Abstract

As the only method for all-weather, all-time and long-distance target detection and recognition, radar has been intensively studied since it was invented, and is considered as an essential sensor for future intelligent society. In the past few decades, great efforts were devoted to improving radar's functionality, precision, and response time, of which the key is to generate, control and process a wideband signal with high speed. Thanks to the broad bandwidth, flat response, low loss transmission, multidimensional multiplexing, ultrafast analog signal processing and electromagnetic interference immunity provided by modern photonics, implementation of the radar in the optical domain can achieve better performance in terms of resolution, coverage, and speed which would be difficult (if not impossible) to implement using traditional, even state-of-the-art electronics. In this tutorial, we overview the distinct features of microwave photonics and some key microwave photonic technologies that are currently known to be attractive for radars. System architectures and their performance that may interest the radar society are emphasized. Emerging technologies in this area and possible future research directions are discussed.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Skolnik, Radar Handbook, 3rd ed. USA: McGraw-Hill, 2008.
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, no. 6, pp. 319–330, 2007.
  3. J. Yao, “Microwave photonics,” J. Lightw. Technol., vol. 27, no. 3, pp. 314–335, 2009.
  4. S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 31, no. 3, pp. 219–240, 2014.
  5. A. Seeds and K. Williams, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641, 2006.
  6. V. Urick, K. Williams, and J. McKinney, Fundamentals of Microwave Photonics. USA: John Wiley & Sons, 2015.
  7. A. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.
  8. X. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron., vol. 32, no. 7, pp. 1141–1149, 1996.
  9. J. Yao, “Arbitrary waveform generation,” Nature Photon., vol. 4, no. 2, pp. 79–80, 2010.
  10. Z. Tang, Y. Li, J. Yao, and S. Pan, “Photonics-based microwave frequency mixing: methodology and applications,” Laser Photon. Rev., vol. 14, no. 1, 2020.
  11. W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightw. Technol., vol. 9, no. 9, pp. 1124–1131, 1991.
  12. T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett., vol. 8, no. 4, p. 232, 1983.
  13. G. Valley, “Photonic analog-to-digital converters,” Opt. Express, vol. 15, no. 5, pp. 1955–1982, 2007.
  14. H. Heckscher and J. Rossi, “Flashlight-size external cavity semiconductor laser with narrow-linewidth tunable output,” Appl. Opt., vol. 14, no. 1, pp. 94–96, 1975.
  15. Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, pp. 121001-1–121001-7, 2017.
  16. K. Ho, J. Walker, and J. Kahn, “External optical feedback effects on intensity noise of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 5, no. 8, pp. 892–895, 1993.
  17. Ultra Low-Relative Intensity Noise Analog DFB Laser Module, APIC Corp., USA [Online]. Available: http://www.cybel-llc.com/wp-content/uploads/2018/10/Ultra-Low-RIN-Analog-DFB-Laser-CWL-series-Ver-1-30-Aug-2018.pdf. Accessed on: 2020.
  18. D. G. Matei, “1.5um Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett., vol. 118, pp. 263202-1–263202-6, 2017.
  19. R. Mears, L. Reekie, S. Poole, and D. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett., vol. 21, no. 17, pp. 738–740, 1985.
  20. M. Gorjan, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er: ZBLAN fiber laser,” Opt. Lett., vol. 36, no. 10, pp. 1923–1925, 2011.
  21. D. Hall, A. Yariv, and E. Garmire, “Optical guiding and electro-optic modulation in GaAs epitaxial layers,” Opt. Commun., vol. 1, no. 9, pp. 403–405, 1970.
  22. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science, vol. 288, no. 5463, pp. 119–122, 2000.
  23. F. Chen, “Modulators for optical communications,” Proc. IEEE, vol. 58, no. 10, pp. 1440–1457, 1970.
  24. A. Mercante, S. Shi, P. Yao, L. Xie, R. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express, vol. 26, no. 11, pp. 14810–14816, 2018.
  25. H. Ito, T. Furuta, Y. Muramoto, T. Ito, and T. Ishibashi, “Photonic millimetre-and sub-millimetre-wave generation using J-band rectangular-waveguide-output uni-travelling-carrier photodiode module,” Electron. Lett., vol. 42, no. 24, pp. 1424–1425, 2006.
  26. J. Shi, Y. Wu, C. Wu, P. Chiu, and C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1929–1931, 2005.
  27. J. Klamkin, “High output saturation and high-linearity uni-traveling-carrier waveguide photodiodes,” IEEE Photon. Technol. Lett., vol. 19, no. 3, pp. 149–151, 2007.
  28. H. Oohashi, “46.9-nm wavelength-selectable arrayed DFB lasers with integrated MMI coupler and SOA,” in 2001 Int. Conf. Indium Phosphide and Related Materials (13th IPRM), Nara, Japan, 2001, pp. 575–578.
  29. S. Park, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1834–1836, 2004.
  30. L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.
  31. E. Ackerman, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in 2007 IEEE/MTT-S Int. Microwave Symp. (IMS), Honolulu, USA, 2007, pp. 51–54.
  32. F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.
  33. T. Perry, “In search of the future of air traffic control,” IEEE Spectrum, vol. 34, no. 8, pp. 18–35, 1997.
  34. K. L. Koester and W. Vaillancourt, “TALONS 95 GHz radar sensor for autonomous landing guidance,” IEEE Aerosp. Electron. Syst. Mag., vol. 7, no. 7, pp. 40–44, 1992.
  35. G. H. Pettengill and I. I. Shapiro, “Radar astronomy,” Ann. Rev. Astron. Astrophys., vol. 3, no. 1, pp. 377–411, 1965.
  36. C. Elachi, “Space imaging radar in planetary exploration and earth observation,” AIAA J., vol. 39, no. 4, pp. 553–563, 2001.
  37. L. Andreone, F. Tango, U. Scheunert, H. Cramer, G. Wanielik, and A. Amditis, “A new driving supporting system, integrating an infrared camera and an anti-collision micro-wave radar: the EUCLIDE project,” in Intell. Vehicle Symp., 2002. IEEE, Versailles, France, 2002, vol. 2, pp. 519–526.
  38. N. Bobrinsky and L. Del Monte, “The space situational awareness program of the European Space Agency,” Cosmic Res., vol. 48, no. 5, 2010.
  39. P. Kollias, E. Clothiaux, M. Miller, B. Albrecht, G. Stephens, and T. Ackerman, “Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research,” Bull. Amer. Meteorol. Soc., vol. 88, no. 10, pp. 1608–1624, 2007.
  40. J. Crétaux and C. Birkett, “Lake studies from satellite radar altimetry,” Comp. Rendus Geosci., vol. 338, no. 14–15, pp. 1098–1112, 2006.
  41. L. Conyers and D. Goodman, Ground-Penetrating Radar: An Introduction for Archaeologist. USA: AltaMira Press, 1997, pp. 131–159.
  42. M. Davis, “A history of battlefield surveillance radar,” in 2015 IEEE Radar Conf. (RadarCon), Arlington, USA, 2015, pp. 1345–1350.
  43. S. Blackman, Multiple-Target Tracking with Radar Applications. Dedham, 1986, pp. 463.
  44. A. Madni, P. McDonald, R. Hansen, and L. Wan, “High-dynamic-range airborne tracking and fire control radar subsystem,” IEEE Trans. Microw. Theory Technol., vol. 37, no. 12, pp. 1942–1948, 1989.
  45. J. Levinson, “Towards fully autonomous driving: systems and algorithms,” in 2011 IEEE Intell. Vehicles Symp. (IV), Baden, Germany, 2011, pp. 163–168.
  46. B. Skinner, J. Donohoe, and F. Ingels, “Simplified performance estimation of FSK/PSK hybrid signaling radar systems,” in Proc. IEEE 1993 National Aerospace and Electronics Conf.-NAECON 1993, Dayton, USA, 1993, vol. 1, pp. 255–261.
  47. H. Harmuth, “Frequency-sharing and spread-spectrum transmission with large relative bandwidth,” IEEE Trans. Electromagn. Compat., no. 1, pp. 232–239, 1978.
  48. ALL-Wave Optical Fiber-Zero Water Peak, OFS Corp., USA [Online]. Available: https://www.ofsoptics.com/wp-content/uploads/AllWave-117-web-7.pdf. Accessed on: 2020.
  49. Corning SMF-28 Ultra Optical Fiber, Corning, USA [Online]. Available: https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf. Accessed on: 2020.
  50. T. Kato, Y. Koyano, and M. Nishimura, “Temperature dependence of chromatic dispersion in various types of optical fiber,” Opt. Lett., vol. 25, no. 16, pp. 1156–1158, 2000.
  51. K. Y. Lau and G. F. Lutes, “Planetary radar imaging and RF-over-fiber,” Opt. Photon. News, vol. 25, pp. 44–51, 2014.
  52. G. Grosche, “Optical frequency transfer via 146 km fiber link with 10−19 relative accuracy,” Opt. Lett., vol. 34, no. 15, pp. 2270–2272, 2009.
  53. B. Wang, “Precise and continuous time and frequency synchronisation at the 5× 10-19 accuracy level,” Sci. Rep., vol. 2, p. 556, 2012.
  54. S. Droste, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett., vol. 111, no. 11, p. 110801, 2013.
  55. K. Y. Lau, G. F. Lutes, and R. L. Tjoelker, “Ultra-stable RF-over-fiber transport in NASA antennas, phased arrays and radars,” J. Lightw. Technol., vol. 32, no. 20, pp. 3440–3451, 2014.
  56. T. Farr, “The shuttle radar topography mission,” Rev. Geophys., vol. 45, no. 2, pp. RG2004, 2007.
  57. X. Wang, “High-accuracy optical time delay measurement in fiber link [Invited],” Chin. Opt. Lett., vol. 17, no. 6, 2019.
  58. S. Li, “Optical fiber transfer delay measurement based on phase-derived ranging,” IEEE Photon. Technol. Lett., vol. 31, no. 16, pp. 1351–1354, 2019.
  59. K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276, 1997.
  60. W. Gruener, J. Toernig, and P. Fielding, “Active-electronically-scanned-array based radar system features,” in Radar 97 (Conf. Publ. No. 449), Edinburgh, UK, 1997, pp. 339–343.
  61. E. Cohen, “Trends in the development of MMICs and packages for active electronically scanned arrays (AESAs),” in Proc. Int. Symp. Phased Array Systems and Technology, Boston, USA, 1996, pp. 1–4.
  62. D. Bliss and K. Forsythe, “Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution,” in The Thrity-Seventh Asilomar Conf. Signals, Systems & Computers, 2003, Pacific Grove, USA, 2003, vol. 1. pp. 54–59.
  63. K. Forsythe, D. Bliss, and G. Fawcett, “Multiple-input multiple-output (MIMO) radar: performance issues,” in Conf. Record of the Thirty-Eighth Asilomar Conf. on Signals, Systems and Computers, 2004, Pacific Grove, USA, 2004, vol. 1, pp. 310–315.
  64. N. Kees, E. Schmidhammer, and J. Detlefsen, “Improvement of angular resolution of a millimeterwave imaging system by transmitter location multiplexing,” in IEEE NTC, Conf. Proc. Microwave Systems Conf., Orlando, USA, 1995, pp. 105–108.
  65. A. Zwanetski and H. Rohling, “Continuous wave MIMO radar based on time division multiplexing,” in 2012 13th Int. Radar Symp., Warsaw, Poland, 2012, pp. 119–121.
  66. K. Rambach and B. Yang, “MIMO radar: time division multiplexing vs. code division multiplexing,” in Int. Conf. Radar Systems (Radar 2017), Belfast, UK, 2017, pp. 1–5.
  67. M. Sebt, A. Sheikhi, and M. Nayebi, “Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio,” IET Radar Sonar Navig., vol. 3, no. 2, pp. 122–132, 2009.
  68. D. Bleh, “W-band time-domain multiplexing FMCW MIMO radar for far-field 3-D imaging,” IEEE Trans. Microw. Theory Technol., vol. 65, no. 9, pp. 3474–3484, 2017.
  69. T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634, 2015.
  70. S. Park, C. Lee, K. Jeong, H. Park, J. Ahn, and K. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591, 2004.
  71. M. Burla, “Multiwavelength-integrated optical beamformer based on wavelength division multiplexing for 2-D phased array antennas,” J. Lightw. Technol., vol. 32, no. 20, pp. 3509–3520, 2014.
  72. P. Mamyshev and L. Mollenauer, “Pseudo-phase-matched four-wave mixing in soliton wavelength-division multiplexing transmission,” Opt. Lett., vol. 21, no. 6, pp. 396–398, 1996.
  73. T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightw. Technol., vol. 28, no. 16, pp. 2247–2257, 2010.
  74. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229, 2006.
  75. C. Deng, J. Suo, Y. Wang, Z. Zhang, and Q. Dai, “Single-shot thermal ghost imaging using wavelength-division multiplexing,” Appl. Phys. Lett., vol. 112, no. 5, 2018.
  76. S. Evangelides, L. Mollenauer, J. Gordon, and N. Bergano, “Polarization multiplexing with solitons,” J. Lightw. Technol., vol. 10, no. 1, pp. 28–35, 1992.
  77. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol., vol. 28, no. 4, pp. 484–493, 2010.
  78. Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron., vol. 54, no. 4, pp. 0700112, 2018.
  79. Z. Tang and S. Pan, “A full-duplex radio-over-fiber link based on a dual-polarization Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 852–855, 2016.
  80. M. Huang, D. Zhu, and S. Pan, “Optical RF interference cancellation based on a dual-parallel polarization modulator,” in Asia Communications and Photonics Conf. 2014, Nov. 2014, p. ATh1F.6.
  81. S. Liu, D. Zhu, Z. Wei, and S. Pan, “Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator,” Opt. Lett., vol. 39, no. 13, pp. 3958–3961, 2014.
  82. J. Yu, X. Li, J. Zhang, and J. Xiao, “432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing,” in 2014 The Eur. Conf. Optical Communication (ECOC), Cannes, France, 2014, pp. 1–3.
  83. Y. Deng, A. Burr, and G. White, “Performance of MIMO systems with combined polarization multiplexing and transmit diversity,” in 2005 IEEE 61st Vehicular Technology Conf., Stockholm, Sweden, 2005, vol. 2, pp. 869–873.
  84. K. Kikuchi, “Performance analyses of polarization demultiplexing based on constant-modulus algorithm in digital coherent optical receivers,” Opt. Express, vol. 19, no. 10, pp. 9868–9880, 2011.
  85. P. Marchal “Spatial division multiplexing: a novel approach for guaranteed throughput on NoCs,” in 2005 Third IEEE/ACM/IFIP Int. Conf. Hardware/Software Codesign and System Synthesis (CODES+ISSS), Jersey City, USA, 2005, pp. 81–86.
  86. D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.
  87. Y. Awaji, N. Wada, Y. Toda, and T. Hayashi, “World first mode/spatial division multiplexing in multi-core fiber using Laguerre-Gaussian mode,” in 2011 37th Eur. Conf. Optical Communication (ECOC), Geneva, Switzerland, 2011, pp. We.10.P1.55.
  88. T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond,” in 2009 14th OptoElectronics and Communications Conf. (OECC), Vienna, Austria, 2009, pp. 1–2.
  89. Y. Sasaki, “Few-mode multicore fibers for long-haul transmission line,” Opt. Fiber Technol., vol. 35, pp. 19–27, 2017.
  90. R. Uden, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, no. 11, pp. 865, 2014.
  91. G. Wang, “Ultrafast optical imaging using multimode fiber based compressed sensing and photonic time stretch,” 2018, arXiv preprint, arXiv:1803.03061.
  92. H. Wen, “Few-mode fibre-optic microwave photonic links,” Light Sci. Appl., vol. 6, no. 8, pp. e17021–e17021, 2017.
  93. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw Technol., vol. 34, no. 1, pp. 55–66, 2016.
  94. W. Zhang, “Mode division multiplexing communication using microwave orbital angular momentum: An experimental study,” IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1308–1318, 2017.
  95. N. Bozinovic, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science, vol. 340, no. 6140, pp. 1545–1548, 2013.
  96. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express, vol. 6, no. 2, pp. 98–103, 2009.
  97. T. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. Leon-Saval, and R. Thomson, “The photonic lantern,” Adv. Opt. Photon., vol. 7, pp. 107–167, 2015.
  98. D. Noordegraaf, P. Skovgaard, M. Nielsen, and J. Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express, vol. 17, no. 3, pp. 1988–1994, 2009.
  99. I. Gasulla, “Spatial division multiplexed microwave signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017.
  100. I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.
  101. X. Zou, “Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing,” J. Lightw. Technol., vol.36, no. 19, pp. 4337–4346, 2018.
  102. I. Gasulla, D. Barrera, and S. Sales, “Microwave photonic devices based on multicore fibers,” in 2014 16th Int. Conf. Transparent Optical Networks (ICTON), Graz, Austria, 2014, pp. 1–4.
  103. Y. Zhao, “Super-channel oriented routing, spectrum and core assignment under crosstalk limit in spatial division multiplexing elastic optical networks,” Opt. Fiber Technol., vol. 36, pp. 249–254, 2017.
  104. C. Caloz, S. Gupta, Q. Zhang, and B. Nikfal, “Analog signal processing: A possible alternative or complement to dominantly digital radio schemes,” IEEE Microw. Mag., vol. 14, no. 6, pp. 87–103, 2013.
  105. R. Yarlagadda, Analog and Digital Signals and Systems. USA: Springer, 2010.
  106. E. Palushani, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Topics Quantum Electron., vol. 18, no. 2, pp. 681–688, 2012.
  107. J. Azana, N. Berger, B. Levit, and B. Fischer, “Spectra-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 882–884, 2004.
  108. Y. Dai, J. Li, Z. Zhang, F. Yin, W. Li, and K. Xu, “Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion,” Opt. Express, vol. 25, no. 14, pp. 16660–16671, 2017.
  109. X. Xu, “Photonic RF phase-encoded signal generation with a microcomb source,” J. Lightw. Technol., early access, 2019.
  110. P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, “A novel approach to photonic generation of RF binary digital modulation signals,” Opt. Express, vol. 21, no. 1, pp. 631–639, 2013.
  111. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations,” J. Lightw. Technol., vol. 21, no. 12, pp. 3085–3103, 2003.
  112. T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photon. Technol. Lett., vol. 29, no. 1, pp. 74–77, 2017.
  113. W. Hao, “Frequency-oriented subsampling by photonic Fourier transform and I/Q demodulation,” IEEE Photon. J., vol. 9, no. 6, pp. 5503508, 2017.
  114. V. Supradeepa, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nature Photon., vol. 6, no. 3, pp. 186–194, 2012.
  115. X. Xu, “Reconfigurable microwave photonic transversal filter based on an integrated optical micro-comb source,” in Integrated Optics: Devices, Materials, and Technologies XXIII, San Francisco, USA, 2019, vol. 10921, pp. 1092104.
  116. X. Zhu, F. Chen, H. Peng, and Z. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” Opt. Express, vol. 25, no. 8, pp. 9232–9243, 2017.
  117. Z. Wang, B. Wang, D. Zhao, and R. Wang, “Full analog broadband time-reversal module for ultra-wideband communication system,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 1–10, 2019.
  118. M. Cornet, J. Degert, E. Abraham, and E. Freysz, “Frequency resolved cross-correlation between optical and terahertz pulses: application to ultrashort laser pulse characterization,” Opt. Express, vol. 24, no. 3, pp. 3003–3010, 2016.
  119. K. Goda, K. Tsia, and B. Jalali, “Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett., vol. 93, no. 13, pp. 131109-1–131109-3, 2008.
  120. K. Goda, K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature, vol. 458, pp. 1145–1150, 2009.
  121. J. Zhao, Y. E, K. Williams, X. Zhang, and R. W. Boyd, “Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding,” Light Sci. Appl., vol. 8, pp. 55, 2019.
  122. Y. Huang, W. Zhang, F. Yang, J. Du, and Z. He, “Programmable matrix operation with reconfigurable time-wavelength plane manipulation and dispersed time delay,” Opt. Express, vol. 27, no. 15, pp. 20456–20467, 2019.
  123. N. Janosik, C. Qixiang, M. Glick, H. Yishen, and K. Bergman, “High-resolution silicon microring based architecture for optical matrix multiplication,” in 2019 Conf. Lasers and Electro-Optics (CLEO), San Jose, USA, 2019, pp. SM2J.3.
  124. M. Pagani, D. Marpaung, D. Choi, S. Madden, B. Davies, and B. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, no. 23, pp. 28810–28818, 2014.
  125. S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485, 2012.
  126. M. Lei, Z. Zheng, J. Qian, M. Xie, X. Gao, and S. Huang, “Photonics-assisted super-octave microwave phase shifter,” IEEE Photon. J., vol. 11, no. 1, pp. 1–11, 2019.
  127. F. Yang, “A microwave photonic phase-tunable mixer with local oscillator frequency doubling,” Opt. Commun., vol. 438, pp. 141–146, 2019.
  128. Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett., vol. 38, no. 5, pp. 766–768, 2013.
  129. Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 694–696, 2011.
  130. J. Yan, L. Li, X. Yi, and S. Chew, “Widely tunable single bandpass microwave photonic filter based on dual-fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett., vol. 61, no. 4, pp. 954–958, 2019.
  131. N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun., vol. 407, pp. 27–32, 2018.
  132. Y. Zhang and S. Pan, “An electrically-tunable microwave photonic filter based on polarization modulation,” in 2014 IEEE MTT-S Int. Microwave Symp. (IMS), Tampa, USA, 2014, pp. 1–3.
  133. H. Chatellus, L. Cortés, and J. Azaña, “Optical real-time Fourier transformation with kilohertz resolutions,” Optica, vol. 3, no. 1, pp. 1–8, 2016.
  134. C. Schnebelin and H. Chatellus, “Agile photonic fractional Fourier transformation of optical and RF signals,” Optica, vol. 4, no. 8, pp. 907–910, 2017.
  135. Y. Zhang and S. Pan, “Experimental demonstration of frequency-octupled millimeter-wave signal generation based on a dual-parallel Mach-Zehnder modulator,” in 2012 IEEE MTT-S Int. Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, Nanjing, China, 2012, pp. 1–4.
  136. Z. Zhu, S. Zhao, X. Chu, and Y. Dong, “Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter,” Opt. Commun., vol. 354, pp. 40–47, 2015.
  137. Y. Gao, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett., vol. 26, no. 12, pp. 1199–1202, 2014.
  138. G. Picardi, S. Sorge, R. Seu, G. Fedele, and R. Jordan, “Coherent cancellation of surface clutter for radar sounding,” in IEEE 1999 Int. Geoscience and Remote Sensing Symp. (IGARSS), Hamburg, Germany, 1999, vol. 5, pp. 2678–2680.
  139. X. Guo, H. Sun, and T. Yeo, “Interference cancellation for high-frequency surface wave radar,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 7, pp. 1879–1891, 2008.
  140. A. Singh and V. Lubecke, “Adaptive noise cancellation for two frequency radar using frequency doubling passive RF tags,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2975–2981, 2013.
  141. D. Zhu, J. Chen, and S. Pan, “Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator,” Opt. Express, vol. 24, no. 10, 2016.
  142. M. Huang, J. Fu, and S. Pan, “Linearized analog photonic links based on a dual-parallel polarization modulator,” Opt. Lett., vol. 37, no. 11, pp. 1823–1825, 2012.
  143. F. Wang, S. Shi, and D. Prather, “Microwave photonic link with improved SFDR using two parallel MZMs and a polarization beam combiner,” J. Lightw. Technol., vol. 37, no. 24, pp. 6156–6164, 2019.
  144. Y. Cui, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express, vol. 21, no. 20, pp. 23433–23440, 2013.
  145. P. Li, “Improvement of linearity in phase-modulated analog photonic link,” Opt. Lett., vol. 38, no. 14, pp. 2391–2393, 2013.
  146. D. Zhu, W. Chen, and S. Pan, “Photonics-enabled balanced Hartley architecture for broadband image-reject microwave mixing,” Opt. Express, vol. 26, no. 21, pp. 28022–28029, 2018.
  147. Z. Meng, “Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q,” Opt. Express, vol. 25, no. 18, pp. 22055–22065, 2017.
  148. Z. Shi, S. Zhu, M. Li, N. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun., vol. 428, pp. 131–135, 2018.
  149. Z. Tu, A. Wen, W. Zhang, Z. Xiu, and G. Yu, “All-optical image-reject frequency down-conversion based on cascaded electro-optical modulators,” Opt. Commun., vol. 430, pp. 158–162, 2019.
  150. C. Xie, D. Zhu, W. Chen and S. Pan, “Microwave photonic channelizer based on polarization multiplexing and photonic dual output image reject mixer,” IEEE Access, vol. 7, pp. 158308–158316, 2019.
  151. Y. Gao, A. Wen, W. Chen, and X. Li, “All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter,” Opt. Lett., vol. 42, no. 6, pp. 1105–1108, 2017.
  152. T. Li, H. Chan, X. Wang, X. Feng, B. Guan, and J. Yao, “Broadband photonic microwave signal processor with frequency up/down conversion and phase shifting capability,” IEEE Photon. J., vol. 9, no. 6, 2017.
  153. K. Kolodziej, S. Yegnanarayanan, and B. Perry, “Photonic-enabled RF canceller for wideband in-band full-duplex wireless systems,” IEEE Trans. Microw. Theory Technol., vol. 67, no. 5, pp. 2076–2086, 2019.
  154. M. Chang, C. Lee, B. Wu, and P. Prucnal, “Adaptive Optical Self-Interference Cancellation Using a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett., vol. 27, no. 9, pp. 1018–1021, 2015.
  155. G. Li, Y. Xiang, and S. Pan, “Wideband optical cancellation of RF interference with phase change,” in 2017 16th Int. Conf. Optical Communications and Networks (ICOCN), Wuzhen, China, 2017, pp. 1–3.
  156. Y. Xiang, G. Li, and S. Pan, “Ultrawideband optical cancellation of RF interference with phase change.” Opt. Express, vol. 25, no. 18, pp. 21259–21264, 2017.
  157. V. Urick, J. Diehl, and J. Mckinney, “Nonlinear optical angle modulation for suppression of RF interference.” IEEE Trans. Microw. Theory Technol., vol. 64, no. 7, pp. 1–7, 2016.
  158. J. Suarez, K. Kravtsov, and P. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 402–408, 2009.
  159. W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband optical multipath interference cancellation based on a dispersive element,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 849–851, 2016.
  160. Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by optical frequency quadrupling and polarization multiplexing,” IEEE Photon. Technol. Lett., vol. 29, no. 16, pp. 1320–1323, 2017.
  161. Y. Zhang, F. Zhang, and S. Pan, “Generation of frequency-multiplied and phase-coded signal using an optical polarization division multiplexing modulator,” IEEE Trans. Microw. Theory Technol., vol. 65, no. 2, pp. 651–660, 2017.
  162. W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Technol., vol. 58, no. 11, pp. 3259–3268, 2010.
  163. K. Kolodziej, B. Perry, and J. McMichael, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4321–4334, 2016.
  164. C. Albert, C. Huang, and E. Chan, “Intensity noise suppression using dual-polarization dual-parallel modulator and balanced detector,” IEEE Photon. J., vol. 10, no. 2, 2018.
  165. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon., vol. 8, no. 3, pp. 465–540, 2016.
  166. X. Xie, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nature Photon., vol. 11, no. 1, pp. 44–47, 2017.
  167. T. Fortier, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon., vol. 5, no. 7, pp. 425–429, 2011.
  168. A. Khilo, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express, vol. 20, no. 4, pp. 4454–4469, 2012.
  169. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett., vol. 91, no. 16, p. 161105, 2007.
  170. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nature Photon., vol. 7, no. 2, pp. 102–112, 2013.
  171. K. Goda, “Hybrid dispersion laser scanner,” Sci. Rep., vol. 2, 2012.
  172. C. Jeon, Y. Na, B. Lee, and J. Kim, “Simple-structured, subfemtosecond-resolution optical-microwave phase detector,” Opt. Lett., vol. 43, no. 16, pp. 3997–4000, 2018.
  173. M. Peng, A. Kalaydzhyan, and F. Kartner, “Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization,” Opt. Express, vol. 22, no. 22, pp. 27102–27111, 2014.
  174. J. Wei, S. Zhang, J. Kim, and S. Pan, “Compact phase detector for optical-microwave synchronization using polarization modulation,” J. Lightw. Technol., vol. 36, no. 19, pp. 4267–4272, 2018.
  175. J. Lee, Y. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nature Photon., vol. 4, no. 10, pp. 716–720, 2010.
  176. M. Xin, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl., vol. 6, 2017.
  177. D. Holshouser, H. Foerster, and G. Člark, “Microwave modulation of light using the Kerr effect,” J. Opt. Soc. Am., vol. 51, pp. 1360–1365, 1961.
  178. I. Kaminow, “Microwave modulation of the electro-optic effect in KH2PO4,” Phys. Rev. Lett., vol. 6, pp. 528–530, 1961.
  179. Α. Levine, “Fiber optics for radar and data system,” Ρroc. SPIE, vol. 150, 1978.
  180. K. Garenaux, “Recent breakthroughs in RF photonics for radar systems,” IEEE Aerosp. Electron. Syst. Mag., vol. 22, no. 2, pp. 3–8, 2007.
  181. M. Loïc, “Optical functions for microwave signal processing in radar, communications and surveillance systems,” in 2009 Int. Radar Conf. “Surveillance for a Safer World” (RADAR), Bordeaux, France, 2009, pp. 1–5.
  182. J. McKinney, “Photonics illuminates the future of radar,” Nature, vol. 507, no. 7492, pp. 310–312, 2014.
  183. G. Serafino, “Toward a new generation of radar systems based on microwave photonic technologies,” J. Lightw. Technol., vol. 37, no. 2, pp. 643–650, 2019.
  184. C. Cox, Analog Optical Links: Theory and Practice. UK: Cambridge University Press, 2006.
  185. K. Alameh, “Frequency downconverter for high-capacity fibre grating based beamformers for phased arrays,” Electron. Lett., vol. 35, no. 1, pp. 66–67, 1999.
  186. A. Agarwal, T. Banwell, and T. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightw. Technol., vol. 29, no. 16, pp. 2394–2401, 2011.
  187. C. Brès, S. Zlatanovic, A. Wiberg, and S. Radic, “Reconfigurable parametric channelized receiver for instantaneous spectral analysis,” Opt. Express, vol. 19, no. 4, pp. 3531–3541, 2011.
  188. A. Poddar, U. Rohde, V. Madhavan, A. Apte, and S. Koul, “Ka-Band metamaterial Möbius Oscillator (MMO) circuit,” in 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, USA, 2016, pp. 1–4.
  189. J. Fontana and R. Pantell, “Theoretical considerations on millimeter wave generation by optical frequency mixing,” Proc. IRE, vol. 50, no. 8, pp. 1796–1800, 1962.
  190. J. Yao, “Microwave photonics: Photonic generation of microwave and millimeter-wave signals,” Int. J. Microw. Opt. Technol., vol. 5, no. 1, pp. 16–21, 2010.
  191. U. Gliese, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 936–938, 1992.
  192. J. Li, H. Lee, and K. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, no. 2097, pp. 1–7, 2013.
  193. G. Schneider, J. Murakowski, C. Schuetz, S. Shi, and D. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon., vol. 7, pp. 118–122, 2013.
  194. W. Liang, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nature Commun., vol. 6, no. 7957, pp. 1–8, 2015.
  195. W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 3, pp. 929–933, 2005.
  196. C. Lin, J. Chen, S. Dai, P. Peng, and S. Chi, “Impact of nonlinear transfer function and imperfect splitting ratio of MZM on optical up-conversion employing double sideband with carrier suppression modulation,” J. Lightw. Technol., vol. 26, no. 15, pp. 2449–2459, 2008.
  197. G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable mm-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 10, pp. 3090–3097, 2005.
  198. M. Hasan, R. Guemri, R. Basilio, F. Lucarz, J. Tocnaye, and T. Hall, “Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation,” Opt. Lett., vol. 39, no. 24, pp. 6950–6953, 2014.
  199. J. Kim, J. Cox, J. Chen, and F. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nature Photon., vol. 2, pp. 733–736, 2008.
  200. J. Wei, D. Kwon, S. Zhang, S. Pan, and J. Kim, “All-fiber-photonics-based ultralow-noise agile frequency synthesizer for X-band radars,” Photon. Res., vol. 6, no. 1, pp. 12–17, 2018.
  201. X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett., vol. 30, no. 18, pp. 1525–1526, 1994.
  202. D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system,” in 2008 IEEE Int. Frequency Control Symp., Honolulu, USA, 2008, pp. 811–814.
  203. A. Savchenkov, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 EEE Int. Frequency Control Symp., Newport Beach, USA, 2010, pp. 554–557.
  204. M. Bagnell, J. Rodriguez, and P. Delfyett, “Millimeter-wave generation in an optoelectronic oscillator using an ultrahigh finesse etalon as a photonic filter,” J. Lightw. Technol., vol. 32, no. 6, pp. 1063–1067, 2014.
