp. 1–8.

R. J. Urick, Principles of Underwater Sound. Los Altos, CA, USA: Peninsula, 1983.

N. Farr, “Optical modem technology for seafloor observatories,” in Proc. Ocean., 2006, pp. 1–7.

H. M. Oubei, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Proc. Conf. Lasers Electro Opt., 2016, Paper SW1F.1.

I. E. Lee, Y. Guo, T. K. Ng, K. H. Park, M. S. Alouini, and B. S. Ooi, “Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel,” in Proc. Conf. Lasers Electro Opt. Pacific Rim, 2017, pp. 1–5.

S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes. Boca Raton, FL, USA: CRC, 2000.

M. Bass, G. Li, and E. W. Van Stryland, Handbook of Optics. Volume IV, Optical Properties of Materials, Nonlinear Optics, Quantum Optics. New York, NY, USA: McGraw-Hill, 2010.

T. Sawa, “Study of adaptive underwater optical wireless communication with photomultiplier tube,” Japan Agency for Marine-Earth Science and Technology, Suruga bay, Japan, KR17-11 Leg2, Jul. 26, 2017. [Online]. Avaliable: http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/KR17-11_leg2_all.pdf

X. Liu, S. Yi, R. Liu, L. Zheng, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser with NRZ-OOK modulation,” in Proc. 14th China Int. Forum Solid State Light. Int. Forum Wide Bandgap Semicond., 2018, pp. 60–61.

M. Elamassie and M. Uysal, “Performance characterization of vertical underwater VLC links in the presence of turbulence,” in Proc. 11th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2018, pp. 1–6.

A. Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Pathloss analysis of NLOS underwater wireless optical communication channel,” in Proc. Int. Conf. Electron. Commun. Syst., 2014, pp. 1–4.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters by Curtis D. Mobley. New York, NY, USA: Academic, 1994.

S. Tang, Y. Dong, and X. Zhang, “On path loss of NLOS underwater wireless optical communication links,” in Proc. MTS/IEEE OCEANS, 2013, pp. 1–3.

W. Liu, D. Zou, Z. Xu, and J. Yu, “Non-line-of-sight scattering channel modeling for underwater optical wireless communication,” in Proc. IEEE Int. Conf. Cyber Technol. Autom. Control Intell. Syst., 2015, pp. 1265–1268.

B. Cochenour, L. Mullen, and A. Laux, “Phase coherent digital communications for wireless optical links in turbid underwater environments,” in Proc. OCEANS, 2007, pp. 1–5.

H. M. Oubei, X. Sun, T. K. Ng, O. Alkhazragi, M.-S. Alouini, and S. Boon Ooi, “Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence,” in Proc. 4th Underwater Commun. Netw. Conf., 2018, pp. 1–4.

Y. Dong and J. Liu, “On BER performance of underwater wireless optical MISO links under weak turbulence,” in Proc. OCEANS, Shanghai, China, 2016, pp. 1–4.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3348–3353.

H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper M3G.2.

S. M. Kim and J. S. Won, “Simultaneous reception of visible light communication and optical energy using a solar cell receiver,” in Proc. Int. Conf. ICT Convergence, 2013, pp. 896–897.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3348–3353.

H. Haas, S. Videv, S. Das, J. Fakidis, and H. Stewart, “Solar cell receiver free-space optical for 5G backhaul,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 5–7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.