  205. S. Liu, “Ultralow phase noise optoelectronic oscillator and its application to a frequency synthesizer,” (in Chinese), J. Radars, vol. 8, no. 2, pp. 245–250, 2019.
  206. C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 9–12, pp. 882–884, 2008.
  207. C. Wang and J. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac loop mirror incorporating a chirped fiber bragg grating,” J. Lightw. Technol., vol. 27, no. 16, pp. 3336–3341, 2009.
  208. M. Li, L. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 314–316, 2011.
  209. W. Wang, “Photonic generation of pulsed microwave signal based on phase shifted lyot optical filter,” IEEE Photon. Technol. Lett., vol. 27, no. 17, pp. 1845–1848, 2015.
  210. F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photon. Res., vol. 2, no. 4, pp. B5–B10, 2014.
  211. Y. Li, A. Rashidinejad, J. Wun, D. Leaird, J. Shi, and A. Weiner, “Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9 mm range resolution,” Optica, vol. 1, no. 6, pp. 446–454, 2014.
  212. A. Rashidinejad and A. Weiner, “Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability,” J. Lightw. Technol., vol. 32, no. 20, pp. 3383–3393, 2014.
  213. P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express, vol. 24, no. 16, pp. 18460–18467, 2016.
  214. P. Zhou, F. Zhang, Q. Guo, S. Li, and S. Pan, “Reconfigurable radar waveform generation based on an optically injected semiconductor laser,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, pp. 1801109, 2017.
  215. B. Zhang, D. Zhu, P. Zhou, C. Xie, and S. Pan, “Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser,” Appl. Opt., vol. 58, no. 20, pp. 5479–5485, 2019.
  216. P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J., vol. 8, no. 6, pp. 5501909, 2016.
  217. F. Z. Zhang, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express, vol. 25, no. 14, pp. 16274–16281, 2017.
  218. Y. Yao, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in 2018 Optical Fiber Commun. Conf. and National Fiber Optic Engineers Conf. (OFC), San Diego, USA, 2018, pp. Th3G.5.
  219. W. Chen, D. Zhu, C. Xie, T. Zhou, X. Zhong, and S. Pan, “Photonics-based reconfigurable multi-band linearly frequency-modulated signal generation,” Opt. Express, vol. 26, no. 25, pp. 32491–32499, 2018.
  220. B. D. Gao, F. Z. Zhang, and S. L. Pan, “Experimental demonstration of arbitrary waveform generation by a 4-bit photonic digital-to-analog converter,” Opt. Commun., vol. 383, pp. 191–196, 2017.
  221. J. D. Li “A segmented photonic digital-to-analog converter with a high effective number of bits,” 2019 Int. Topical Meeting on Microwave Photonics (MWP), Ottawa, ON, Canada,7-10 Oct. 2019.
  222. S. Peng, “High-resolution W-band ISAR imaging system utilizing a logic-operation based photonic digital-to-analog converter,” Opt. Express, vol. 26, no. 2, pp. 1978–1987, 2018.
  223. S. Cundiff and A. Weiner, “Optical arbitrary waveform generation,” Nature Photon., vol. 4, no. 11, p. 760, 2010.
  224. X. Ye, F. Zhang, Y. Yang, D. Zhu, and S. Pan, “Photonics-based high-resolution 3D inverse synthetic aperture radar imaging,” IEEE Access, vol. 7, pp. 79503–79509, 2019.
  225. X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging,” Photon. Res., vol. 7, no. 3, pp. 265–272, 2019.
  226. F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express, vol. 26, no. 13, pp. 17529–17540, 2018.
  227. R. Li, “Demonstration of a microwave photonic synthetic aperture radar based on photonic assisted signal generation and stretch processing,” Opt. Express, vol. 25, no. 13, pp. 14334–14340, 2017.
  228. A. Wang, “Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information,” Opt. Express, vol. 26, no. 16, pp. 20708–20717, 2018.
  229. T. A. Schaffer, H. P. Warren, M. J. Bustamante, and K. W. Kong, “A 2 GHz 12-bit digital-to-analog converter for direct digital synthesis applications,” Techn. Digest GaAs Ie Symp., 1996, pp. 61–64.
  230. A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 117–119, 2003.
  231. M. Currie and J. W. Lou, “Weighted, summing photonic digital-to-analog converter,” Electron. Lett., vol. 42, no. 1, pp. 54–55, 2006.
  232. X. Yu, K. Wang, X. Zheng, and H. Zhang, “Incoherent photonic digital-to-analogue converter based on broadband optical source,” Electron. Lett., vol. 43, no. 19, pp. 1044–1045, 2007.
  233. A. Leven, “High speed integrated InP photonic digital-to-analog converter,” in Proc. Indium Phosphide and Related Materials Conf., 2006, pp. 14–15.
  234. A. Leven, J. Lin, J. Lee, K.-Y. Tu, Y. Baeyens, and Y. K. Chen, “A 12.5G sample/s optical digital-to-analog converter with 3.8 effective bits,” in Proc. 17th Ann. Meet. IEEE Lasers and Electro-Optics Society, Puerto Rico, 2004, pp. 270–271.
  235. S. Oda and A. Maruta, “All-optical digital-to-analog conversion using nonlinear optical loop mirrors,” IEEE Photon. Technol. Lett., vol. 18, no. 5, pp. 703–705, 2006.
  236. F. Zhang, B. Gao, and S. Pan, “Two-bit photonic digital-to-analog conversion unit based on polarization multiplexing,” Opt. Eng., vol. 55, no. 3, pp. 031115-1-4, 2016.
  237. J. Ding, “Optical digital-to-analog converter based on microring switches,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2066–2069, 2014.
  238. J. Liao, “Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 126–128, 2013.
  239. T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett., vol. 37, no. 20, pp. 1237–1238, 2001.
  240. T. Nishitani, T. Konishi, H. Furukawa, and K. Itoh, “All-optical digital-to-analog conversion using pulse pattern recognition based on optical correlation processing,” Opt. Express, vol. 13, no. 25, pp. 10310–10315, 2005.
  241. Y. Peng, “Photonic digital-to-analog converter based on summing of serial weighted multiwavelength pulses,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2135–2137, 2008.
  242. Y. Zhang, X. Ye, Q. Guo, F. Zhang, and S. Pan, “Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1821–1829, 2017.
  243. Y. Dai and J. Yao, “Arbitrary phase-modulated RF signal generation based on optical pulse position modulation,” J. Lightw. Technol., vol. 26, no. 17–20, pp. 3329–3336, 2008.
  244. J. Wun, C. Wei, J. Chen, C. Goh, S. Set, and J. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express, vol. 21, no. 9, pp. 11475–11481, 2013.
  245. M. Richards, J. A. Scheer, and W. A. Holm, Principle of Modern Radar: Basic Principle. SciTech Publishing, 2010.
  246. J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Tech. vol. 60, no. 3, pp. 845–860, 2012.
  247. Z. Li and K. Wu, “On the leakage of FMCW radar front-end receiver,” in Global Symp. Millimeter Waves, IEEE, 2008, pp. 127–130.
  248. G. Gopalakrishnan, W. Burns, and C. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Technol., vol. 41, no. 12, pp. 2383–2391, 1993.
  249. C. Bohemond, T. Rampone, and A. Sharaiha, “Performances of a photonic microwave mixer based on cross-gain modulation in a semiconductor optical amplifier,” J. Lightw. Technol., vol. 29, no. 16, pp. 2402–2409, 15, 2011.
  250. J. Seo, C. Choi, W. Choi, Y. Kang, Y. Chung, and J. Kim, “Remote optoelectronic frequency down-conversion using 60-GHz optical heterodyne signals and an electro-absorption modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1073–1075, 2005.
  251. S. Constant, Y. Guennec, G. Maury, M. Lourdiane, and B. Cabon, “Directly modulated laser diode in the nonlinear regime for low-cost digital frequency up-conversion,” Microw. Opt. Technol. Lett., vol. 50, no. 5, pp. 1214–1219, 2008.
  252. V. Pagán, B. Haas, and T. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express, vol. 19, no. 2, pp. 883–95, 2011.
  253. D. Zhu and S. Pan, “Photonics-based microwave image-reject mixer,” MDPI Photon., vol. 5, no. 2, pp. 6-1-12, 2018.
  254. S. Strutz and K. Williams, “An 8-18-GHz all-optical microwave downconverter with channelization,” IEEE Trans. Microw. Theory Technol., vol. 49, no. 10, pp. 1992–1995, 2001.
  255. S. Strutz and K. Williams, “A 0.8-8.8-GHz image rejection microwave photonic downconverter,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1376–1378, 2002.
  256. Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Technol., vol. 64, no. 9, pp. 3017–3025, 2016.
  257. Z. Tang and S. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightw. Technol., vol. 34, no. 20, pp. 4729–4735, 2016.
  258. D. Hunter, L. Edvell, and M. Englund, “Wideband microwave photonic channelised receiver,” in 2005 Int. Topical Meeting on Microwave Photonics (MWP), Seoul, Korea, 2005, pp. 249–252.
  259. X. Gu, D. Zhu, S. Li, Y. Zhao, and S. Pan, “Photonic RF channelization based on series-coupled asymmetric double-ring resonator filter,” in The 7th IEEE/Int. Conf. on Advanced Infocomm Technology, Fuzhou, China, 2014, pp. 240–244.
  260. X. Xie, “Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb,” IEEE Photon. Technol. Lett., vol. 24, no. 8, pp. 661–663, 2012.
  261. G. Anderson, D. Webb, A. Spezio, and J. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE, vol. 79, no. 3, pp. 355–388, 1991.
  262. Z. Tang, D. Zhu, and S. Pan, “Coherent optical RF channelizer with large instantaneous bandwidth and large in-band interference suppression,” J. Lightw. Technol., vol. 36, no. 19, pp. 4219–4226, 2018.
  263. W. Chen, D. Zhu, C. Xie, J. Liu, and S. Pan, “Microwave channelizer based on a photonic dual-output image-reject mixer,” Opt. Lett., vol. 44, no. 16, pp. 4052–4055, 2019.
  264. H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar. USA: Artech House, 1994.
  265. R. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Technol., vol. 54, no. 2, pp. 832–846, 2006.
  266. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.
  267. M. Fok and J. Ge, “Tunable multiband microwave photonic filters,” MDPI Photon., vol. 4, no. 4, 2017.
  268. X. Zou, P. Li, W. Pan, and L. S. Yan, “Photonic microwave filters with ultra-high noise rejection [Invited],” Chin. Opt. Lett., vol. 17, no. 3, 2019.
  269. E. Heyde and R. Minasian, “A solution to the synthesis problem of recirculating optical delay line filters,” IEEE Photon. Technol. Lett., vol. 6, no. 7, pp. 833–835, 1994.
  270. V. Polo, B. Vidal, J. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N x N AWG-based delay lines,” IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 584–586, 2003.
  271. X. K. Yi, F. Wei, N. Hong, and L. Chao, “Tunable microwave filter design using wavelength conversion technique and high dispersion time delays,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 857–859, 2001.
  272. S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett., vol. 31, no. 13, pp. 1095–1096, 1995.
  273. F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett., vol. 30, no. 17, pp. 2203–2205, 2005.
  274. J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett., vol. 19, no. 9–12, pp. 644–646, 2007.
  275. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1744–1746, 2006.
  276. M. Sagues, R. Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express, vol. 16, no. 1, pp. 295–303, 2008.
  277. Y. Dai and J. Yao, “Nonuniformly-spaced photonic microwave delay-line filter,” Opt. Express, vol. 16, no. 7, pp. 4713–4718, 2008.
  278. X. K. Yi, T. Huang, and R. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3088–3093, 2010.
  279. W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett., vol. 21, no. 1–4, pp. 167–169, 2009.
  280. X. Li, J. Dong, Y. Yu, and X. Zhang, “A tunable microwave photonic filter based on an all-optical differentiator,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 308–310, 2011.
  281. J. Lloret, “Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator,” Opt. Express, vol. 19, no. 13, pp. 12402–12407, 2011.
  282. Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 187–189, 2013.
  283. Y. Zhang and S. Pan, “Tunable multitap microwave photonic filter with all complex coefficients,” Opt. Lett., vol. 38, no. 5, pp. 802–804, 2013.
  284. W. Li, N. H. Zhu, and L. X. Wang, “Continuously tunable microwave photonic notch filter with a complex coefficient,” IEEE Photon. J., vol. 3, no. 3, pp. 462–467, 2011.
  285. W. Li, W. Wang, W. Sun, J. Liu, and N. Zhu, “Microwave photonic notch filter with complex coefficient based on DDMZM,” IEEE Photon. Technol. Lett., vol. 26, no. 18, pp. 1859–1862, 2014.
  286. H. Wen, M. Li, W. Li, and N. Zhu, “Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated Brillouin scattering and a fiber ring resonator,” Opt. Lett., vol. 43, no. 19, pp. 4659–4662, 2018.
  287. S. Hu, L. W. Li, X. Yi, and F. Teng, “Tunable dual-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 330–333, 2017.
  288. Z. Zeng, “Freely tunable dual-passband microwave photonic filter based on phase-to-intensity modulation conversion by stimulated Brillouin scattering,” IEEE Photon. J., vol. 11, no. 1, 2019.
  289. J. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nature Photon., vol. 11, no. 2, pp. 124–129, 2017.
  290. C. Porzi, “High-capacity single-sideband suppressed-carrier modulation with integrated optical filter in silicon-on-insulator technology,” in 2019 Int. Workshop on Fiber Optics in Access Networks (FOAN), Sarajevo, Bosnia and Herzegovina, 2019, pp. 29–33.
  291. E. Norberg, R. Guzzon, J. Parker, L. Johansson, and L. Coldren, “Programmable photonic microwave filters monolithically integrated in InP-InGaAsP,” J. Lightw. Technol., vol. 29, no. 11, pp. 1611–1619, 2011.
  292. X. Xue, “Programmable single-bandpass photonic RF filter based on kerr comb from a microring,” J. Lightw. Technol., vol. 32, no. 20, pp. 3557–3565, 2014.
  293. X. Xu, “Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source,” J. Lightw. Technol., vol. 37, no. 4, pp. 1288–1295, 2019.
  294. D. Marpaung, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica, vol. 2, no. 2, pp. 76–83, 2015.
  295. Y. Xie, “System-level performance of chip-based Brillouin microwave photonic bandpass filters,” J. Lightw. Technol., vol. 37, no. 20, pp. 5246–5258, 2019.
  296. A. Levine, “Fiber optic phased array antenna system for RF transmission,” U.S. Patent 4 028 702, 7, 1977.
  297. I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Technol., vol. 43, no. 9, pp. 2378–2386, 1995.
  298. A. Goutzoulis, K. Davies, J. Zomp, P. Hrycak, and A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased-array antennas,” Appl. Opt., vol. 33, no. 35, pp. 8173–8185, 1994.
  299. D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt., vol. 35, no. 26, pp. 5293–5300, 1996.
  300. X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightw. Technol., vol. 35, no. 23, pp. 5010–5019, 2017.
  301. S. Dug, L. Song, and K. Gyoun, “Optical true time-delay feeder for X-band phased array antennas composed of 2x2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1364–1366, 2004.
  302. R. Moreira, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett., vol. 25, no. 12, pp. 1165–1168, 2013.
  303. Y. Liu, A. Choudhary, D. Marpaung, and B. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica, vol. 4, no. 4, pp. 418–423, 2017.
  304. R. Bonjour, “Ultra-fast millimeter wave beam steering,” IEEE J. Quantum Electron., vol. 52, no. 1, p. 0600708, 2016.
  305. Miniature Motorized Optical Variable Delay Line, General Photonics Corp., USA [Online]. Available: http://www.generalphotonics.com/wp-content/uploads/2017/12/MDL-002-spec-12-17-17.pdf. Accessed on: 2020.
  306. X. Yi, L. Li, T. Huang, and R. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett., vol. 37, no. 4, pp. 608–610, 2012.
  307. Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1172–1174, 2002.
  308. J. Cardenas, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express, vol. 18, no. 25, pp. 26525–26534, 2010.
  309. I. Aryanfar, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett., vol. 42, no. 7, pp. 1313–1316, 2017.
  310. T. Tatoli, D. Conteduca, F. Dell'Olio, C. Ciminelli, and M. Armenise, “Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas,” Appl. Opt., vol. 55, no. 16, pp. 4342–4349, 2016.
  311. J. Cruz, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett., vol. 33, no. 7, pp. 545–546, 1997.
  312. P. Matthews, L. Pao-Lo, J. Medberry, M. Franekl, and R. Esman, “Demonstration of a wide-band fiber-optic nulling system for array antennas,” IEEE Trans. Microw. Theory Technol., vol. 47, no. 7, pp. 1327–1331, 1999.
  313. M. Chen, H. Subbaraman, and R. Chen, “Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 375–377, 2008.
  314. X. Xue, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Lightw. Technol., vol. 36, no. 12, pp. 2312–2321, 2018.
  315. N. Shi, W. Li, N. Zhu, and M. Li, “Optically controlled phase array antenna,” Chin. Opt. Lett., vol. 17, no. 5, p. 052301, 2019.
  316. P. Wu, S. Tang, and D. Raible, “A prototype high-speed optically-steered X-band phased array antenna,” Opt. Express, vol. 21, no. 16, pp. 32599–32604, 2013.
  317. X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express, vol. 23, no. 8, pp. 10002–10008, 2015.
  318. X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett., vol. 41, no. 17, pp. 3956–3959, 2016.
  319. I. Visscher,“Broadband true time delay microwave photonic beamformer for phased array antennas,” in 2019 13th Eur. Conf. on Antennas and Propagation (EuCAP), Krakow, Poland, 2019, pp. 1–5.
  320. R. Rotman, O. Raz, S. Barzilay, S. R. Rotman, and M. Tur, “Wideband antenna patterns and impulse response of broadband RF phased arrays with RF and photonic beamforming,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 36–44, 2007.
  321. X. Ye, B. Zhang, Y. Zhang, D. Zhu, and S. Pan, “Performance evaluation of optical beamforming-based wideband antenna array,” Chin. Opt. Lett., vol. 15, no. 1, p. 010013, 2017.
  322. Z. Zhang, H. Li, S. Zhang, and Y. Liu, “Analog-to-digital converters using photonic technology,” Chin. Sci. Bull., vol. 59, no. 22, pp. 2666–2671, 2014.
  323. P. Ghelfi, “A fully photonics-based coherent radar system,” Nature, vol. 507, no. 7492, pp. 341–345, 2014.
  324. F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in 2013 IEEE Radar Conf. (RadarCon), Ottawa, Canada, 2013, pp. 1–5.
  325. A. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photon. Rev., vol. 7, no. 2, pp. 207–263, 2013.
  326. G. Sefler, J. Chou, J. Conway, and G. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightw. Technol., vol. 28, no. 10, pp. 1468–1476, 2010.
  327. Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter employing phase diversity,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 4, pp. 1404–1408, 2005.
  328. W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All- optical-central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6, 2016.
  329. A. Johnstone, M. Lewis, J. D. Hares, and P. Kellet, “High-speed opto-electronic transient waveform digitiser,” Comput. Standards Interfaces, vol. 23, no. 2, pp. 73–84, 2001.
  330. H. Zmuda, “Optically assisted high-speed, high resolution analog-to-digital conversion,” in Enabling Photonics Technologies for Defense, Security, and Aerospace Applications, Orlando, USA, 2005, pp. 51–61.
  331. X. Zhu, D. Zhu, and S Pan,“A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring,” in 2017 Int. Topical Meeting on Microwave Photonics (MWP), Beijing, China, 2017, pp. 1–3.
  332. J. Chou, J. Conway, G. Sefler, G. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightw. Technol., vol. 27, no. 22, pp. 5073–5077, 2009.
  333. W. Haur, “Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme,” J. Lightw. Technol., vol. 29, no. 2, pp. 3099–3106, 2011.
  334. S. Haykin, “Cognitive radar: a way of the future,” IEEE Signal Proc. Mag., vol. 23, no. 1, pp. 30–40, 2006.
  335. P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust., vol. 15, no. 2, pp. 70–73, 1967.
  336. M. F. Salem, and A. Gaeta, “Application of space–time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photon., vol. 5, pp. 274–317, 2013.
  337. M. Muriel, J. Azana, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett., vol. 24, no. 1, p. 1, 1999.
  338. Y. Zheng, J. Li, Y. Dai, F. Yin, and K. Xu, “Real-time Fourier transformation based on the bandwidth magnification of RF signals,” Opt. Lett., vol. 43, no. 2, pp. 194–197, 2018.
  339. R. Saperstein, D. Panasenko, and Y. Fainman, “Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber,” Opt. Lett., vol. 29, no. 5, pp. 501–503, 2004.
  340. R. Saperstein and Y. Fainman, “Information processing with longitudinal spectral decomposition of ultrafast pulses,” Appl. Opt., vol. 47, no. 4, pp. A21–A31, 2008.
  341. M. Li, C. Wang, W. Li, and J. Yao, “An imbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Technol., vol. 58, no. 11, pp. 2968–2975, 2010.
  342. M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 715–717, 2011.
  343. Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification,” Opt. Express, vol. 25, no. 7, pp. 7520–7529, 2017.
  344. Y. Duan, L. Chen, L. Zhang, X. Zhou, C. Zhang, and X. Zhang, “Temporal radio-frequency spectrum analyzer, based on asynchronous optical sampling assisted temporal convolution,” Opt. Express, vol. 26, no. 16, pp. 20735–20743, 2018.
  345. C. Schnebelin and H. Chatellus, “Fractional Fourier transform-based description of the Talbot effect: application to analog signal processing,” Appl. Opt., vol. 56, no. 1, pp. A62–A68, 2017.
  346. H. Chatellus, L. Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nature Commun., vol. 9, no. 1, p. 2438, 2018.
  347. C. Schnébelin, J. Azaña, and H. Chatellus, “Programmable broadband optical field spectral shaping with megahertz resolution using a simple frequency shifting loop,” Nature Commun., vol. 10, no. 1, pp. 1–11, 2019.
  348. A. Sabharwal, P. Schniter, D. Guo, D. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, 2014.
  349. N. Shi, Q. Song, J. Tang, W. Li, N. Zhu, and M. Li, “A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array.” Opt. Commun., vol. 447. pp. 55–60, 2019.
  350. Y. Chen and S. L. Pan, “Photonics-assisted radio-frequency self-interference cancellation and fiber transmission using a DP-QPSK modulator,” in 2018 Int. Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018, pp. 1–4.
  351. Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation.” IEEE Photon. Technol. Lett., vol. 30, no. 14. pp. 1297–1300, 2018.
  352. X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation for full-duplex communication using an integrated DP-MZM,” in 2017 Progress in Electromagnetics Research Symp.-Spring (PIERS), St. Petersburg, Russia, 2017, pp. 2240–2244.
  353. Y. Yu, Y. Zhang, L. Huang, and S. Xiao, “Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration.” Appl. Opt., vol. 57, no. 6, pp. 1284–1291, 2018.
  354. X. Han, B. Huo, Y. Shao, C. Wang, and M. Zhao, “RF self-interference cancellation using phase modulation and optical sideband filtering.” IEEE Photon. Technol. Lett., vol. 29, no. 11, pp. 917–920, 2017.
  355. Y. Zhang, S. Xiao, and H. Feng, “Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system.” Opt. Express, vol. 23, no. 26, pp. 33205, 2015.
  356. Q. Zhou, H. Feng, and G. Scott, “Wideband co-site interference cancellation based on hybrid electrical and optical techniques.” Opt. Lett., vol. 39, no. 22, pp. 6357–6540, 2014.
  357. M. Pagani, D. Marpaung, D. Choi, S. Madden, B. Davies, and B. Eggleton, “Tunable wideband photonic microwave phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, no. 23, pp. 28810–28818, 2014.
  358. J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° photonic microwave phase shifter based on a single semiconductor optical amplifier,” Opt. Express, vol. 19, no. 18, pp. 17421–17426, 2011.
  359. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360° photonic microwave phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express, vol. 18, no. 6, pp. 6156–6163, 2010.
  360. H. Shahoei and J. P. Yao, “Tunable photonic microwave phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express, vol. 20, no. 13, pp. 14009–14014, 2012.
  361. M. Pu, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express, vol. 18, no. 6, pp. 6172–6182, 2010.
  362. P. Qu, “Design of a vector-sum integrated photonic microwave phase shifter in silicon-on-insulator waveguides,” Appl. Opt., vol. 50, no. 17, pp. 2523–2530, 2011.
  363. L. Bui, A. Mitchell, K. Ghorbani, and T. Chio, “Wide-band RF photonic second order vector sum phase-shifter,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, 2005.
  364. X. Wang, T. Niu, E. Chan, X. Feng, B. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J., vol. 9, no. 3, pp. 5501710, 2017.
  365. W. Li, W. Zhang, and J. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express, vol. 20, no. 28, pp. 29838–29843, 2012.
  366. W. Li, W. Sun, W. Wang, L. Wang, J. Liu, and N. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express, vol. 22, no. 5, pp. 5522–5527, 2014.
  367. E. Chan, W. Zhang, and R. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678, 2012.
  368. S. Pan and Y. Zhang, “Tunable and wideband photonic microwave phase shifter based on a single sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485, 2012.
  369. Y. Zhang and S. Pan, “Frequency-multiplying microwave photonic phase shifter for independent multichannel phase shifting,” Opt. Lett., vol. 41, no. 6, pp. 1261–1264, 2016.
  370. Y. Zhang and S. Pan, “A photonics-based multi-function analog signal processor based on a polarization division multiplexing Mach-Zehnder modulator,” Opt. Lett., vol. 42, no. 23, pp. 5034–5037, 2017.
  371. N. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightw. Technol., vol. 12, no. 8, pp. 1440–1447, 1994.
  372. J. Lee, “Photonic wideband array antennas,” IEEE Trans. Antennas Propagat., vol. 43, no. 9, pp. 966–982, 1995.
  373. J. Roman, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Technol., vol. 46, no. 12, pp. 2317–2323, 1998.
  374. OEwaves' micro-opto-electronic oscillator supports successful mina true interceptor test flight, OEwaves Inc., USA [Online]. Available: https://www.microwavejournal.com/articles/19733-oewaves-micro-opto-electronic-oscillator-supports-successful-mina-true-interceptor-test-flight. Accessed on: 2020.
  375. F. Z. Zhang, “Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett., vol. 15, no. 11, 2017.
  376. B. Gao, F. Zhang, E. Zhao, D. Zhang, and S. Pan, “High-resolution phased array radar imaging by photonics-based broadband digital beamforming,” Opt. Express, vol. 27, no. 9, pp. 13194–13203, 2019.
  377. J. Cao, “Photonic deramp receiver for dual-band LFM-CW Radar,” J. Lightw. Technol., vol. 37, no. 10, pp. 2403–2408, 2019.
  378. X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar transceiver for full-polarimetric inverse synthetic aperture imaging,” in 2018 Int. Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018, pp. 1–4.
  379. P. Ghelfi, “Photonics for radars operating on multiple coherent bands,” J. Lightw. Technol., vol. 34, no. 2, pp. 500–507, 2016.
  380. D. Wu, S. Li, X. Xue, X. Xiao, S. Peng, and X. Zheng, “Photonics based microwave dynamic 3D reconstruction of moving targets,” Opt. Express, vol. 26, no. 21, pp. 27659–27667, 2018.
  381. T.-F. Tseng, J.-M. Wun, W. Chen, S.-W. Peng, J.-W. Shi, and C.-K. Sun, “High-depth-resolution 3-dimensional radar-imaging system based on a few-cycle W-band photonic millimeter-wave pulse generator,” Opt. Express, vol. 21, pp. 14109–14119, 2013.
  382. F. Scotti, D. Onori, and F. Laghezza, “Fully coherent S-and X-band photonics-aided radar system demonstration,” IEEE Microw. Compon. Lett., vol. 25, no. 11, pp. 757–759, 2015.
  383. F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “ISAR imaging of non-cooperative targets via dual band photonics-based radar system,” in 2016 17th Int. Radar Symp. (IRS), Krakow, Poland, 2016, pp. 1–4.
  384. F. Scotti, F. Laghezza, D. Onori, and A. Bogoni, “Field trial of a photonics-based dual-band fully coherent radar system in a maritime scenario,” IET Radar Sonar Navig., vol. 11, pp. 420–425, 2017.
  385. S. Melo, “Photonics-based dual-band radar for landslides monitoring in presence of multiple scatterers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2337–2343, 2018.
  386. L. Lembo, “In-field demonstration of a photonic coherent MIMO distributed radar network,” in 2019 IEEE Radar Conf. (RadarCon), Boston, MA, USA, 2019, pp. 1–6.
  387. S. Maresca, “Photonics for coherent MIMO radar: an experimental multi-target surveillance scenario,” in 2019 20th Int. Radar Symp. (IRS), Ulm, Germany, 2019, pp. 1–6.
  388. N. Qian, W. Zou, S. Zhang, and J. Chen, “Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation,” Opt. Lett., vol. 43, no. 23, pp. 5869–5872, 2018.
  389. S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett., vol. 30, no. 11, pp. 1028–1031, 2018.
  390. S. Zhang, X. Li, J. Chen, and W. Zou, “Maintenance of broadband detection in photonic time-stretched coherent radar employing phase diversity,” Opt. Express, vol. 27, no. 23, pp. 32892–32899, 2019.
  391. J. Lin, “Photonic generation and detection of W-Band chirped millimeter-wave pulses for Radar,” IEEE Photon. Technol. Lett., vol. 24, pp. 1437–1439, 152012.
  392. S. Melo, “Dual-use system combining simultaneous active radar & communication, based on a single photonics-assisted transceiver,” in 2016 17th Int. Radar Symp. (IRS), Krakow, Poland, 2016, pp. 1–4.
  393. H. Nie, F. Zhang, Y. Yang, and S. Pan, “Photonics-based integrated communication and radar system,” in 2019 Int. Topical Meeting on Microwave Photonics (MWP), Ottawa, Canada, 2019, pp. 1–4.
  394. J. Shi, F. Zhang, X. Ye, Y. Yang, D. Ben, and S. Pan, “Photonics-based dual-functional system for simultaneous high-resolution radar imaging and fast frequency measurement,” Opt. Lett., vol. 44, no. 9, pp. 1948–1951, 2019.
  395. F. Scotti, D. Onori, M. Scaffardi, E. Lazzeri, A. Bogoni, and F. Laghezza, “Multi-frequency lidar/radar integrated system for robust and flexible doppler measurements,” IEEE Photon. Technol. Lett., vol. 27, no. 21, pp. 2268–2271, 2015.
  396. S. L. Pan and J. P. Yao, “Photonics-based broadband microwave measurement,” IEEE/OSA J. Lightw. Technol., vol. 35, no. 16, pp. 3498–3513, 2017.
  397. X. Xiao, “Photonics-based wideband distributed coherent aperture radar system,” Opt. Express, vol. 26, no. 26, pp. 33783–33796, 2018.
  398. J. Fu, F. Zhang, D. Zhu, and S. Pan, “Fiber-distributed ultra-wideband radar network based on wavelength reusing transceivers,” Opt. Express, vol. 26, no. 14, pp. 18457–18469, 2018.
  399. T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634, 2015.
  400. D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, no. 2, pp. 80–90, 2019.
  401. V. Duarte, “Modular and smooth introduction of photonics in high-throughput communication satellites-perspective of project BEACON,” in Int. Conf. on Space Optics -ICSO 2018, Chania, Greece, 2018, pp. 1118079.
  402. G. Hu, “Optical beamformer based on diffraction order multiplexing (DOM) of an arrayed waveguide grating,” J. Lightw. Technol., vol. 37, no. 13, pp. 2898–2904, 2019.
  403. J. Tang, “Integrated optoelectronic oscillator,” Opt. Express, vol. 26, no. 9, pp. 12257–12265, 2018.
  404. S. Pan, Z. Tang, M. Huang, and S. Li, “Reflective-type microring resonator for on-chip reconfigurable microwave photonic systems,” IEEE J. Sel. Top. Quantum Electron., vol. 26, no. 5, pp. 1–12, 2020.
  405. L. Zhuang, C. Roeloffzen, M. Hoekman, K. Boller, and A. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica, vol. 2, no. 5, pp. 854–859, 2015.
  406. S. Li, “Chip-based photonic radar for high-resolution imaging,” 2019, arXiv preprint, arXiv:1905.12802.
  407. S. Pan and D. Zhu, “Broadband cognitive radio enabled by photonics,” in the 45th Eur. Conf. Exhib. Optical Communications (ECOC), Dublin, Ireland, 2019.

2020 (2)

Z. Tang, Y. Li, J. Yao, and S. Pan, “Photonics-based microwave frequency mixing: methodology and applications,” Laser Photon. Rev., vol. 14, no. 1, 2020.

S. Pan, Z. Tang, M. Huang, and S. Li, “Reflective-type microring resonator for on-chip reconfigurable microwave photonic systems,” IEEE J. Sel. Top. Quantum Electron., vol. 26, no. 5, pp. 1–12, 2020.

2019 (33)

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, no. 2, pp. 80–90, 2019.

G. Hu, “Optical beamformer based on diffraction order multiplexing (DOM) of an arrayed waveguide grating,” J. Lightw. Technol., vol. 37, no. 13, pp. 2898–2904, 2019.

S. Li, “Chip-based photonic radar for high-resolution imaging,” 2019, arXiv preprint, arXiv:1905.12802.

B. Gao, F. Zhang, E. Zhao, D. Zhang, and S. Pan, “High-resolution phased array radar imaging by photonics-based broadband digital beamforming,” Opt. Express, vol. 27, no. 9, pp. 13194–13203, 2019.

J. Cao, “Photonic deramp receiver for dual-band LFM-CW Radar,” J. Lightw. Technol., vol. 37, no. 10, pp. 2403–2408, 2019.

S. Zhang, X. Li, J. Chen, and W. Zou, “Maintenance of broadband detection in photonic time-stretched coherent radar employing phase diversity,” Opt. Express, vol. 27, no. 23, pp. 32892–32899, 2019.

J. Shi, F. Zhang, X. Ye, Y. Yang, D. Ben, and S. Pan, “Photonics-based dual-functional system for simultaneous high-resolution radar imaging and fast frequency measurement,” Opt. Lett., vol. 44, no. 9, pp. 1948–1951, 2019.

N. Shi, Q. Song, J. Tang, W. Li, N. Zhu, and M. Li, “A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array.” Opt. Commun., vol. 447. pp. 55–60, 2019.

C. Schnébelin, J. Azaña, and H. Chatellus, “Programmable broadband optical field spectral shaping with megahertz resolution using a simple frequency shifting loop,” Nature Commun., vol. 10, no. 1, pp. 1–11, 2019.

X. Wang, “High-accuracy optical time delay measurement in fiber link [Invited],” Chin. Opt. Lett., vol. 17, no. 6, 2019.

S. Li, “Optical fiber transfer delay measurement based on phase-derived ranging,” IEEE Photon. Technol. Lett., vol. 31, no. 16, pp. 1351–1354, 2019.

X. Xu, “Photonic RF phase-encoded signal generation with a microcomb source,” J. Lightw. Technol., early access, 2019.

Z. Wang, B. Wang, D. Zhao, and R. Wang, “Full analog broadband time-reversal module for ultra-wideband communication system,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 1–10, 2019.

J. Zhao, Y. E, K. Williams, X. Zhang, and R. W. Boyd, “Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding,” Light Sci. Appl., vol. 8, pp. 55, 2019.

Y. Huang, W. Zhang, F. Yang, J. Du, and Z. He, “Programmable matrix operation with reconfigurable time-wavelength plane manipulation and dispersed time delay,” Opt. Express, vol. 27, no. 15, pp. 20456–20467, 2019.

M. Lei, Z. Zheng, J. Qian, M. Xie, X. Gao, and S. Huang, “Photonics-assisted super-octave microwave phase shifter,” IEEE Photon. J., vol. 11, no. 1, pp. 1–11, 2019.

F. Yang, “A microwave photonic phase-tunable mixer with local oscillator frequency doubling,” Opt. Commun., vol. 438, pp. 141–146, 2019.

J. Yan, L. Li, X. Yi, and S. Chew, “Widely tunable single bandpass microwave photonic filter based on dual-fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett., vol. 61, no. 4, pp. 954–958, 2019.

F. Wang, S. Shi, and D. Prather, “Microwave photonic link with improved SFDR using two parallel MZMs and a polarization beam combiner,” J. Lightw. Technol., vol. 37, no. 24, pp. 6156–6164, 2019.

Z. Tu, A. Wen, W. Zhang, Z. Xiu, and G. Yu, “All-optical image-reject frequency down-conversion based on cascaded electro-optical modulators,” Opt. Commun., vol. 430, pp. 158–162, 2019.

C. Xie, D. Zhu, W. Chen and S. Pan, “Microwave photonic channelizer based on polarization multiplexing and photonic dual output image reject mixer,” IEEE Access, vol. 7, pp. 158308–158316, 2019.

K. Kolodziej, S. Yegnanarayanan, and B. Perry, “Photonic-enabled RF canceller for wideband in-band full-duplex wireless systems,” IEEE Trans. Microw. Theory Technol., vol. 67, no. 5, pp. 2076–2086, 2019.

G. Serafino, “Toward a new generation of radar systems based on microwave photonic technologies,” J. Lightw. Technol., vol. 37, no. 2, pp. 643–650, 2019.

S. Liu, “Ultralow phase noise optoelectronic oscillator and its application to a frequency synthesizer,” (in Chinese), J. Radars, vol. 8, no. 2, pp. 245–250, 2019.

B. Zhang, D. Zhu, P. Zhou, C. Xie, and S. Pan, “Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser,” Appl. Opt., vol. 58, no. 20, pp. 5479–5485, 2019.

X. Ye, F. Zhang, Y. Yang, D. Zhu, and S. Pan, “Photonics-based high-resolution 3D inverse synthetic aperture radar imaging,” IEEE Access, vol. 7, pp. 79503–79509, 2019.

X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging,” Photon. Res., vol. 7, no. 3, pp. 265–272, 2019.

W. Chen, D. Zhu, C. Xie, J. Liu, and S. Pan, “Microwave channelizer based on a photonic dual-output image-reject mixer,” Opt. Lett., vol. 44, no. 16, pp. 4052–4055, 2019.

X. Zou, P. Li, W. Pan, and L. S. Yan, “Photonic microwave filters with ultra-high noise rejection [Invited],” Chin. Opt. Lett., vol. 17, no. 3, 2019.

Z. Zeng, “Freely tunable dual-passband microwave photonic filter based on phase-to-intensity modulation conversion by stimulated Brillouin scattering,” IEEE Photon. J., vol. 11, no. 1, 2019.

X. Xu, “Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source,” J. Lightw. Technol., vol. 37, no. 4, pp. 1288–1295, 2019.

Y. Xie, “System-level performance of chip-based Brillouin microwave photonic bandpass filters,” J. Lightw. Technol., vol. 37, no. 20, pp. 5246–5258, 2019.

N. Shi, W. Li, N. Zhu, and M. Li, “Optically controlled phase array antenna,” Chin. Opt. Lett., vol. 17, no. 5, p. 052301, 2019.

2018 (32)

X. Xue, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Lightw. Technol., vol. 36, no. 12, pp. 2312–2321, 2018.

H. Wen, M. Li, W. Li, and N. Zhu, “Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated Brillouin scattering and a fiber ring resonator,” Opt. Lett., vol. 43, no. 19, pp. 4659–4662, 2018.

D. Zhu and S. Pan, “Photonics-based microwave image-reject mixer,” MDPI Photon., vol. 5, no. 2, pp. 6-1-12, 2018.

Z. Tang, D. Zhu, and S. Pan, “Coherent optical RF channelizer with large instantaneous bandwidth and large in-band interference suppression,” J. Lightw. Technol., vol. 36, no. 19, pp. 4219–4226, 2018.

F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express, vol. 26, no. 13, pp. 17529–17540, 2018.

W. Chen, D. Zhu, C. Xie, T. Zhou, X. Zhong, and S. Pan, “Photonics-based reconfigurable multi-band linearly frequency-modulated signal generation,” Opt. Express, vol. 26, no. 25, pp. 32491–32499, 2018.

S. Peng, “High-resolution W-band ISAR imaging system utilizing a logic-operation based photonic digital-to-analog converter,” Opt. Express, vol. 26, no. 2, pp. 1978–1987, 2018.

A. Wang, “Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information,” Opt. Express, vol. 26, no. 16, pp. 20708–20717, 2018.

J. Wei, D. Kwon, S. Zhang, S. Pan, and J. Kim, “All-fiber-photonics-based ultralow-noise agile frequency synthesizer for X-band radars,” Photon. Res., vol. 6, no. 1, pp. 12–17, 2018.

Z. Shi, S. Zhu, M. Li, N. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun., vol. 428, pp. 131–135, 2018.

D. Zhu, W. Chen, and S. Pan, “Photonics-enabled balanced Hartley architecture for broadband image-reject microwave mixing,” Opt. Express, vol. 26, no. 21, pp. 28022–28029, 2018.

C. Albert, C. Huang, and E. Chan, “Intensity noise suppression using dual-polarization dual-parallel modulator and balanced detector,” IEEE Photon. J., vol. 10, no. 2, 2018.

C. Jeon, Y. Na, B. Lee, and J. Kim, “Simple-structured, subfemtosecond-resolution optical-microwave phase detector,” Opt. Lett., vol. 43, no. 16, pp. 3997–4000, 2018.

J. Wei, S. Zhang, J. Kim, and S. Pan, “Compact phase detector for optical-microwave synchronization using polarization modulation,” J. Lightw. Technol., vol. 36, no. 19, pp. 4267–4272, 2018.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun., vol. 407, pp. 27–32, 2018.

X. Zou, “Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing,” J. Lightw. Technol., vol.36, no. 19, pp. 4337–4346, 2018.

C. Deng, J. Suo, Y. Wang, Z. Zhang, and Q. Dai, “Single-shot thermal ghost imaging using wavelength-division multiplexing,” Appl. Phys. Lett., vol. 112, no. 5, 2018.

Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron., vol. 54, no. 4, pp. 0700112, 2018.

G. Wang, “Ultrafast optical imaging using multimode fiber based compressed sensing and photonic time stretch,” 2018, arXiv preprint, arXiv:1803.03061.

A. Mercante, S. Shi, P. Yao, L. Xie, R. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express, vol. 26, no. 11, pp. 14810–14816, 2018.

H. Chatellus, L. Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nature Commun., vol. 9, no. 1, p. 2438, 2018.

Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation.” IEEE Photon. Technol. Lett., vol. 30, no. 14. pp. 1297–1300, 2018.

Y. Yu, Y. Zhang, L. Huang, and S. Xiao, “Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration.” Appl. Opt., vol. 57, no. 6, pp. 1284–1291, 2018.

Y. Zheng, J. Li, Y. Dai, F. Yin, and K. Xu, “Real-time Fourier transformation based on the bandwidth magnification of RF signals,” Opt. Lett., vol. 43, no. 2, pp. 194–197, 2018.

Y. Duan, L. Chen, L. Zhang, X. Zhou, C. Zhang, and X. Zhang, “Temporal radio-frequency spectrum analyzer, based on asynchronous optical sampling assisted temporal convolution,” Opt. Express, vol. 26, no. 16, pp. 20735–20743, 2018.

X. Xiao, “Photonics-based wideband distributed coherent aperture radar system,” Opt. Express, vol. 26, no. 26, pp. 33783–33796, 2018.

J. Fu, F. Zhang, D. Zhu, and S. Pan, “Fiber-distributed ultra-wideband radar network based on wavelength reusing transceivers,” Opt. Express, vol. 26, no. 14, pp. 18457–18469, 2018.

S. Melo, “Photonics-based dual-band radar for landslides monitoring in presence of multiple scatterers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2337–2343, 2018.

N. Qian, W. Zou, S. Zhang, and J. Chen, “Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation,” Opt. Lett., vol. 43, no. 23, pp. 5869–5872, 2018.

S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett., vol. 30, no. 11, pp. 1028–1031, 2018.

D. Wu, S. Li, X. Xue, X. Xiao, S. Peng, and X. Zheng, “Photonics based microwave dynamic 3D reconstruction of moving targets,” Opt. Express, vol. 26, no. 21, pp. 27659–27667, 2018.

J. Tang, “Integrated optoelectronic oscillator,” Opt. Express, vol. 26, no. 9, pp. 12257–12265, 2018.

2017 (42)

S. L. Pan and J. P. Yao, “Photonics-based broadband microwave measurement,” IEEE/OSA J. Lightw. Technol., vol. 35, no. 16, pp. 3498–3513, 2017.

F. Scotti, F. Laghezza, D. Onori, and A. Bogoni, “Field trial of a photonics-based dual-band fully coherent radar system in a maritime scenario,” IET Radar Sonar Navig., vol. 11, pp. 420–425, 2017.

F. Z. Zhang, “Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett., vol. 15, no. 11, 2017.

C. Schnebelin and H. Chatellus, “Fractional Fourier transform-based description of the Talbot effect: application to analog signal processing,” Appl. Opt., vol. 56, no. 1, pp. A62–A68, 2017.

X. Han, B. Huo, Y. Shao, C. Wang, and M. Zhao, “RF self-interference cancellation using phase modulation and optical sideband filtering.” IEEE Photon. Technol. Lett., vol. 29, no. 11, pp. 917–920, 2017.

Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification,” Opt. Express, vol. 25, no. 7, pp. 7520–7529, 2017.

X. Wang, T. Niu, E. Chan, X. Feng, B. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J., vol. 9, no. 3, pp. 5501710, 2017.

Y. Zhang and S. Pan, “A photonics-based multi-function analog signal processor based on a polarization division multiplexing Mach-Zehnder modulator,” Opt. Lett., vol. 42, no. 23, pp. 5034–5037, 2017.

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, pp. 121001-1–121001-7, 2017.

D. G. Matei, “1.5um Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett., vol. 118, pp. 263202-1–263202-6, 2017.

H. Wen, “Few-mode fibre-optic microwave photonic links,” Light Sci. Appl., vol. 6, no. 8, pp. e17021–e17021, 2017.

Y. Sasaki, “Few-mode multicore fibers for long-haul transmission line,” Opt. Fiber Technol., vol. 35, pp. 19–27, 2017.

W. Zhang, “Mode division multiplexing communication using microwave orbital angular momentum: An experimental study,” IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1308–1318, 2017.

D. Bleh, “W-band time-domain multiplexing FMCW MIMO radar for far-field 3-D imaging,” IEEE Trans. Microw. Theory Technol., vol. 65, no. 9, pp. 3474–3484, 2017.

Y. Zhao, “Super-channel oriented routing, spectrum and core assignment under crosstalk limit in spatial division multiplexing elastic optical networks,” Opt. Fiber Technol., vol. 36, pp. 249–254, 2017.

I. Gasulla, “Spatial division multiplexed microwave signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017.

Y. Dai, J. Li, Z. Zhang, F. Yin, W. Li, and K. Xu, “Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion,” Opt. Express, vol. 25, no. 14, pp. 16660–16671, 2017.

X. Zhu, F. Chen, H. Peng, and Z. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” Opt. Express, vol. 25, no. 8, pp. 9232–9243, 2017.

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photon. Technol. Lett., vol. 29, no. 1, pp. 74–77, 2017.

W. Hao, “Frequency-oriented subsampling by photonic Fourier transform and I/Q demodulation,” IEEE Photon. J., vol. 9, no. 6, pp. 5503508, 2017.

C. Schnebelin and H. Chatellus, “Agile photonic fractional Fourier transformation of optical and RF signals,” Optica, vol. 4, no. 8, pp. 907–910, 2017.

M. Xin, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl., vol. 6, 2017.

X. Xie, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nature Photon., vol. 11, no. 1, pp. 44–47, 2017.

Z. Meng, “Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q,” Opt. Express, vol. 25, no. 18, pp. 22055–22065, 2017.

Y. Gao, A. Wen, W. Chen, and X. Li, “All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter,” Opt. Lett., vol. 42, no. 6, pp. 1105–1108, 2017.

T. Li, H. Chan, X. Wang, X. Feng, B. Guan, and J. Yao, “Broadband photonic microwave signal processor with frequency up/down conversion and phase shifting capability,” IEEE Photon. J., vol. 9, no. 6, 2017.

Y. Xiang, G. Li, and S. Pan, “Ultrawideband optical cancellation of RF interference with phase change.” Opt. Express, vol. 25, no. 18, pp. 21259–21264, 2017.

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by optical frequency quadrupling and polarization multiplexing,” IEEE Photon. Technol. Lett., vol. 29, no. 16, pp. 1320–1323, 2017.

Y. Zhang, F. Zhang, and S. Pan, “Generation of frequency-multiplied and phase-coded signal using an optical polarization division multiplexing modulator,” IEEE Trans. Microw. Theory Technol., vol. 65, no. 2, pp. 651–660, 2017.

P. Zhou, F. Zhang, Q. Guo, S. Li, and S. Pan, “Reconfigurable radar waveform generation based on an optically injected semiconductor laser,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, pp. 1801109, 2017.

F. Z. Zhang, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express, vol. 25, no. 14, pp. 16274–16281, 2017.

B. D. Gao, F. Z. Zhang, and S. L. Pan, “Experimental demonstration of arbitrary waveform generation by a 4-bit photonic digital-to-analog converter,” Opt. Commun., vol. 383, pp. 191–196, 2017.

R. Li, “Demonstration of a microwave photonic synthetic aperture radar based on photonic assisted signal generation and stretch processing,” Opt. Express, vol. 25, no. 13, pp. 14334–14340, 2017.

Y. Zhang, X. Ye, Q. Guo, F. Zhang, and S. Pan, “Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1821–1829, 2017.

M. Fok and J. Ge, “Tunable multiband microwave photonic filters,” MDPI Photon., vol. 4, no. 4, 2017.

S. Hu, L. W. Li, X. Yi, and F. Teng, “Tunable dual-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 330–333, 2017.

J. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nature Photon., vol. 11, no. 2, pp. 124–129, 2017.

X. Ye, B. Zhang, Y. Zhang, D. Zhu, and S. Pan, “Performance evaluation of optical beamforming-based wideband antenna array,” Chin. Opt. Lett., vol. 15, no. 1, p. 010013, 2017.

Y. Liu, A. Choudhary, D. Marpaung, and B. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica, vol. 4, no. 4, pp. 418–423, 2017.

X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightw. Technol., vol. 35, no. 23, pp. 5010–5019, 2017.

I. Aryanfar, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett., vol. 42, no. 7, pp. 1313–1316, 2017.

2016 (20)

T. Tatoli, D. Conteduca, F. Dell'Olio, C. Ciminelli, and M. Armenise, “Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas,” Appl. Opt., vol. 55, no. 16, pp. 4342–4349, 2016.

R. Bonjour, “Ultra-fast millimeter wave beam steering,” IEEE J. Quantum Electron., vol. 52, no. 1, p. 0600708, 2016.

X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett., vol. 41, no. 17, pp. 3956–3959, 2016.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All- optical-central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6, 2016.

Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Technol., vol. 64, no. 9, pp. 3017–3025, 2016.

Z. Tang and S. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightw. Technol., vol. 34, no. 20, pp. 4729–4735, 2016.

F. Zhang, B. Gao, and S. Pan, “Two-bit photonic digital-to-analog conversion unit based on polarization multiplexing,” Opt. Eng., vol. 55, no. 3, pp. 031115-1-4, 2016.

P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express, vol. 24, no. 16, pp. 18460–18467, 2016.

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J., vol. 8, no. 6, pp. 5501909, 2016.

V. Urick, J. Diehl, and J. Mckinney, “Nonlinear optical angle modulation for suppression of RF interference.” IEEE Trans. Microw. Theory Technol., vol. 64, no. 7, pp. 1–7, 2016.

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon., vol. 8, no. 3, pp. 465–540, 2016.

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband optical multipath interference cancellation based on a dispersive element,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 849–851, 2016.

K. Kolodziej, B. Perry, and J. McMichael, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4321–4334, 2016.

H. Chatellus, L. Cortés, and J. Azaña, “Optical real-time Fourier transformation with kilohertz resolutions,” Optica, vol. 3, no. 1, pp. 1–8, 2016.

D. Zhu, J. Chen, and S. Pan, “Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator,” Opt. Express, vol. 24, no. 10, 2016.

M. Cornet, J. Degert, E. Abraham, and E. Freysz, “Frequency resolved cross-correlation between optical and terahertz pulses: application to ultrashort laser pulse characterization,” Opt. Express, vol. 24, no. 3, pp. 3003–3010, 2016.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw Technol., vol. 34, no. 1, pp. 55–66, 2016.

Z. Tang and S. Pan, “A full-duplex radio-over-fiber link based on a dual-polarization Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 852–855, 2016.

Y. Zhang and S. Pan, “Frequency-multiplying microwave photonic phase shifter for independent multichannel phase shifting,” Opt. Lett., vol. 41, no. 6, pp. 1261–1264, 2016.

P. Ghelfi, “Photonics for radars operating on multiple coherent bands,” J. Lightw. Technol., vol. 34, no. 2, pp. 500–507, 2016.

2015 (13)

F. Scotti, D. Onori, and F. Laghezza, “Fully coherent S-and X-band photonics-aided radar system demonstration,” IEEE Microw. Compon. Lett., vol. 25, no. 11, pp. 757–759, 2015.

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634, 2015.

F. Scotti, D. Onori, M. Scaffardi, E. Lazzeri, A. Bogoni, and F. Laghezza, “Multi-frequency lidar/radar integrated system for robust and flexible doppler measurements,” IEEE Photon. Technol. Lett., vol. 27, no. 21, pp. 2268–2271, 2015.

L. Zhuang, C. Roeloffzen, M. Hoekman, K. Boller, and A. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica, vol. 2, no. 5, pp. 854–859, 2015.

Y. Zhang, S. Xiao, and H. Feng, “Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system.” Opt. Express, vol. 23, no. 26, pp. 33205, 2015.

T. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. Leon-Saval, and R. Thomson, “The photonic lantern,” Adv. Opt. Photon., vol. 7, pp. 107–167, 2015.

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634, 2015.

Z. Zhu, S. Zhao, X. Chu, and Y. Dong, “Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter,” Opt. Commun., vol. 354, pp. 40–47, 2015.

M. Chang, C. Lee, B. Wu, and P. Prucnal, “Adaptive Optical Self-Interference Cancellation Using a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett., vol. 27, no. 9, pp. 1018–1021, 2015.

W. Wang, “Photonic generation of pulsed microwave signal based on phase shifted lyot optical filter,” IEEE Photon. Technol. Lett., vol. 27, no. 17, pp. 1845–1848, 2015.

W. Liang, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nature Commun., vol. 6, no. 7957, pp. 1–8, 2015.

X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express, vol. 23, no. 8, pp. 10002–10008, 2015.

D. Marpaung, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica, vol. 2, no. 2, pp. 76–83, 2015.

2014 (24)

W. Li, W. Wang, W. Sun, J. Liu, and N. Zhu, “Microwave photonic notch filter with complex coefficient based on DDMZM,” IEEE Photon. Technol. Lett., vol. 26, no. 18, pp. 1859–1862, 2014.

Z. Zhang, H. Li, S. Zhang, and Y. Liu, “Analog-to-digital converters using photonic technology,” Chin. Sci. Bull., vol. 59, no. 22, pp. 2666–2671, 2014.

P. Ghelfi, “A fully photonics-based coherent radar system,” Nature, vol. 507, no. 7492, pp. 341–345, 2014.

X. Xue, “Programmable single-bandpass photonic RF filter based on kerr comb from a microring,” J. Lightw. Technol., vol. 32, no. 20, pp. 3557–3565, 2014.

M. Hasan, R. Guemri, R. Basilio, F. Lucarz, J. Tocnaye, and T. Hall, “Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation,” Opt. Lett., vol. 39, no. 24, pp. 6950–6953, 2014.

F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photon. Res., vol. 2, no. 4, pp. B5–B10, 2014.

Y. Li, A. Rashidinejad, J. Wun, D. Leaird, J. Shi, and A. Weiner, “Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9 mm range resolution,” Optica, vol. 1, no. 6, pp. 446–454, 2014.

A. Rashidinejad and A. Weiner, “Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability,” J. Lightw. Technol., vol. 32, no. 20, pp. 3383–3393, 2014.

J. McKinney, “Photonics illuminates the future of radar,” Nature, vol. 507, no. 7492, pp. 310–312, 2014.

M. Bagnell, J. Rodriguez, and P. Delfyett, “Millimeter-wave generation in an optoelectronic oscillator using an ultrahigh finesse etalon as a photonic filter,” J. Lightw. Technol., vol. 32, no. 6, pp. 1063–1067, 2014.

J. Ding, “Optical digital-to-analog converter based on microring switches,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2066–2069, 2014.

M. Peng, A. Kalaydzhyan, and F. Kartner, “Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization,” Opt. Express, vol. 22, no. 22, pp. 27102–27111, 2014.

Y. Gao, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett., vol. 26, no. 12, pp. 1199–1202, 2014.

M. Pagani, D. Marpaung, D. Choi, S. Madden, B. Davies, and B. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, no. 23, pp. 28810–28818, 2014.

M. Burla, “Multiwavelength-integrated optical beamformer based on wavelength division multiplexing for 2-D phased array antennas,” J. Lightw. Technol., vol. 32, no. 20, pp. 3509–3520, 2014.

K. Y. Lau and G. F. Lutes, “Planetary radar imaging and RF-over-fiber,” Opt. Photon. News, vol. 25, pp. 44–51, 2014.

K. Y. Lau, G. F. Lutes, and R. L. Tjoelker, “Ultra-stable RF-over-fiber transport in NASA antennas, phased arrays and radars,” J. Lightw. Technol., vol. 32, no. 20, pp. 3440–3451, 2014.

R. Uden, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, no. 11, pp. 865, 2014.

S. Liu, D. Zhu, Z. Wei, and S. Pan, “Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator,” Opt. Lett., vol. 39, no. 13, pp. 3958–3961, 2014.

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 31, no. 3, pp. 219–240, 2014.

Q. Zhou, H. Feng, and G. Scott, “Wideband co-site interference cancellation based on hybrid electrical and optical techniques.” Opt. Lett., vol. 39, no. 22, pp. 6357–6540, 2014.

M. Pagani, D. Marpaung, D. Choi, S. Madden, B. Davies, and B. Eggleton, “Tunable wideband photonic microwave phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, no. 23, pp. 28810–28818, 2014.

W. Li, W. Sun, W. Wang, L. Wang, J. Liu, and N. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express, vol. 22, no. 5, pp. 5522–5527, 2014.

A. Sabharwal, P. Schniter, D. Guo, D. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, 2014.

2013 (23)

T.-F. Tseng, J.-M. Wun, W. Chen, S.-W. Peng, J.-W. Shi, and C.-K. Sun, “High-depth-resolution 3-dimensional radar-imaging system based on a few-cycle W-band photonic millimeter-wave pulse generator,” Opt. Express, vol. 21, pp. 14109–14119, 2013.

A. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

N. Bozinovic, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science, vol. 340, no. 6140, pp. 1545–1548, 2013.

S. Droste, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett., vol. 111, no. 11, p. 110801, 2013.

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett., vol. 38, no. 5, pp. 766–768, 2013.

P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, “A novel approach to photonic generation of RF binary digital modulation signals,” Opt. Express, vol. 21, no. 1, pp. 631–639, 2013.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

C. Caloz, S. Gupta, Q. Zhang, and B. Nikfal, “Analog signal processing: A possible alternative or complement to dominantly digital radio schemes,” IEEE Microw. Mag., vol. 14, no. 6, pp. 87–103, 2013.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nature Photon., vol. 7, no. 2, pp. 102–112, 2013.

A. Singh and V. Lubecke, “Adaptive noise cancellation for two frequency radar using frequency doubling passive RF tags,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2975–2981, 2013.

Y. Cui, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express, vol. 21, no. 20, pp. 23433–23440, 2013.

P. Li, “Improvement of linearity in phase-modulated analog photonic link,” Opt. Lett., vol. 38, no. 14, pp. 2391–2393, 2013.

J. Liao, “Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 126–128, 2013.

J. Wun, C. Wei, J. Chen, C. Goh, S. Set, and J. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express, vol. 21, no. 9, pp. 11475–11481, 2013.

J. Li, H. Lee, and K. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, no. 2097, pp. 1–7, 2013.

G. Schneider, J. Murakowski, C. Schuetz, S. Shi, and D. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon., vol. 7, pp. 118–122, 2013.

R. Moreira, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett., vol. 25, no. 12, pp. 1165–1168, 2013.

A. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photon. Rev., vol. 7, no. 2, pp. 207–263, 2013.

P. Wu, S. Tang, and D. Raible, “A prototype high-speed optically-steered X-band phased array antenna,” Opt. Express, vol. 21, no. 16, pp. 32599–32604, 2013.

M. F. Salem, and A. Gaeta, “Application of space–time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photon., vol. 5, pp. 274–317, 2013.

Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 187–189, 2013.

Y. Zhang and S. Pan, “Tunable multitap microwave photonic filter with all complex coefficients,” Opt. Lett., vol. 38, no. 5, pp. 802–804, 2013.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

2012 (16)

X. Yi, L. Li, T. Huang, and R. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett., vol. 37, no. 4, pp. 608–610, 2012.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Tech. vol. 60, no. 3, pp. 845–860, 2012.

X. Xie, “Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb,” IEEE Photon. Technol. Lett., vol. 24, no. 8, pp. 661–663, 2012.

K. Goda, “Hybrid dispersion laser scanner,” Sci. Rep., vol. 2, 2012.

A. Khilo, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express, vol. 20, no. 4, pp. 4454–4469, 2012.

E. Palushani, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Topics Quantum Electron., vol. 18, no. 2, pp. 681–688, 2012.

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.

V. Supradeepa, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nature Photon., vol. 6, no. 3, pp. 186–194, 2012.

S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485, 2012.

M. Huang, J. Fu, and S. Pan, “Linearized analog photonic links based on a dual-parallel polarization modulator,” Opt. Lett., vol. 37, no. 11, pp. 1823–1825, 2012.

B. Wang, “Precise and continuous time and frequency synchronisation at the 5× 10-19 accuracy level,” Sci. Rep., vol. 2, p. 556, 2012.

J. Lin, “Photonic generation and detection of W-Band chirped millimeter-wave pulses for Radar,” IEEE Photon. Technol. Lett., vol. 24, pp. 1437–1439, 152012.

H. Shahoei and J. P. Yao, “Tunable photonic microwave phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express, vol. 20, no. 13, pp. 14009–14014, 2012.

E. Chan, W. Zhang, and R. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678, 2012.

S. Pan and Y. Zhang, “Tunable and wideband photonic microwave phase shifter based on a single sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485, 2012.

W. Li, W. Zhang, and J. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express, vol. 20, no. 28, pp. 29838–29843, 2012.

2011 (18)

P. Qu, “Design of a vector-sum integrated photonic microwave phase shifter in silicon-on-insulator waveguides,” Appl. Opt., vol. 50, no. 17, pp. 2523–2530, 2011.

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° photonic microwave phase shifter based on a single semiconductor optical amplifier,” Opt. Express, vol. 19, no. 18, pp. 17421–17426, 2011.

M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 715–717, 2011.

K. Kikuchi, “Performance analyses of polarization demultiplexing based on constant-modulus algorithm in digital coherent optical receivers,” Opt. Express, vol. 19, no. 10, pp. 9868–9880, 2011.

M. Gorjan, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er: ZBLAN fiber laser,” Opt. Lett., vol. 36, no. 10, pp. 1923–1925, 2011.

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 694–696, 2011.

T. Fortier, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon., vol. 5, no. 7, pp. 425–429, 2011.

C. Bohemond, T. Rampone, and A. Sharaiha, “Performances of a photonic microwave mixer based on cross-gain modulation in a semiconductor optical amplifier,” J. Lightw. Technol., vol. 29, no. 16, pp. 2402–2409, 15, 2011.

V. Pagán, B. Haas, and T. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express, vol. 19, no. 2, pp. 883–95, 2011.

A. Agarwal, T. Banwell, and T. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightw. Technol., vol. 29, no. 16, pp. 2394–2401, 2011.

C. Brès, S. Zlatanovic, A. Wiberg, and S. Radic, “Reconfigurable parametric channelized receiver for instantaneous spectral analysis,” Opt. Express, vol. 19, no. 4, pp. 3531–3541, 2011.

M. Li, L. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 314–316, 2011.

W. Haur, “Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme,” J. Lightw. Technol., vol. 29, no. 2, pp. 3099–3106, 2011.

W. Li, N. H. Zhu, and L. X. Wang, “Continuously tunable microwave photonic notch filter with a complex coefficient,” IEEE Photon. J., vol. 3, no. 3, pp. 462–467, 2011.

X. Li, J. Dong, Y. Yu, and X. Zhang, “A tunable microwave photonic filter based on an all-optical differentiator,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 308–310, 2011.

J. Lloret, “Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator,” Opt. Express, vol. 19, no. 13, pp. 12402–12407, 2011.

E. Norberg, R. Guzzon, J. Parker, L. Johansson, and L. Coldren, “Programmable photonic microwave filters monolithically integrated in InP-InGaAsP,” J. Lightw. Technol., vol. 29, no. 11, pp. 1611–1619, 2011.

2010 (14)

X. K. Yi, T. Huang, and R. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3088–3093, 2010.

G. Sefler, J. Chou, J. Conway, and G. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightw. Technol., vol. 28, no. 10, pp. 1468–1476, 2010.

J. Cardenas, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express, vol. 18, no. 25, pp. 26525–26534, 2010.

J. Yao, “Microwave photonics: Photonic generation of microwave and millimeter-wave signals,” Int. J. Microw. Opt. Technol., vol. 5, no. 1, pp. 16–21, 2010.

S. Cundiff and A. Weiner, “Optical arbitrary waveform generation,” Nature Photon., vol. 4, no. 11, p. 760, 2010.

J. Lee, Y. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nature Photon., vol. 4, no. 10, pp. 716–720, 2010.

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Technol., vol. 58, no. 11, pp. 3259–3268, 2010.

J. Yao, “Arbitrary waveform generation,” Nature Photon., vol. 4, no. 2, pp. 79–80, 2010.

N. Bobrinsky and L. Del Monte, “The space situational awareness program of the European Space Agency,” Cosmic Res., vol. 48, no. 5, 2010.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol., vol. 28, no. 4, pp. 484–493, 2010.

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightw. Technol., vol. 28, no. 16, pp. 2247–2257, 2010.

M. Li, C. Wang, W. Li, and J. Yao, “An imbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Technol., vol. 58, no. 11, pp. 2968–2975, 2010.

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360° photonic microwave phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express, vol. 18, no. 6, pp. 6156–6163, 2010.

M. Pu, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express, vol. 18, no. 6, pp. 6172–6182, 2010.

2009 (10)

J. Chou, J. Conway, G. Sefler, G. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightw. Technol., vol. 27, no. 22, pp. 5073–5077, 2009.

G. Grosche, “Optical frequency transfer via 146 km fiber link with 10−19 relative accuracy,” Opt. Lett., vol. 34, no. 15, pp. 2270–2272, 2009.

M. Sebt, A. Sheikhi, and M. Nayebi, “Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio,” IET Radar Sonar Navig., vol. 3, no. 2, pp. 122–132, 2009.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express, vol. 6, no. 2, pp. 98–103, 2009.

D. Noordegraaf, P. Skovgaard, M. Nielsen, and J. Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express, vol. 17, no. 3, pp. 1988–1994, 2009.

J. Yao, “Microwave photonics,” J. Lightw. Technol., vol. 27, no. 3, pp. 314–335, 2009.

J. Suarez, K. Kravtsov, and P. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 402–408, 2009.

K. Goda, K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature, vol. 458, pp. 1145–1150, 2009.

C. Wang and J. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac loop mirror incorporating a chirped fiber bragg grating,” J. Lightw. Technol., vol. 27, no. 16, pp. 3336–3341, 2009.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett., vol. 21, no. 1–4, pp. 167–169, 2009.

2008 (12)

M. Sagues, R. Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express, vol. 16, no. 1, pp. 295–303, 2008.

Y. Dai and J. Yao, “Nonuniformly-spaced photonic microwave delay-line filter,” Opt. Express, vol. 16, no. 7, pp. 4713–4718, 2008.

M. Chen, H. Subbaraman, and R. Chen, “Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 375–377, 2008.

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 9–12, pp. 882–884, 2008.

J. Kim, J. Cox, J. Chen, and F. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nature Photon., vol. 2, pp. 733–736, 2008.

C. Lin, J. Chen, S. Dai, P. Peng, and S. Chi, “Impact of nonlinear transfer function and imperfect splitting ratio of MZM on optical up-conversion employing double sideband with carrier suppression modulation,” J. Lightw. Technol., vol. 26, no. 15, pp. 2449–2459, 2008.

S. Constant, Y. Guennec, G. Maury, M. Lourdiane, and B. Cabon, “Directly modulated laser diode in the nonlinear regime for low-cost digital frequency up-conversion,” Microw. Opt. Technol. Lett., vol. 50, no. 5, pp. 1214–1219, 2008.

Y. Dai and J. Yao, “Arbitrary phase-modulated RF signal generation based on optical pulse position modulation,” J. Lightw. Technol., vol. 26, no. 17–20, pp. 3329–3336, 2008.

Y. Peng, “Photonic digital-to-analog converter based on summing of serial weighted multiwavelength pulses,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2135–2137, 2008.

K. Goda, K. Tsia, and B. Jalali, “Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett., vol. 93, no. 13, pp. 131109-1–131109-3, 2008.

X. Guo, H. Sun, and T. Yeo, “Interference cancellation for high-frequency surface wave radar,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 7, pp. 1879–1891, 2008.

R. Saperstein and Y. Fainman, “Information processing with longitudinal spectral decomposition of ultrafast pulses,” Appl. Opt., vol. 47, no. 4, pp. A21–A31, 2008.

2007 (10)

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett., vol. 91, no. 16, p. 161105, 2007.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, no. 6, pp. 319–330, 2007.

G. Valley, “Photonic analog-to-digital converters,” Opt. Express, vol. 15, no. 5, pp. 1955–1982, 2007.

P. Kollias, E. Clothiaux, M. Miller, B. Albrecht, G. Stephens, and T. Ackerman, “Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research,” Bull. Amer. Meteorol. Soc., vol. 88, no. 10, pp. 1608–1624, 2007.

J. Klamkin, “High output saturation and high-linearity uni-traveling-carrier waveguide photodiodes,” IEEE Photon. Technol. Lett., vol. 19, no. 3, pp. 149–151, 2007.

T. Farr, “The shuttle radar topography mission,” Rev. Geophys., vol. 45, no. 2, pp. RG2004, 2007.

X. Yu, K. Wang, X. Zheng, and H. Zhang, “Incoherent photonic digital-to-analogue converter based on broadband optical source,” Electron. Lett., vol. 43, no. 19, pp. 1044–1045, 2007.

K. Garenaux, “Recent breakthroughs in RF photonics for radar systems,” IEEE Aerosp. Electron. Syst. Mag., vol. 22, no. 2, pp. 3–8, 2007.

R. Rotman, O. Raz, S. Barzilay, S. R. Rotman, and M. Tur, “Wideband antenna patterns and impulse response of broadband RF phased arrays with RF and photonic beamforming,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 36–44, 2007.

J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett., vol. 19, no. 9–12, pp. 644–646, 2007.

2006 (9)

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1744–1746, 2006.

R. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Technol., vol. 54, no. 2, pp. 832–846, 2006.

S. Haykin, “Cognitive radar: a way of the future,” IEEE Signal Proc. Mag., vol. 23, no. 1, pp. 30–40, 2006.

S. Oda and A. Maruta, “All-optical digital-to-analog conversion using nonlinear optical loop mirrors,” IEEE Photon. Technol. Lett., vol. 18, no. 5, pp. 703–705, 2006.

M. Currie and J. W. Lou, “Weighted, summing photonic digital-to-analog converter,” Electron. Lett., vol. 42, no. 1, pp. 54–55, 2006.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229, 2006.

H. Ito, T. Furuta, Y. Muramoto, T. Ito, and T. Ishibashi, “Photonic millimetre-and sub-millimetre-wave generation using J-band rectangular-waveguide-output uni-travelling-carrier photodiode module,” Electron. Lett., vol. 42, no. 24, pp. 1424–1425, 2006.

J. Crétaux and C. Birkett, “Lake studies from satellite radar altimetry,” Comp. Rendus Geosci., vol. 338, no. 14–15, pp. 1098–1112, 2006.

A. Seeds and K. Williams, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641, 2006.

2005 (8)

J. Shi, Y. Wu, C. Wu, P. Chiu, and C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1929–1931, 2005.

T. Nishitani, T. Konishi, H. Furukawa, and K. Itoh, “All-optical digital-to-analog conversion using pulse pattern recognition based on optical correlation processing,” Opt. Express, vol. 13, no. 25, pp. 10310–10315, 2005.

J. Seo, C. Choi, W. Choi, Y. Kang, Y. Chung, and J. Kim, “Remote optoelectronic frequency down-conversion using 60-GHz optical heterodyne signals and an electro-absorption modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1073–1075, 2005.

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable mm-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 10, pp. 3090–3097, 2005.

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 3, pp. 929–933, 2005.

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter employing phase diversity,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 4, pp. 1404–1408, 2005.

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett., vol. 30, no. 17, pp. 2203–2205, 2005.

L. Bui, A. Mitchell, K. Ghorbani, and T. Chio, “Wide-band RF photonic second order vector sum phase-shifter,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, 2005.

2004 (5)

R. Saperstein, D. Panasenko, and Y. Fainman, “Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber,” Opt. Lett., vol. 29, no. 5, pp. 501–503, 2004.

S. Dug, L. Song, and K. Gyoun, “Optical true time-delay feeder for X-band phased array antennas composed of 2x2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1364–1366, 2004.

S. Park, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1834–1836, 2004.

S. Park, C. Lee, K. Jeong, H. Park, J. Ahn, and K. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591, 2004.

J. Azana, N. Berger, B. Levit, and B. Fischer, “Spectra-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 882–884, 2004.

2003 (3)

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations,” J. Lightw. Technol., vol. 21, no. 12, pp. 3085–3103, 2003.

V. Polo, B. Vidal, J. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N x N AWG-based delay lines,” IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 584–586, 2003.

A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 117–119, 2003.

2002 (2)

S. Strutz and K. Williams, “A 0.8-8.8-GHz image rejection microwave photonic downconverter,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1376–1378, 2002.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1172–1174, 2002.

2001 (5)

A. Johnstone, M. Lewis, J. D. Hares, and P. Kellet, “High-speed opto-electronic transient waveform digitiser,” Comput. Standards Interfaces, vol. 23, no. 2, pp. 73–84, 2001.

S. Strutz and K. Williams, “An 8-18-GHz all-optical microwave downconverter with channelization,” IEEE Trans. Microw. Theory Technol., vol. 49, no. 10, pp. 1992–1995, 2001.

X. K. Yi, F. Wei, N. Hong, and L. Chao, “Tunable microwave filter design using wavelength conversion technique and high dispersion time delays,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 857–859, 2001.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett., vol. 37, no. 20, pp. 1237–1238, 2001.

C. Elachi, “Space imaging radar in planetary exploration and earth observation,” AIAA J., vol. 39, no. 4, pp. 553–563, 2001.

2000 (2)

T. Kato, Y. Koyano, and M. Nishimura, “Temperature dependence of chromatic dispersion in various types of optical fiber,” Opt. Lett., vol. 25, no. 16, pp. 1156–1158, 2000.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science, vol. 288, no. 5463, pp. 119–122, 2000.

1999 (3)

K. Alameh, “Frequency downconverter for high-capacity fibre grating based beamformers for phased arrays,” Electron. Lett., vol. 35, no. 1, pp. 66–67, 1999.

M. Muriel, J. Azana, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett., vol. 24, no. 1, p. 1, 1999.

P. Matthews, L. Pao-Lo, J. Medberry, M. Franekl, and R. Esman, “Demonstration of a wide-band fiber-optic nulling system for array antennas,” IEEE Trans. Microw. Theory Technol., vol. 47, no. 7, pp. 1327–1331, 1999.

1998 (1)

J. Roman, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Technol., vol. 46, no. 12, pp. 2317–2323, 1998.

1997 (3)

J. Cruz, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett., vol. 33, no. 7, pp. 545–546, 1997.

T. Perry, “In search of the future of air traffic control,” IEEE Spectrum, vol. 34, no. 8, pp. 18–35, 1997.

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276, 1997.

1996 (3)

1995 (3)

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Technol., vol. 43, no. 9, pp. 2378–2386, 1995.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett., vol. 31, no. 13, pp. 1095–1096, 1995.

J. Lee, “Photonic wideband array antennas,” IEEE Trans. Antennas Propagat., vol. 43, no. 9, pp. 966–982, 1995.

1994 (4)

N. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightw. Technol., vol. 12, no. 8, pp. 1440–1447, 1994.

E. Heyde and R. Minasian, “A solution to the synthesis problem of recirculating optical delay line filters,” IEEE Photon. Technol. Lett., vol. 6, no. 7, pp. 833–835, 1994.

A. Goutzoulis, K. Davies, J. Zomp, P. Hrycak, and A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased-array antennas,” Appl. Opt., vol. 33, no. 35, pp. 8173–8185, 1994.

X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett., vol. 30, no. 18, pp. 1525–1526, 1994.

1993 (2)

G. Gopalakrishnan, W. Burns, and C. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Technol., vol. 41, no. 12, pp. 2383–2391, 1993.

K. Ho, J. Walker, and J. Kahn, “External optical feedback effects on intensity noise of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 5, no. 8, pp. 892–895, 1993.

1992 (3)

K. L. Koester and W. Vaillancourt, “TALONS 95 GHz radar sensor for autonomous landing guidance,” IEEE Aerosp. Electron. Syst. Mag., vol. 7, no. 7, pp. 40–44, 1992.

S. Evangelides, L. Mollenauer, J. Gordon, and N. Bergano, “Polarization multiplexing with solitons,” J. Lightw. Technol., vol. 10, no. 1, pp. 28–35, 1992.

U. Gliese, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 936–938, 1992.

1991 (2)

G. Anderson, D. Webb, A. Spezio, and J. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE, vol. 79, no. 3, pp. 355–388, 1991.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightw. Technol., vol. 9, no. 9, pp. 1124–1131, 1991.

1989 (1)

A. Madni, P. McDonald, R. Hansen, and L. Wan, “High-dynamic-range airborne tracking and fire control radar subsystem,” IEEE Trans. Microw. Theory Technol., vol. 37, no. 12, pp. 1942–1948, 1989.

1985 (1)

R. Mears, L. Reekie, S. Poole, and D. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett., vol. 21, no. 17, pp. 738–740, 1985.

1983 (1)

1978 (2)

H. Harmuth, “Frequency-sharing and spread-spectrum transmission with large relative bandwidth,” IEEE Trans. Electromagn. Compat., no. 1, pp. 232–239, 1978.

Α. Levine, “Fiber optics for radar and data system,” Ρroc. SPIE, vol. 150, 1978.

1977 (1)

A. Levine, “Fiber optic phased array antenna system for RF transmission,” U.S. Patent 4 028 702, 7, 1977.

1975 (1)

1970 (2)

D. Hall, A. Yariv, and E. Garmire, “Optical guiding and electro-optic modulation in GaAs epitaxial layers,” Opt. Commun., vol. 1, no. 9, pp. 403–405, 1970.

F. Chen, “Modulators for optical communications,” Proc. IEEE, vol. 58, no. 10, pp. 1440–1457, 1970.

1967 (1)

P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust., vol. 15, no. 2, pp. 70–73, 1967.

1965 (1)

G. H. Pettengill and I. I. Shapiro, “Radar astronomy,” Ann. Rev. Astron. Astrophys., vol. 3, no. 1, pp. 377–411, 1965.

1962 (1)

J. Fontana and R. Pantell, “Theoretical considerations on millimeter wave generation by optical frequency mixing,” Proc. IRE, vol. 50, no. 8, pp. 1796–1800, 1962.

1961 (2)

D. Holshouser, H. Foerster, and G. Člark, “Microwave modulation of light using the Kerr effect,” J. Opt. Soc. Am., vol. 51, pp. 1360–1365, 1961.

I. Kaminow, “Microwave modulation of the electro-optic effect in KH2PO4,” Phys. Rev. Lett., vol. 6, pp. 528–530, 1961.

Abraham, E.

Ackerman, E.

E. Ackerman, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in 2007 IEEE/MTT-S Int. Microwave Symp. (IMS), Honolulu, USA, 2007, pp. 51–54.

Ackerman, T.

P. Kollias, E. Clothiaux, M. Miller, B. Albrecht, G. Stephens, and T. Ackerman, “Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research,” Bull. Amer. Meteorol. Soc., vol. 88, no. 10, pp. 1608–1624, 2007.

Agarwal, A.

A. Agarwal, T. Banwell, and T. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightw. Technol., vol. 29, no. 16, pp. 2394–2401, 2011.

Ahn, J.

S. Park, C. Lee, K. Jeong, H. Park, J. Ahn, and K. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591, 2004.

Alameh, K.

K. Alameh, “Frequency downconverter for high-capacity fibre grating based beamformers for phased arrays,” Electron. Lett., vol. 35, no. 1, pp. 66–67, 1999.

Albert, C.

C. Albert, C. Huang, and E. Chan, “Intensity noise suppression using dual-polarization dual-parallel modulator and balanced detector,” IEEE Photon. J., vol. 10, no. 2, 2018.

Albert, J.

M. Li, L. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 314–316, 2011.

Albrecht, B.

P. Kollias, E. Clothiaux, M. Miller, B. Albrecht, G. Stephens, and T. Ackerman, “Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research,” Bull. Amer. Meteorol. Soc., vol. 88, no. 10, pp. 1608–1624, 2007.

Amditis, A.

L. Andreone, F. Tango, U. Scheunert, H. Cramer, G. Wanielik, and A. Amditis, “A new driving supporting system, integrating an infrared camera and an anti-collision micro-wave radar: the EUCLIDE project,” in Intell. Vehicle Symp., 2002. IEEE, Versailles, France, 2002, vol. 2, pp. 519–526.

Anderson, G.

G. Anderson, D. Webb, A. Spezio, and J. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE, vol. 79, no. 3, pp. 355–388, 1991.

Andreone, L.

L. Andreone, F. Tango, U. Scheunert, H. Cramer, G. Wanielik, and A. Amditis, “A new driving supporting system, integrating an infrared camera and an anti-collision micro-wave radar: the EUCLIDE project,” in Intell. Vehicle Symp., 2002. IEEE, Versailles, France, 2002, vol. 2, pp. 519–526.

Antoine, J.

Apte, A.

A. Poddar, U. Rohde, V. Madhavan, A. Apte, and S. Koul, “Ka-Band metamaterial Möbius Oscillator (MMO) circuit,” in 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, USA, 2016, pp. 1–4.

Armenise, M.

Aroca, R.

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

Aryanfar, I.

Awaji, Y.

Y. Awaji, N. Wada, Y. Toda, and T. Hayashi, “World first mode/spatial division multiplexing in multi-core fiber using Laguerre-Gaussian mode,” in 2011 37th Eur. Conf. Optical Communication (ECOC), Geneva, Switzerland, 2011, pp. We.10.P1.55.

Azana, J.

J. Azana, N. Berger, B. Levit, and B. Fischer, “Spectra-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 882–884, 2004.

M. Muriel, J. Azana, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett., vol. 24, no. 1, p. 1, 1999.

Azaña, J.

C. Schnébelin, J. Azaña, and H. Chatellus, “Programmable broadband optical field spectral shaping with megahertz resolution using a simple frequency shifting loop,” Nature Commun., vol. 10, no. 1, pp. 1–11, 2019.

H. Chatellus, L. Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nature Commun., vol. 9, no. 1, p. 2438, 2018.

H. Chatellus, L. Cortés, and J. Azaña, “Optical real-time Fourier transformation with kilohertz resolutions,” Optica, vol. 3, no. 1, pp. 1–8, 2016.

Baeyens, Y.

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

A. Leven, J. Lin, J. Lee, K.-Y. Tu, Y. Baeyens, and Y. K. Chen, “A 12.5G sample/s optical digital-to-analog converter with 3.8 effective bits,” in Proc. 17th Ann. Meet. IEEE Lasers and Electro-Optics Society, Puerto Rico, 2004, pp. 270–271.

Bagnell, M.

M. Bagnell, J. Rodriguez, and P. Delfyett, “Millimeter-wave generation in an optoelectronic oscillator using an ultrahigh finesse etalon as a photonic filter,” J. Lightw. Technol., vol. 32, no. 6, pp. 1063–1067, 2014.

Banwell, T.

A. Agarwal, T. Banwell, and T. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightw. Technol., vol. 29, no. 16, pp. 2394–2401, 2011.

Barrera, D.

I. Gasulla, D. Barrera, and S. Sales, “Microwave photonic devices based on multicore fibers,” in 2014 16th Int. Conf. Transparent Optical Networks (ICTON), Graz, Austria, 2014, pp. 1–4.

Barzilay, S.

R. Rotman, O. Raz, S. Barzilay, S. R. Rotman, and M. Tur, “Wideband antenna patterns and impulse response of broadband RF phased arrays with RF and photonic beamforming,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 36–44, 2007.

Basilio, R.

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science, vol. 288, no. 5463, pp. 119–122, 2000.

Bélisle, C.

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable mm-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 10, pp. 3090–3097, 2005.

Ben, D.

Bergano, N.

S. Evangelides, L. Mollenauer, J. Gordon, and N. Bergano, “Polarization multiplexing with solitons,” J. Lightw. Technol., vol. 10, no. 1, pp. 28–35, 1992.

Berger, N.

J. Azana, N. Berger, B. Levit, and B. Fischer, “Spectra-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 882–884, 2004.

Bergman, K.

N. Janosik, C. Qixiang, M. Glick, H. Yishen, and K. Bergman, “High-resolution silicon microring based architecture for optical matrix multiplication,” in 2019 Conf. Lasers and Electro-Optics (CLEO), San Jose, USA, 2019, pp. SM2J.3.

Bernstein, N.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightw. Technol., vol. 9, no. 9, pp. 1124–1131, 1991.

Birkett, C.

J. Crétaux and C. Birkett, “Lake studies from satellite radar altimetry,” Comp. Rendus Geosci., vol. 338, no. 14–15, pp. 1098–1112, 2006.

Birks, T.

Blackman, S.

S. Blackman, Multiple-Target Tracking with Radar Applications. Dedham, 1986, pp. 463.

Blasche, G.

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 3, pp. 929–933, 2005.

Bleh, D.

D. Bleh, “W-band time-domain multiplexing FMCW MIMO radar for far-field 3-D imaging,” IEEE Trans. Microw. Theory Technol., vol. 65, no. 9, pp. 3474–3484, 2017.

Bliss, D.

A. Sabharwal, P. Schniter, D. Guo, D. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, 2014.

K. Forsythe, D. Bliss, and G. Fawcett, “Multiple-input multiple-output (MIMO) radar: performance issues,” in Conf. Record of the Thirty-Eighth Asilomar Conf. on Signals, Systems and Computers, 2004, Pacific Grove, USA, 2004, vol. 1, pp. 310–315.

D. Bliss and K. Forsythe, “Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution,” in The Thrity-Seventh Asilomar Conf. Signals, Systems & Computers, 2003, Pacific Grove, USA, 2003, vol. 1. pp. 54–59.

Bobrinsky, N.

N. Bobrinsky and L. Del Monte, “The space situational awareness program of the European Space Agency,” Cosmic Res., vol. 48, no. 5, 2010.

Bogoni, A.

F. Scotti, F. Laghezza, D. Onori, and A. Bogoni, “Field trial of a photonics-based dual-band fully coherent radar system in a maritime scenario,” IET Radar Sonar Navig., vol. 11, pp. 420–425, 2017.

F. Scotti, D. Onori, M. Scaffardi, E. Lazzeri, A. Bogoni, and F. Laghezza, “Multi-frequency lidar/radar integrated system for robust and flexible doppler measurements,” IEEE Photon. Technol. Lett., vol. 27, no. 21, pp. 2268–2271, 2015.

F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “ISAR imaging of non-cooperative targets via dual band photonics-based radar system,” in 2016 17th Int. Radar Symp. (IRS), Krakow, Poland, 2016, pp. 1–4.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in 2013 IEEE Radar Conf. (RadarCon), Ottawa, Canada, 2013, pp. 1–5.

Bohemond, C.

C. Bohemond, T. Rampone, and A. Sharaiha, “Performances of a photonic microwave mixer based on cross-gain modulation in a semiconductor optical amplifier,” J. Lightw. Technol., vol. 29, no. 16, pp. 2402–2409, 15, 2011.

Boller, K.

Bonjour, R.

R. Bonjour, “Ultra-fast millimeter wave beam steering,” IEEE J. Quantum Electron., vol. 52, no. 1, p. 0600708, 2016.

Boyd, R. W.

J. Zhao, Y. E, K. Williams, X. Zhang, and R. W. Boyd, “Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding,” Light Sci. Appl., vol. 8, pp. 55, 2019.

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett., vol. 91, no. 16, p. 161105, 2007.

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter employing phase diversity,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 4, pp. 1404–1408, 2005.

Bozinovic, N.

N. Bozinovic, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science, vol. 340, no. 6140, pp. 1545–1548, 2013.

Brès, C.

Buhl, L.

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

Bui, L.

L. Bui, A. Mitchell, K. Ghorbani, and T. Chio, “Wide-band RF photonic second order vector sum phase-shifter,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, 2005.

Bulmer, C.

G. Gopalakrishnan, W. Burns, and C. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Technol., vol. 41, no. 12, pp. 2383–2391, 1993.

Burla, M.

H. Chatellus, L. Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nature Commun., vol. 9, no. 1, p. 2438, 2018.

M. Burla, “Multiwavelength-integrated optical beamformer based on wavelength division multiplexing for 2-D phased array antennas,” J. Lightw. Technol., vol. 32, no. 20, pp. 3509–3520, 2014.

Burns, W.

G. Gopalakrishnan, W. Burns, and C. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Technol., vol. 41, no. 12, pp. 2383–2391, 1993.

Burr, A.

Y. Deng, A. Burr, and G. White, “Performance of MIMO systems with combined polarization multiplexing and transmit diversity,” in 2005 IEEE 61st Vehicular Technology Conf., Stockholm, Sweden, 2005, vol. 2, pp. 869–873.

Bustamante, M. J.

T. A. Schaffer, H. P. Warren, M. J. Bustamante, and K. W. Kong, “A 2 GHz 12-bit digital-to-analog converter for direct digital synthesis applications,” Techn. Digest GaAs Ie Symp., 1996, pp. 61–64.

Cabon, B.

S. Constant, Y. Guennec, G. Maury, M. Lourdiane, and B. Cabon, “Directly modulated laser diode in the nonlinear regime for low-cost digital frequency up-conversion,” Microw. Opt. Technol. Lett., vol. 50, no. 5, pp. 1214–1219, 2008.

Caloz, C.

C. Caloz, S. Gupta, Q. Zhang, and B. Nikfal, “Analog signal processing: A possible alternative or complement to dominantly digital radio schemes,” IEEE Microw. Mag., vol. 14, no. 6, pp. 87–103, 2013.

Cao, J.

J. Cao, “Photonic deramp receiver for dual-band LFM-CW Radar,” J. Lightw. Technol., vol. 37, no. 10, pp. 2403–2408, 2019.

Capmany, J.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, no. 2, pp. 80–90, 2019.

J. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nature Photon., vol. 11, no. 2, pp. 124–129, 2017.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

A. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° photonic microwave phase shifter based on a single semiconductor optical amplifier,” Opt. Express, vol. 19, no. 18, pp. 17421–17426, 2011.

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360° photonic microwave phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express, vol. 18, no. 6, pp. 6156–6163, 2010.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett., vol. 21, no. 1–4, pp. 167–169, 2009.

M. Sagues, R. Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express, vol. 16, no. 1, pp. 295–303, 2008.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, no. 6, pp. 319–330, 2007.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229, 2006.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1744–1746, 2006.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett., vol. 31, no. 13, pp. 1095–1096, 1995.

Carballar, A.

Cardenas, J.

Chan, E.

C. Albert, C. Huang, and E. Chan, “Intensity noise suppression using dual-polarization dual-parallel modulator and balanced detector,” IEEE Photon. J., vol. 10, no. 2, 2018.

X. Wang, T. Niu, E. Chan, X. Feng, B. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J., vol. 9, no. 3, pp. 5501710, 2017.

E. Chan, W. Zhang, and R. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678, 2012.

Chan, H.

T. Li, H. Chan, X. Wang, X. Feng, B. Guan, and J. Yao, “Broadband photonic microwave signal processor with frequency up/down conversion and phase shifting capability,” IEEE Photon. J., vol. 9, no. 6, 2017.

Chang, M.

M. Chang, C. Lee, B. Wu, and P. Prucnal, “Adaptive Optical Self-Interference Cancellation Using a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett., vol. 27, no. 9, pp. 1018–1021, 2015.

Chao, L.

X. K. Yi, F. Wei, N. Hong, and L. Chao, “Tunable microwave filter design using wavelength conversion technique and high dispersion time delays,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 857–859, 2001.

Chatellus, H.

C. Schnébelin, J. Azaña, and H. Chatellus, “Programmable broadband optical field spectral shaping with megahertz resolution using a simple frequency shifting loop,” Nature Commun., vol. 10, no. 1, pp. 1–11, 2019.

H. Chatellus, L. Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nature Commun., vol. 9, no. 1, p. 2438, 2018.

C. Schnebelin and H. Chatellus, “Fractional Fourier transform-based description of the Talbot effect: application to analog signal processing,” Appl. Opt., vol. 56, no. 1, pp. A62–A68, 2017.

C. Schnebelin and H. Chatellus, “Agile photonic fractional Fourier transformation of optical and RF signals,” Optica, vol. 4, no. 8, pp. 907–910, 2017.

H. Chatellus, L. Cortés, and J. Azaña, “Optical real-time Fourier transformation with kilohertz resolutions,” Optica, vol. 3, no. 1, pp. 1–8, 2016.

Chen, F.

Chen, J.

S. Zhang, X. Li, J. Chen, and W. Zou, “Maintenance of broadband detection in photonic time-stretched coherent radar employing phase diversity,” Opt. Express, vol. 27, no. 23, pp. 32892–32899, 2019.

N. Qian, W. Zou, S. Zhang, and J. Chen, “Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation,” Opt. Lett., vol. 43, no. 23, pp. 5869–5872, 2018.

S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett., vol. 30, no. 11, pp. 1028–1031, 2018.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All- optical-central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6, 2016.

D. Zhu, J. Chen, and S. Pan, “Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator,” Opt. Express, vol. 24, no. 10, 2016.

J. Wun, C. Wei, J. Chen, C. Goh, S. Set, and J. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express, vol. 21, no. 9, pp. 11475–11481, 2013.

C. Lin, J. Chen, S. Dai, P. Peng, and S. Chi, “Impact of nonlinear transfer function and imperfect splitting ratio of MZM on optical up-conversion employing double sideband with carrier suppression modulation,” J. Lightw. Technol., vol. 26, no. 15, pp. 2449–2459, 2008.

J. Kim, J. Cox, J. Chen, and F. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nature Photon., vol. 2, pp. 733–736, 2008.

Chen, L.

Chen, M.

M. Chen, H. Subbaraman, and R. Chen, “Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 375–377, 2008.

Chen, R.

M. Chen, H. Subbaraman, and R. Chen, “Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 375–377, 2008.

Chen, W.

Chen, Y.

P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, “A novel approach to photonic generation of RF binary digital modulation signals,” Opt. Express, vol. 21, no. 1, pp. 631–639, 2013.

Y. Chen and S. L. Pan, “Photonics-assisted radio-frequency self-interference cancellation and fiber transmission using a DP-QPSK modulator,” in 2018 Int. Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018, pp. 1–4.

Chen, Y. K.

A. Leven, J. Lin, J. Lee, K.-Y. Tu, Y. Baeyens, and Y. K. Chen, “A 12.5G sample/s optical digital-to-analog converter with 3.8 effective bits,” in Proc. 17th Ann. Meet. IEEE Lasers and Electro-Optics Society, Puerto Rico, 2004, pp. 270–271.

Chen, Z.

Chew, S.

J. Yan, L. Li, X. Yi, and S. Chew, “Widely tunable single bandpass microwave photonic filter based on dual-fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett., vol. 61, no. 4, pp. 954–958, 2019.

Chi, H.

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 694–696, 2011.

Chi, S.

C. Lin, J. Chen, S. Dai, P. Peng, and S. Chi, “Impact of nonlinear transfer function and imperfect splitting ratio of MZM on optical up-conversion employing double sideband with carrier suppression modulation,” J. Lightw. Technol., vol. 26, no. 15, pp. 2449–2459, 2008.

Chio, T.

L. Bui, A. Mitchell, K. Ghorbani, and T. Chio, “Wide-band RF photonic second order vector sum phase-shifter,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, 2005.

Chiu, P.

J. Shi, Y. Wu, C. Wu, P. Chiu, and C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1929–1931, 2005.

Choi, C.

J. Seo, C. Choi, W. Choi, Y. Kang, Y. Chung, and J. Kim, “Remote optoelectronic frequency down-conversion using 60-GHz optical heterodyne signals and an electro-absorption modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1073–1075, 2005.

Choi, D.

Choi, W.

J. Seo, C. Choi, W. Choi, Y. Kang, Y. Chung, and J. Kim, “Remote optoelectronic frequency down-conversion using 60-GHz optical heterodyne signals and an electro-absorption modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1073–1075, 2005.

Chou, J.

G. Sefler, J. Chou, J. Conway, and G. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightw. Technol., vol. 28, no. 10, pp. 1468–1476, 2010.

J. Chou, J. Conway, G. Sefler, G. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightw. Technol., vol. 27, no. 22, pp. 5073–5077, 2009.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett., vol. 91, no. 16, p. 161105, 2007.

Choudhary, A.

Chu, X.

Z. Zhu, S. Zhao, X. Chu, and Y. Dong, “Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter,” Opt. Commun., vol. 354, pp. 40–47, 2015.

Chung, Y.

J. Seo, C. Choi, W. Choi, Y. Kang, Y. Chung, and J. Kim, “Remote optoelectronic frequency down-conversion using 60-GHz optical heterodyne signals and an electro-absorption modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1073–1075, 2005.

Ciminelli, C.

Clark, G.

Clothiaux, E.

P. Kollias, E. Clothiaux, M. Miller, B. Albrecht, G. Stephens, and T. Ackerman, “Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research,” Bull. Amer. Meteorol. Soc., vol. 88, no. 10, pp. 1608–1624, 2007.

Cohen, E.

E. Cohen, “Trends in the development of MMICs and packages for active electronically scanned arrays (AESAs),” in Proc. Int. Symp. Phased Array Systems and Technology, Boston, USA, 1996, pp. 1–4.

Coldren, L.

E. Norberg, R. Guzzon, J. Parker, L. Johansson, and L. Coldren, “Programmable photonic microwave filters monolithically integrated in InP-InGaAsP,” J. Lightw. Technol., vol. 29, no. 11, pp. 1611–1619, 2011.

Constant, S.

S. Constant, Y. Guennec, G. Maury, M. Lourdiane, and B. Cabon, “Directly modulated laser diode in the nonlinear regime for low-cost digital frequency up-conversion,” Microw. Opt. Technol. Lett., vol. 50, no. 5, pp. 1214–1219, 2008.

Conteduca, D.

Conway, J.

G. Sefler, J. Chou, J. Conway, and G. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightw. Technol., vol. 28, no. 10, pp. 1468–1476, 2010.

J. Chou, J. Conway, G. Sefler, G. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightw. Technol., vol. 27, no. 22, pp. 5073–5077, 2009.

Conyers, L.

L. Conyers and D. Goodman, Ground-Penetrating Radar: An Introduction for Archaeologist. USA: AltaMira Press, 1997, pp. 131–159.

Copic, M.

Cornet, M.

Corral, J.

V. Polo, B. Vidal, J. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N x N AWG-based delay lines,” IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 584–586, 2003.

Cortés, L.

H. Chatellus, L. Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nature Commun., vol. 9, no. 1, p. 2438, 2018.

H. Chatellus, L. Cortés, and J. Azaña, “Optical real-time Fourier transformation with kilohertz resolutions,” Optica, vol. 3, no. 1, pp. 1–8, 2016.

Cox, C.

C. Cox, Analog Optical Links: Theory and Practice. UK: Cambridge University Press, 2006.

Cox, J.

J. Kim, J. Cox, J. Chen, and F. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nature Photon., vol. 2, pp. 733–736, 2008.

Cramer, H.

L. Andreone, F. Tango, U. Scheunert, H. Cramer, G. Wanielik, and A. Amditis, “A new driving supporting system, integrating an infrared camera and an anti-collision micro-wave radar: the EUCLIDE project,” in Intell. Vehicle Symp., 2002. IEEE, Versailles, France, 2002, vol. 2, pp. 519–526.

Crétaux, J.

J. Crétaux and C. Birkett, “Lake studies from satellite radar altimetry,” Comp. Rendus Geosci., vol. 338, no. 14–15, pp. 1098–1112, 2006.

Cruz, J.

J. Cruz, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett., vol. 33, no. 7, pp. 545–546, 1997.

Cui, Y.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All- optical-central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6, 2016.

Y. Cui, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express, vol. 21, no. 20, pp. 23433–23440, 2013.

Cundiff, S.

S. Cundiff and A. Weiner, “Optical arbitrary waveform generation,” Nature Photon., vol. 4, no. 11, p. 760, 2010.

Currie, M.

M. Currie and J. W. Lou, “Weighted, summing photonic digital-to-analog converter,” Electron. Lett., vol. 42, no. 1, pp. 54–55, 2006.

Cvijetic, N.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol., vol. 28, no. 4, pp. 484–493, 2010.

Dai, Q.

C. Deng, J. Suo, Y. Wang, Z. Zhang, and Q. Dai, “Single-shot thermal ghost imaging using wavelength-division multiplexing,” Appl. Phys. Lett., vol. 112, no. 5, 2018.

Dai, S.

C. Lin, J. Chen, S. Dai, P. Peng, and S. Chi, “Impact of nonlinear transfer function and imperfect splitting ratio of MZM on optical up-conversion employing double sideband with carrier suppression modulation,” J. Lightw. Technol., vol. 26, no. 15, pp. 2449–2459, 2008.

Dai, Y.

Dalton, L. R.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science, vol. 288, no. 5463, pp. 119–122, 2000.

Das, P. K.

A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 117–119, 2003.

Davies, B.

Davies, K.

Davis, M.

M. Davis, “A history of battlefield surveillance radar,” in 2015 IEEE Radar Conf. (RadarCon), Arlington, USA, 2015, pp. 1345–1350.

Degert, J.

Del Monte, L.

N. Bobrinsky and L. Del Monte, “The space situational awareness program of the European Space Agency,” Cosmic Res., vol. 48, no. 5, 2010.

Delfyett, P.

M. Bagnell, J. Rodriguez, and P. Delfyett, “Millimeter-wave generation in an optoelectronic oscillator using an ultrahigh finesse etalon as a photonic filter,” J. Lightw. Technol., vol. 32, no. 6, pp. 1063–1067, 2014.

Dell'Olio, F.

Deng, C.

C. Deng, J. Suo, Y. Wang, Z. Zhang, and Q. Dai, “Single-shot thermal ghost imaging using wavelength-division multiplexing,” Appl. Phys. Lett., vol. 112, no. 5, 2018.

Deng, Y.

Y. Deng, A. Burr, and G. White, “Performance of MIMO systems with combined polarization multiplexing and transmit diversity,” in 2005 IEEE 61st Vehicular Technology Conf., Stockholm, Sweden, 2005, vol. 2, pp. 869–873.

Detlefsen, J.

N. Kees, E. Schmidhammer, and J. Detlefsen, “Improvement of angular resolution of a millimeterwave imaging system by transmitter location multiplexing,” in IEEE NTC, Conf. Proc. Microwave Systems Conf., Orlando, USA, 1995, pp. 105–108.

Diehl, J.

V. Urick, J. Diehl, and J. Mckinney, “Nonlinear optical angle modulation for suppression of RF interference.” IEEE Trans. Microw. Theory Technol., vol. 64, no. 7, pp. 1–7, 2016.

Ding, J.

J. Ding, “Optical digital-to-analog converter based on microring switches,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2066–2069, 2014.

Doerr, C.

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

Dolfi, D.

Domenech, D.

J. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nature Photon., vol. 11, no. 2, pp. 124–129, 2017.

Dong, J.

X. Li, J. Dong, Y. Yu, and X. Zhang, “A tunable microwave photonic filter based on an all-optical differentiator,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 308–310, 2011.

Dong, Y.

Z. Zhu, S. Zhao, X. Chu, and Y. Dong, “Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter,” Opt. Commun., vol. 354, pp. 40–47, 2015.

Donohoe, J.

B. Skinner, J. Donohoe, and F. Ingels, “Simplified performance estimation of FSK/PSK hybrid signaling radar systems,” in Proc. IEEE 1993 National Aerospace and Electronics Conf.-NAECON 1993, Dayton, USA, 1993, vol. 1, pp. 255–261.

Droste, S.

S. Droste, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett., vol. 111, no. 11, p. 110801, 2013.

Du, J.

Duan, Y.

Duarte, V.

V. Duarte, “Modular and smooth introduction of photonics in high-throughput communication satellites-perspective of project BEACON,” in Int. Conf. on Space Optics -ICSO 2018, Chania, Greece, 2018, pp. 1118079.

Dug, S.

S. Dug, L. Song, and K. Gyoun, “Optical true time-delay feeder for X-band phased array antennas composed of 2x2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1364–1366, 2004.

E, Y.

J. Zhao, Y. E, K. Williams, X. Zhang, and R. W. Boyd, “Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding,” Light Sci. Appl., vol. 8, pp. 55, 2019.

Edvell, L.

D. Hunter, L. Edvell, and M. Englund, “Wideband microwave photonic channelised receiver,” in 2005 Int. Topical Meeting on Microwave Photonics (MWP), Seoul, Korea, 2005, pp. 249–252.

Eggleton, B.

Elachi, C.

C. Elachi, “Space imaging radar in planetary exploration and earth observation,” AIAA J., vol. 39, no. 4, pp. 553–563, 2001.

Eliyahu, D.

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system,” in 2008 IEEE Int. Frequency Control Symp., Honolulu, USA, 2008, pp. 811–814.

Englund, M.

D. Hunter, L. Edvell, and M. Englund, “Wideband microwave photonic channelised receiver,” in 2005 Int. Topical Meeting on Microwave Photonics (MWP), Seoul, Korea, 2005, pp. 249–252.

Esman, R.

P. Matthews, L. Pao-Lo, J. Medberry, M. Franekl, and R. Esman, “Demonstration of a wide-band fiber-optic nulling system for array antennas,” IEEE Trans. Microw. Theory Technol., vol. 47, no. 7, pp. 1327–1331, 1999.

Evangelides, S.

S. Evangelides, L. Mollenauer, J. Gordon, and N. Bergano, “Polarization multiplexing with solitons,” J. Lightw. Technol., vol. 10, no. 1, pp. 28–35, 1992.

Fainman, Y.

Fandino, J.

J. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nature Photon., vol. 11, no. 2, pp. 124–129, 2017.

Fard, A.

A. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photon. Rev., vol. 7, no. 2, pp. 207–263, 2013.

Farr, T.

T. Farr, “The shuttle radar topography mission,” Rev. Geophys., vol. 45, no. 2, pp. RG2004, 2007.

Fawcett, G.

K. Forsythe, D. Bliss, and G. Fawcett, “Multiple-input multiple-output (MIMO) radar: performance issues,” in Conf. Record of the Thirty-Eighth Asilomar Conf. on Signals, Systems and Computers, 2004, Pacific Grove, USA, 2004, vol. 1, pp. 310–315.

Fedele, G.

G. Picardi, S. Sorge, R. Seu, G. Fedele, and R. Jordan, “Coherent cancellation of surface clutter for radar sounding,” in IEEE 1999 Int. Geoscience and Remote Sensing Symp. (IGARSS), Hamburg, Germany, 1999, vol. 5, pp. 2678–2680.

Feng, H.

Y. Zhang, S. Xiao, and H. Feng, “Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system.” Opt. Express, vol. 23, no. 26, pp. 33205, 2015.

Q. Zhou, H. Feng, and G. Scott, “Wideband co-site interference cancellation based on hybrid electrical and optical techniques.” Opt. Lett., vol. 39, no. 22, pp. 6357–6540, 2014.

Feng, X.

X. Wang, T. Niu, E. Chan, X. Feng, B. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J., vol. 9, no. 3, pp. 5501710, 2017.

T. Li, H. Chan, X. Wang, X. Feng, B. Guan, and J. Yao, “Broadband photonic microwave signal processor with frequency up/down conversion and phase shifting capability,” IEEE Photon. J., vol. 9, no. 6, 2017.

Fielding, P.

W. Gruener, J. Toernig, and P. Fielding, “Active-electronically-scanned-array based radar system features,” in Radar 97 (Conf. Publ. No. 449), Edinburgh, UK, 1997, pp. 339–343.

Fini, J.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

Fischer, B.

J. Azana, N. Berger, B. Levit, and B. Fischer, “Spectra-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 882–884, 2004.

Foerster, H.

Fok, M.

M. Fok and J. Ge, “Tunable multiband microwave photonic filters,” MDPI Photon., vol. 4, no. 4, 2017.

Fontana, J.

J. Fontana and R. Pantell, “Theoretical considerations on millimeter wave generation by optical frequency mixing,” Proc. IRE, vol. 50, no. 8, pp. 1796–1800, 1962.

Forsythe, K.

D. Bliss and K. Forsythe, “Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution,” in The Thrity-Seventh Asilomar Conf. Signals, Systems & Computers, 2003, Pacific Grove, USA, 2003, vol. 1. pp. 54–59.

K. Forsythe, D. Bliss, and G. Fawcett, “Multiple-input multiple-output (MIMO) radar: performance issues,” in Conf. Record of the Thirty-Eighth Asilomar Conf. on Signals, Systems and Computers, 2004, Pacific Grove, USA, 2004, vol. 1, pp. 310–315.

Fortier, T.

T. Fortier, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon., vol. 5, no. 7, pp. 425–429, 2011.

Franekl, M.

P. Matthews, L. Pao-Lo, J. Medberry, M. Franekl, and R. Esman, “Demonstration of a wide-band fiber-optic nulling system for array antennas,” IEEE Trans. Microw. Theory Technol., vol. 47, no. 7, pp. 1327–1331, 1999.

Freysz, E.

Frigyes, I.

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Technol., vol. 43, no. 9, pp. 2378–2386, 1995.

Fu, J.

Furukawa, H.

Furuta, T.

H. Ito, T. Furuta, Y. Muramoto, T. Ito, and T. Ishibashi, “Photonic millimetre-and sub-millimetre-wave generation using J-band rectangular-waveguide-output uni-travelling-carrier photodiode module,” Electron. Lett., vol. 42, no. 24, pp. 1424–1425, 2006.

Gaeta, A.

Gao, B.

Gao, B. D.

B. D. Gao, F. Z. Zhang, and S. L. Pan, “Experimental demonstration of arbitrary waveform generation by a 4-bit photonic digital-to-analog converter,” Opt. Commun., vol. 383, pp. 191–196, 2017.

Gao, X.

M. Lei, Z. Zheng, J. Qian, M. Xie, X. Gao, and S. Huang, “Photonics-assisted super-octave microwave phase shifter,” IEEE Photon. J., vol. 11, no. 1, pp. 1–11, 2019.

Gao, Y.

Y. Gao, A. Wen, W. Chen, and X. Li, “All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter,” Opt. Lett., vol. 42, no. 6, pp. 1105–1108, 2017.

Y. Gao, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett., vol. 26, no. 12, pp. 1199–1202, 2014.

Garenaux, K.

K. Garenaux, “Recent breakthroughs in RF photonics for radar systems,” IEEE Aerosp. Electron. Syst. Mag., vol. 22, no. 2, pp. 3–8, 2007.

Garmire, E.

D. Hall, A. Yariv, and E. Garmire, “Optical guiding and electro-optic modulation in GaAs epitaxial layers,” Opt. Commun., vol. 1, no. 9, pp. 403–405, 1970.

Gasulla, I.

I. Gasulla, “Spatial division multiplexed microwave signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° photonic microwave phase shifter based on a single semiconductor optical amplifier,” Opt. Express, vol. 19, no. 18, pp. 17421–17426, 2011.

I. Gasulla, D. Barrera, and S. Sales, “Microwave photonic devices based on multicore fibers,” in 2014 16th Int. Conf. Transparent Optical Networks (ICTON), Graz, Austria, 2014, pp. 1–4.

Ge, J.

M. Fok and J. Ge, “Tunable multiband microwave photonic filters,” MDPI Photon., vol. 4, no. 4, 2017.

Ge, X.

Ghelfi, P.

P. Ghelfi, “Photonics for radars operating on multiple coherent bands,” J. Lightw. Technol., vol. 34, no. 2, pp. 500–507, 2016.

P. Ghelfi, “A fully photonics-based coherent radar system,” Nature, vol. 507, no. 7492, pp. 341–345, 2014.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in 2013 IEEE Radar Conf. (RadarCon), Ottawa, Canada, 2013, pp. 1–5.

Ghorbani, K.

L. Bui, A. Mitchell, K. Ghorbani, and T. Chio, “Wide-band RF photonic second order vector sum phase-shifter,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, 2005.

Glick, M.

N. Janosik, C. Qixiang, M. Glick, H. Yishen, and K. Bergman, “High-resolution silicon microring based architecture for optical matrix multiplication,” in 2019 Conf. Lasers and Electro-Optics (CLEO), San Jose, USA, 2019, pp. SM2J.3.

Gliese, U.

U. Gliese, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 936–938, 1992.

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nature Photon., vol. 7, no. 2, pp. 102–112, 2013.

K. Goda, “Hybrid dispersion laser scanner,” Sci. Rep., vol. 2, 2012.

K. Goda, K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature, vol. 458, pp. 1145–1150, 2009.

K. Goda, K. Tsia, and B. Jalali, “Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett., vol. 93, no. 13, pp. 131109-1–131109-3, 2008.

Goh, C.

Goodman, D.

L. Conyers and D. Goodman, Ground-Penetrating Radar: An Introduction for Archaeologist. USA: AltaMira Press, 1997, pp. 131–159.

Gopalakrishnan, G.

G. Gopalakrishnan, W. Burns, and C. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Technol., vol. 41, no. 12, pp. 2383–2391, 1993.

Gordon, J.

S. Evangelides, L. Mollenauer, J. Gordon, and N. Bergano, “Polarization multiplexing with solitons,” J. Lightw. Technol., vol. 10, no. 1, pp. 28–35, 1992.

Gorjan, M.

Goutzoulis, A.

Granger, P.

Gris-Sánchez, I.

Grosche, G.

Gruener, W.

W. Gruener, J. Toernig, and P. Fielding, “Active-electronically-scanned-array based radar system features,” in Radar 97 (Conf. Publ. No. 449), Edinburgh, UK, 1997, pp. 339–343.

Gu, X.

X. Gu, D. Zhu, S. Li, Y. Zhao, and S. Pan, “Photonic RF channelization based on series-coupled asymmetric double-ring resonator filter,” in The 7th IEEE/Int. Conf. on Advanced Infocomm Technology, Fuzhou, China, 2014, pp. 240–244.

Guan, B.

X. Wang, T. Niu, E. Chan, X. Feng, B. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J., vol. 9, no. 3, pp. 5501710, 2017.

T. Li, H. Chan, X. Wang, X. Feng, B. Guan, and J. Yao, “Broadband photonic microwave signal processor with frequency up/down conversion and phase shifting capability,” IEEE Photon. J., vol. 9, no. 6, 2017.

Guemri, R.

Guennec, Y.

S. Constant, Y. Guennec, G. Maury, M. Lourdiane, and B. Cabon, “Directly modulated laser diode in the nonlinear regime for low-cost digital frequency up-conversion,” Microw. Opt. Technol. Lett., vol. 50, no. 5, pp. 1214–1219, 2008.

Guo, D.

A. Sabharwal, P. Schniter, D. Guo, D. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, 2014.

Guo, Q.

Y. Zhang, X. Ye, Q. Guo, F. Zhang, and S. Pan, “Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1821–1829, 2017.

P. Zhou, F. Zhang, Q. Guo, S. Li, and S. Pan, “Reconfigurable radar waveform generation based on an optically injected semiconductor laser,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, pp. 1801109, 2017.

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by optical frequency quadrupling and polarization multiplexing,” IEEE Photon. Technol. Lett., vol. 29, no. 16, pp. 1320–1323, 2017.

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.

P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express, vol. 24, no. 16, pp. 18460–18467, 2016.

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J., vol. 8, no. 6, pp. 5501909, 2016.

Guo, X.

X. Guo, H. Sun, and T. Yeo, “Interference cancellation for high-frequency surface wave radar,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 7, pp. 1879–1891, 2008.

Gupta, S.

C. Caloz, S. Gupta, Q. Zhang, and B. Nikfal, “Analog signal processing: A possible alternative or complement to dominantly digital radio schemes,” IEEE Microw. Mag., vol. 14, no. 6, pp. 87–103, 2013.

A. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photon. Rev., vol. 7, no. 2, pp. 207–263, 2013.

Guzzon, R.

E. Norberg, R. Guzzon, J. Parker, L. Johansson, and L. Coldren, “Programmable photonic microwave filters monolithically integrated in InP-InGaAsP,” J. Lightw. Technol., vol. 29, no. 11, pp. 1611–1619, 2011.

Gyoun, K.

S. Dug, L. Song, and K. Gyoun, “Optical true time-delay feeder for X-band phased array antennas composed of 2x2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1364–1366, 2004.

Haas, B.

Hall, D.

D. Hall, A. Yariv, and E. Garmire, “Optical guiding and electro-optic modulation in GaAs epitaxial layers,” Opt. Commun., vol. 1, no. 9, pp. 403–405, 1970.

Hall, T.

Han, X.

X. Han, B. Huo, Y. Shao, C. Wang, and M. Zhao, “RF self-interference cancellation using phase modulation and optical sideband filtering.” IEEE Photon. Technol. Lett., vol. 29, no. 11, pp. 917–920, 2017.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation for full-duplex communication using an integrated DP-MZM,” in 2017 Progress in Electromagnetics Research Symp.-Spring (PIERS), St. Petersburg, Russia, 2017, pp. 2240–2244.

Han, Y.

M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 715–717, 2011.

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter employing phase diversity,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 4, pp. 1404–1408, 2005.

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations,” J. Lightw. Technol., vol. 21, no. 12, pp. 3085–3103, 2003.

Hansen, R.

A. Madni, P. McDonald, R. Hansen, and L. Wan, “High-dynamic-range airborne tracking and fire control radar subsystem,” IEEE Trans. Microw. Theory Technol., vol. 37, no. 12, pp. 1942–1948, 1989.

Hao, T.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun., vol. 407, pp. 27–32, 2018.

Hao, W.

W. Hao, “Frequency-oriented subsampling by photonic Fourier transform and I/Q demodulation,” IEEE Photon. J., vol. 9, no. 6, pp. 5503508, 2017.

Hares, J. D.

A. Johnstone, M. Lewis, J. D. Hares, and P. Kellet, “High-speed opto-electronic transient waveform digitiser,” Comput. Standards Interfaces, vol. 23, no. 2, pp. 73–84, 2001.

Harmuth, H.

H. Harmuth, “Frequency-sharing and spread-spectrum transmission with large relative bandwidth,” IEEE Trans. Electromagn. Compat., no. 1, pp. 232–239, 1978.

Hasan, M.

Hasch, J.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Tech. vol. 60, no. 3, pp. 845–860, 2012.

Hasegawa, M.

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photon. Technol. Lett., vol. 29, no. 1, pp. 74–77, 2017.

Haur, W.

W. Haur, “Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme,” J. Lightw. Technol., vol. 29, no. 2, pp. 3099–3106, 2011.

Hawthorn, J.

Hayashi, T.

Y. Awaji, N. Wada, Y. Toda, and T. Hayashi, “World first mode/spatial division multiplexing in multi-core fiber using Laguerre-Gaussian mode,” in 2011 37th Eur. Conf. Optical Communication (ECOC), Geneva, Switzerland, 2011, pp. We.10.P1.55.

Haykin, S.

S. Haykin, “Cognitive radar: a way of the future,” IEEE Signal Proc. Mag., vol. 23, no. 1, pp. 30–40, 2006.

He, Z.

Heckscher, H.

Heideman, R.

A. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Heyde, E.

E. Heyde and R. Minasian, “A solution to the synthesis problem of recirculating optical delay line filters,” IEEE Photon. Technol. Lett., vol. 6, no. 7, pp. 833–835, 1994.

Hill, K.

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276, 1997.

Ho, K.

K. Ho, J. Walker, and J. Kahn, “External optical feedback effects on intensity noise of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 5, no. 8, pp. 892–895, 1993.

Hoekman, M.

Holm, W. A.

M. Richards, J. A. Scheer, and W. A. Holm, Principle of Modern Radar: Basic Principle. SciTech Publishing, 2010.

Holshouser, D.

Hong, C.

J. Shi, Y. Wu, C. Wu, P. Chiu, and C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1929–1931, 2005.

Hong, N.

X. K. Yi, F. Wei, N. Hong, and L. Chao, “Tunable microwave filter design using wavelength conversion technique and high dispersion time delays,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 857–859, 2001.

Hrycak, P.

Hu, G.

G. Hu, “Optical beamformer based on diffraction order multiplexing (DOM) of an arrayed waveguide grating,” J. Lightw. Technol., vol. 37, no. 13, pp. 2898–2904, 2019.

Hu, J.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol., vol. 28, no. 4, pp. 484–493, 2010.

Hu, S.

S. Hu, L. W. Li, X. Yi, and F. Teng, “Tunable dual-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 330–333, 2017.

Huang, C.

C. Albert, C. Huang, and E. Chan, “Intensity noise suppression using dual-polarization dual-parallel modulator and balanced detector,” IEEE Photon. J., vol. 10, no. 2, 2018.

Huang, L.

Huang, M.

S. Pan, Z. Tang, M. Huang, and S. Li, “Reflective-type microring resonator for on-chip reconfigurable microwave photonic systems,” IEEE J. Sel. Top. Quantum Electron., vol. 26, no. 5, pp. 1–12, 2020.

M. Huang, J. Fu, and S. Pan, “Linearized analog photonic links based on a dual-parallel polarization modulator,” Opt. Lett., vol. 37, no. 11, pp. 1823–1825, 2012.

M. Huang, D. Zhu, and S. Pan, “Optical RF interference cancellation based on a dual-parallel polarization modulator,” in Asia Communications and Photonics Conf. 2014, Nov. 2014, p. ATh1F.6.

Huang, S.

M. Lei, Z. Zheng, J. Qian, M. Xie, X. Gao, and S. Huang, “Photonics-assisted super-octave microwave phase shifter,” IEEE Photon. J., vol. 11, no. 1, pp. 1–11, 2019.

Huang, T.

X. Yi, L. Li, T. Huang, and R. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett., vol. 37, no. 4, pp. 608–610, 2012.

X. K. Yi, T. Huang, and R. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3088–3093, 2010.

Huang, Y.

Huignard, J. P.

Hunter, D.

D. Hunter, L. Edvell, and M. Englund, “Wideband microwave photonic channelised receiver,” in 2005 Int. Topical Meeting on Microwave Photonics (MWP), Seoul, Korea, 2005, pp. 249–252.

Huo, B.

X. Han, B. Huo, Y. Shao, C. Wang, and M. Zhao, “RF self-interference cancellation using phase modulation and optical sideband filtering.” IEEE Photon. Technol. Lett., vol. 29, no. 11, pp. 917–920, 2017.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation for full-duplex communication using an integrated DP-MZM,” in 2017 Progress in Electromagnetics Research Symp.-Spring (PIERS), St. Petersburg, Russia, 2017, pp. 2240–2244.

Ingels, F.

B. Skinner, J. Donohoe, and F. Ingels, “Simplified performance estimation of FSK/PSK hybrid signaling radar systems,” in Proc. IEEE 1993 National Aerospace and Electronics Conf.-NAECON 1993, Dayton, USA, 1993, vol. 1, pp. 255–261.

Ishibashi, T.

H. Ito, T. Furuta, Y. Muramoto, T. Ito, and T. Ishibashi, “Photonic millimetre-and sub-millimetre-wave generation using J-band rectangular-waveguide-output uni-travelling-carrier photodiode module,” Electron. Lett., vol. 42, no. 24, pp. 1424–1425, 2006.

Ito, H.

H. Ito, T. Furuta, Y. Muramoto, T. Ito, and T. Ishibashi, “Photonic millimetre-and sub-millimetre-wave generation using J-band rectangular-waveguide-output uni-travelling-carrier photodiode module,” Electron. Lett., vol. 42, no. 24, pp. 1424–1425, 2006.

Ito, T.

H. Ito, T. Furuta, Y. Muramoto, T. Ito, and T. Ishibashi, “Photonic millimetre-and sub-millimetre-wave generation using J-band rectangular-waveguide-output uni-travelling-carrier photodiode module,” Electron. Lett., vol. 42, no. 24, pp. 1424–1425, 2006.

Itoh, K.

Jalali, B.

A. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photon. Rev., vol. 7, no. 2, pp. 207–263, 2013.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nature Photon., vol. 7, no. 2, pp. 102–112, 2013.

K. Goda, K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature, vol. 458, pp. 1145–1150, 2009.

J. Chou, J. Conway, G. Sefler, G. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightw. Technol., vol. 27, no. 22, pp. 5073–5077, 2009.

K. Goda, K. Tsia, and B. Jalali, “Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett., vol. 93, no. 13, pp. 131109-1–131109-3, 2008.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett., vol. 91, no. 16, p. 161105, 2007.

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter employing phase diversity,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 4, pp. 1404–1408, 2005.

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations,” J. Lightw. Technol., vol. 21, no. 12, pp. 3085–3103, 2003.

Jannson, T.

Janosik, N.

N. Janosik, C. Qixiang, M. Glick, H. Yishen, and K. Bergman, “High-resolution silicon microring based architecture for optical matrix multiplication,” in 2019 Conf. Lasers and Electro-Optics (CLEO), San Jose, USA, 2019, pp. SM2J.3.

Jeon, C.

Jeong, K.

S. Park, C. Lee, K. Jeong, H. Park, J. Ahn, and K. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591, 2004.

Joffre, P.

Johansson, L.

E. Norberg, R. Guzzon, J. Parker, L. Johansson, and L. Coldren, “Programmable photonic microwave filters monolithically integrated in InP-InGaAsP,” J. Lightw. Technol., vol. 29, no. 11, pp. 1611–1619, 2011.

Johnson, A.

Johnstone, A.

A. Johnstone, M. Lewis, J. D. Hares, and P. Kellet, “High-speed opto-electronic transient waveform digitiser,” Comput. Standards Interfaces, vol. 23, no. 2, pp. 73–84, 2001.

Jordan, R.

G. Picardi, S. Sorge, R. Seu, G. Fedele, and R. Jordan, “Coherent cancellation of surface clutter for radar sounding,” in IEEE 1999 Int. Geoscience and Remote Sensing Symp. (IGARSS), Hamburg, Germany, 1999, vol. 5, pp. 2678–2680.

Kahn, J.

K. Ho, J. Walker, and J. Kahn, “External optical feedback effects on intensity noise of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 5, no. 8, pp. 892–895, 1993.

Kalaydzhyan, A.

Kaminow, I.

I. Kaminow, “Microwave modulation of the electro-optic effect in KH2PO4,” Phys. Rev. Lett., vol. 6, pp. 528–530, 1961.

Kang, Y.

J. Seo, C. Choi, W. Choi, Y. Kang, Y. Chung, and J. Kim, “Remote optoelectronic frequency down-conversion using 60-GHz optical heterodyne signals and an electro-absorption modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1073–1075, 2005.

Kartner, F.

M. Peng, A. Kalaydzhyan, and F. Kartner, “Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization,” Opt. Express, vol. 22, no. 22, pp. 27102–27111, 2014.

J. Kim, J. Cox, J. Chen, and F. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nature Photon., vol. 2, pp. 733–736, 2008.

Kato, T.

Kees, N.

N. Kees, E. Schmidhammer, and J. Detlefsen, “Improvement of angular resolution of a millimeterwave imaging system by transmitter location multiplexing,” in IEEE NTC, Conf. Proc. Microwave Systems Conf., Orlando, USA, 1995, pp. 105–108.

Kellet, P.

A. Johnstone, M. Lewis, J. D. Hares, and P. Kellet, “High-speed opto-electronic transient waveform digitiser,” Comput. Standards Interfaces, vol. 23, no. 2, pp. 73–84, 2001.

Khilo, A.

Kikuchi, K.

Kim, J.

C. Jeon, Y. Na, B. Lee, and J. Kim, “Simple-structured, subfemtosecond-resolution optical-microwave phase detector,” Opt. Lett., vol. 43, no. 16, pp. 3997–4000, 2018.

J. Wei, S. Zhang, J. Kim, and S. Pan, “Compact phase detector for optical-microwave synchronization using polarization modulation,” J. Lightw. Technol., vol. 36, no. 19, pp. 4267–4272, 2018.

J. Wei, D. Kwon, S. Zhang, S. Pan, and J. Kim, “All-fiber-photonics-based ultralow-noise agile frequency synthesizer for X-band radars,” Photon. Res., vol. 6, no. 1, pp. 12–17, 2018.

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon., vol. 8, no. 3, pp. 465–540, 2016.

J. Kim, J. Cox, J. Chen, and F. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nature Photon., vol. 2, pp. 733–736, 2008.

J. Seo, C. Choi, W. Choi, Y. Kang, Y. Chung, and J. Kim, “Remote optoelectronic frequency down-conversion using 60-GHz optical heterodyne signals and an electro-absorption modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1073–1075, 2005.

Kim, S.

J. Lee, Y. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nature Photon., vol. 4, no. 10, pp. 716–720, 2010.

Kim, Y.

J. Lee, Y. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nature Photon., vol. 4, no. 10, pp. 716–720, 2010.

Kitayama, K.

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightw. Technol., vol. 28, no. 16, pp. 2247–2257, 2010.

Klamkin, J.

J. Klamkin, “High output saturation and high-linearity uni-traveling-carrier waveguide photodiodes,” IEEE Photon. Technol. Lett., vol. 19, no. 3, pp. 149–151, 2007.

Koester, K. L.

K. L. Koester and W. Vaillancourt, “TALONS 95 GHz radar sensor for autonomous landing guidance,” IEEE Aerosp. Electron. Syst. Mag., vol. 7, no. 7, pp. 40–44, 1992.

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express, vol. 6, no. 2, pp. 98–103, 2009.

Kollias, P.

P. Kollias, E. Clothiaux, M. Miller, B. Albrecht, G. Stephens, and T. Ackerman, “Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research,” Bull. Amer. Meteorol. Soc., vol. 88, no. 10, pp. 1608–1624, 2007.

Kolodziej, K.

K. Kolodziej, S. Yegnanarayanan, and B. Perry, “Photonic-enabled RF canceller for wideband in-band full-duplex wireless systems,” IEEE Trans. Microw. Theory Technol., vol. 67, no. 5, pp. 2076–2086, 2019.

K. Kolodziej, B. Perry, and J. McMichael, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4321–4334, 2016.

Kong, K. W.

T. A. Schaffer, H. P. Warren, M. J. Bustamante, and K. W. Kong, “A 2 GHz 12-bit digital-to-analog converter for direct digital synthesis applications,” Techn. Digest GaAs Ie Symp., 1996, pp. 61–64.

Konishi, T.

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photon. Technol. Lett., vol. 29, no. 1, pp. 74–77, 2017.

T. Nishitani, T. Konishi, H. Furukawa, and K. Itoh, “All-optical digital-to-analog conversion using pulse pattern recognition based on optical correlation processing,” Opt. Express, vol. 13, no. 25, pp. 10310–10315, 2005.

Koshiba, M.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express, vol. 6, no. 2, pp. 98–103, 2009.

Koul, S.

A. Poddar, U. Rohde, V. Madhavan, A. Apte, and S. Koul, “Ka-Band metamaterial Möbius Oscillator (MMO) circuit,” in 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, USA, 2016, pp. 1–4.

Koyano, Y.

Kravtsov, K.

J. Suarez, K. Kravtsov, and P. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 402–408, 2009.

Kuri, T.

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightw. Technol., vol. 28, no. 16, pp. 2247–2257, 2010.

Kwon, D.

Laghezza, F.

F. Scotti, F. Laghezza, D. Onori, and A. Bogoni, “Field trial of a photonics-based dual-band fully coherent radar system in a maritime scenario,” IET Radar Sonar Navig., vol. 11, pp. 420–425, 2017.

F. Scotti, D. Onori, and F. Laghezza, “Fully coherent S-and X-band photonics-aided radar system demonstration,” IEEE Microw. Compon. Lett., vol. 25, no. 11, pp. 757–759, 2015.

F. Scotti, D. Onori, M. Scaffardi, E. Lazzeri, A. Bogoni, and F. Laghezza, “Multi-frequency lidar/radar integrated system for robust and flexible doppler measurements,” IEEE Photon. Technol. Lett., vol. 27, no. 21, pp. 2268–2271, 2015.

F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “ISAR imaging of non-cooperative targets via dual band photonics-based radar system,” in 2016 17th Int. Radar Symp. (IRS), Krakow, Poland, 2016, pp. 1–4.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in 2013 IEEE Radar Conf. (RadarCon), Ottawa, Canada, 2013, pp. 1–5.

Lau, K. Y.

K. Y. Lau and G. F. Lutes, “Planetary radar imaging and RF-over-fiber,” Opt. Photon. News, vol. 25, pp. 44–51, 2014.

K. Y. Lau, G. F. Lutes, and R. L. Tjoelker, “Ultra-stable RF-over-fiber transport in NASA antennas, phased arrays and radars,” J. Lightw. Technol., vol. 32, no. 20, pp. 3440–3451, 2014.

Lazzeri, E.

F. Scotti, D. Onori, M. Scaffardi, E. Lazzeri, A. Bogoni, and F. Laghezza, “Multi-frequency lidar/radar integrated system for robust and flexible doppler measurements,” IEEE Photon. Technol. Lett., vol. 27, no. 21, pp. 2268–2271, 2015.

Leaird, D.

Lee, B.

Lee, C.

M. Chang, C. Lee, B. Wu, and P. Prucnal, “Adaptive Optical Self-Interference Cancellation Using a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett., vol. 27, no. 9, pp. 1018–1021, 2015.

S. Park, C. Lee, K. Jeong, H. Park, J. Ahn, and K. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591, 2004.

Lee, H.

J. Li, H. Lee, and K. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, no. 2097, pp. 1–7, 2013.

Lee, J.

J. Lee, Y. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nature Photon., vol. 4, no. 10, pp. 716–720, 2010.

J. Lee, “Photonic wideband array antennas,” IEEE Trans. Antennas Propagat., vol. 43, no. 9, pp. 966–982, 1995.

G. Anderson, D. Webb, A. Spezio, and J. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE, vol. 79, no. 3, pp. 355–388, 1991.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightw. Technol., vol. 9, no. 9, pp. 1124–1131, 1991.

A. Leven, J. Lin, J. Lee, K.-Y. Tu, Y. Baeyens, and Y. K. Chen, “A 12.5G sample/s optical digital-to-analog converter with 3.8 effective bits,” in Proc. 17th Ann. Meet. IEEE Lasers and Electro-Optics Society, Puerto Rico, 2004, pp. 270–271.

Lee, K.

J. Lee, Y. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nature Photon., vol. 4, no. 10, pp. 716–720, 2010.

Lee, S.

J. Lee, Y. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nature Photon., vol. 4, no. 10, pp. 716–720, 2010.

Lei, M.

M. Lei, Z. Zheng, J. Qian, M. Xie, X. Gao, and S. Huang, “Photonics-assisted super-octave microwave phase shifter,” IEEE Photon. J., vol. 11, no. 1, pp. 1–11, 2019.

Leinse, A.

A. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Lembo, L.

L. Lembo, “In-field demonstration of a photonic coherent MIMO distributed radar network,” in 2019 IEEE Radar Conf. (RadarCon), Boston, MA, USA, 2019, pp. 1–6.

Leon-Saval, S.

Leven, A.

A. Leven, “High speed integrated InP photonic digital-to-analog converter,” in Proc. Indium Phosphide and Related Materials Conf., 2006, pp. 14–15.

A. Leven, J. Lin, J. Lee, K.-Y. Tu, Y. Baeyens, and Y. K. Chen, “A 12.5G sample/s optical digital-to-analog converter with 3.8 effective bits,” in Proc. 17th Ann. Meet. IEEE Lasers and Electro-Optics Society, Puerto Rico, 2004, pp. 270–271.

Levine, ?.

Α. Levine, “Fiber optics for radar and data system,” Ρroc. SPIE, vol. 150, 1978.

Levine, A.

A. Levine, “Fiber optic phased array antenna system for RF transmission,” U.S. Patent 4 028 702, 7, 1977.

Levinson, J.

J. Levinson, “Towards fully autonomous driving: systems and algorithms,” in 2011 IEEE Intell. Vehicles Symp. (IV), Baden, Germany, 2011, pp. 163–168.

Levit, B.

J. Azana, N. Berger, B. Levit, and B. Fischer, “Spectra-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 882–884, 2004.

Lewis, M.

A. Johnstone, M. Lewis, J. D. Hares, and P. Kellet, “High-speed opto-electronic transient waveform digitiser,” Comput. Standards Interfaces, vol. 23, no. 2, pp. 73–84, 2001.

Li, G.

Y. Xiang, G. Li, and S. Pan, “Ultrawideband optical cancellation of RF interference with phase change.” Opt. Express, vol. 25, no. 18, pp. 21259–21264, 2017.

G. Li, Y. Xiang, and S. Pan, “Wideband optical cancellation of RF interference with phase change,” in 2017 16th Int. Conf. Optical Communications and Networks (ICOCN), Wuzhen, China, 2017, pp. 1–3.

Li, H.

Z. Zhang, H. Li, S. Zhang, and Y. Liu, “Analog-to-digital converters using photonic technology,” Chin. Sci. Bull., vol. 59, no. 22, pp. 2666–2671, 2014.

Li, J.

Li, J. D.

J. D. Li “A segmented photonic digital-to-analog converter with a high effective number of bits,” 2019 Int. Topical Meeting on Microwave Photonics (MWP), Ottawa, ON, Canada,7-10 Oct. 2019.

Li, L.

J. Yan, L. Li, X. Yi, and S. Chew, “Widely tunable single bandpass microwave photonic filter based on dual-fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett., vol. 61, no. 4, pp. 954–958, 2019.

X. Yi, L. Li, T. Huang, and R. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett., vol. 37, no. 4, pp. 608–610, 2012.

Li, L. W.

S. Hu, L. W. Li, X. Yi, and F. Teng, “Tunable dual-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 330–333, 2017.

Li, M.

N. Shi, W. Li, N. Zhu, and M. Li, “Optically controlled phase array antenna,” Chin. Opt. Lett., vol. 17, no. 5, p. 052301, 2019.

N. Shi, Q. Song, J. Tang, W. Li, N. Zhu, and M. Li, “A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array.” Opt. Commun., vol. 447. pp. 55–60, 2019.

H. Wen, M. Li, W. Li, and N. Zhu, “Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated Brillouin scattering and a fiber ring resonator,” Opt. Lett., vol. 43, no. 19, pp. 4659–4662, 2018.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun., vol. 407, pp. 27–32, 2018.

Z. Shi, S. Zhu, M. Li, N. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun., vol. 428, pp. 131–135, 2018.

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 694–696, 2011.

M. Li, L. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 314–316, 2011.

M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 715–717, 2011.

M. Li, C. Wang, W. Li, and J. Yao, “An imbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Technol., vol. 58, no. 11, pp. 2968–2975, 2010.

Li, P.

X. Zou, P. Li, W. Pan, and L. S. Yan, “Photonic microwave filters with ultra-high noise rejection [Invited],” Chin. Opt. Lett., vol. 17, no. 3, 2019.

P. Li, “Improvement of linearity in phase-modulated analog photonic link,” Opt. Lett., vol. 38, no. 14, pp. 2391–2393, 2013.

Li, R.

Li, S.

S. Pan, Z. Tang, M. Huang, and S. Li, “Reflective-type microring resonator for on-chip reconfigurable microwave photonic systems,” IEEE J. Sel. Top. Quantum Electron., vol. 26, no. 5, pp. 1–12, 2020.

S. Li, “Chip-based photonic radar for high-resolution imaging,” 2019, arXiv preprint, arXiv:1905.12802.

S. Li, “Optical fiber transfer delay measurement based on phase-derived ranging,” IEEE Photon. Technol. Lett., vol. 31, no. 16, pp. 1351–1354, 2019.

D. Wu, S. Li, X. Xue, X. Xiao, S. Peng, and X. Zheng, “Photonics based microwave dynamic 3D reconstruction of moving targets,” Opt. Express, vol. 26, no. 21, pp. 27659–27667, 2018.

P. Zhou, F. Zhang, Q. Guo, S. Li, and S. Pan, “Reconfigurable radar waveform generation based on an optically injected semiconductor laser,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, pp. 1801109, 2017.

X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightw. Technol., vol. 35, no. 23, pp. 5010–5019, 2017.

X. Gu, D. Zhu, S. Li, Y. Zhao, and S. Pan, “Photonic RF channelization based on series-coupled asymmetric double-ring resonator filter,” in The 7th IEEE/Int. Conf. on Advanced Infocomm Technology, Fuzhou, China, 2014, pp. 240–244.

Li, T.

T. Li, H. Chan, X. Wang, X. Feng, B. Guan, and J. Yao, “Broadband photonic microwave signal processor with frequency up/down conversion and phase shifting capability,” IEEE Photon. J., vol. 9, no. 6, 2017.

Li, W.

N. Shi, Q. Song, J. Tang, W. Li, N. Zhu, and M. Li, “A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array.” Opt. Commun., vol. 447. pp. 55–60, 2019.

N. Shi, W. Li, N. Zhu, and M. Li, “Optically controlled phase array antenna,” Chin. Opt. Lett., vol. 17, no. 5, p. 052301, 2019.

H. Wen, M. Li, W. Li, and N. Zhu, “Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated Brillouin scattering and a fiber ring resonator,” Opt. Lett., vol. 43, no. 19, pp. 4659–4662, 2018.

Z. Shi, S. Zhu, M. Li, N. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun., vol. 428, pp. 131–135, 2018.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun., vol. 407, pp. 27–32, 2018.

Y. Dai, J. Li, Z. Zhang, F. Yin, W. Li, and K. Xu, “Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion,” Opt. Express, vol. 25, no. 14, pp. 16660–16671, 2017.

W. Li, W. Wang, W. Sun, J. Liu, and N. Zhu, “Microwave photonic notch filter with complex coefficient based on DDMZM,” IEEE Photon. Technol. Lett., vol. 26, no. 18, pp. 1859–1862, 2014.

W. Li, W. Sun, W. Wang, L. Wang, J. Liu, and N. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express, vol. 22, no. 5, pp. 5522–5527, 2014.

W. Li, W. Zhang, and J. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express, vol. 20, no. 28, pp. 29838–29843, 2012.

W. Li, N. H. Zhu, and L. X. Wang, “Continuously tunable microwave photonic notch filter with a complex coefficient,” IEEE Photon. J., vol. 3, no. 3, pp. 462–467, 2011.

M. Li, C. Wang, W. Li, and J. Yao, “An imbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Technol., vol. 58, no. 11, pp. 2968–2975, 2010.

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Technol., vol. 58, no. 11, pp. 3259–3268, 2010.

Li, X.

S. Zhang, X. Li, J. Chen, and W. Zou, “Maintenance of broadband detection in photonic time-stretched coherent radar employing phase diversity,” Opt. Express, vol. 27, no. 23, pp. 32892–32899, 2019.

Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation.” IEEE Photon. Technol. Lett., vol. 30, no. 14. pp. 1297–1300, 2018.

Y. Gao, A. Wen, W. Chen, and X. Li, “All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter,” Opt. Lett., vol. 42, no. 6, pp. 1105–1108, 2017.

X. Li, J. Dong, Y. Yu, and X. Zhang, “A tunable microwave photonic filter based on an all-optical differentiator,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 308–310, 2011.

J. Yu, X. Li, J. Zhang, and J. Xiao, “432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing,” in 2014 The Eur. Conf. Optical Communication (ECOC), Cannes, France, 2014, pp. 1–3.

Li, Y.

Li, Z.

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 694–696, 2011.

Z. Li and K. Wu, “On the leakage of FMCW radar front-end receiver,” in Global Symp. Millimeter Waves, IEEE, 2008, pp. 127–130.

Liang, W.

W. Liang, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nature Commun., vol. 6, no. 7957, pp. 1–8, 2015.

Liao, J.

J. Liao, “Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 126–128, 2013.

Lin, C.

C. Lin, J. Chen, S. Dai, P. Peng, and S. Chi, “Impact of nonlinear transfer function and imperfect splitting ratio of MZM on optical up-conversion employing double sideband with carrier suppression modulation,” J. Lightw. Technol., vol. 26, no. 15, pp. 2449–2459, 2008.

Lin, J.

J. Lin, “Photonic generation and detection of W-Band chirped millimeter-wave pulses for Radar,” IEEE Photon. Technol. Lett., vol. 24, pp. 1437–1439, 152012.

A. Leven, J. Lin, J. Lee, K.-Y. Tu, Y. Baeyens, and Y. K. Chen, “A 12.5G sample/s optical digital-to-analog converter with 3.8 effective bits,” in Proc. 17th Ann. Meet. IEEE Lasers and Electro-Optics Society, Puerto Rico, 2004, pp. 270–271.

Liu, J.

W. Chen, D. Zhu, C. Xie, J. Liu, and S. Pan, “Microwave channelizer based on a photonic dual-output image-reject mixer,” Opt. Lett., vol. 44, no. 16, pp. 4052–4055, 2019.

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, pp. 121001-1–121001-7, 2017.

W. Li, W. Wang, W. Sun, J. Liu, and N. Zhu, “Microwave photonic notch filter with complex coefficient based on DDMZM,” IEEE Photon. Technol. Lett., vol. 26, no. 18, pp. 1859–1862, 2014.

W. Li, W. Sun, W. Wang, L. Wang, J. Liu, and N. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express, vol. 22, no. 5, pp. 5522–5527, 2014.

Liu, S.

S. Liu, “Ultralow phase noise optoelectronic oscillator and its application to a frequency synthesizer,” (in Chinese), J. Radars, vol. 8, no. 2, pp. 245–250, 2019.

S. Liu, D. Zhu, Z. Wei, and S. Pan, “Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator,” Opt. Lett., vol. 39, no. 13, pp. 3958–3961, 2014.

Liu, Y.

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, pp. 121001-1–121001-7, 2017.

Y. Liu, A. Choudhary, D. Marpaung, and B. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica, vol. 4, no. 4, pp. 418–423, 2017.

Z. Zhang, H. Li, S. Zhang, and Y. Liu, “Analog-to-digital converters using photonic technology,” Chin. Sci. Bull., vol. 59, no. 22, pp. 2666–2671, 2014.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1172–1174, 2002.

Lloret, J.

Loayssa, A.

M. Sagues, R. Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express, vol. 16, no. 1, pp. 295–303, 2008.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1744–1746, 2006.

Loïc, M.

M. Loïc, “Optical functions for microwave signal processing in radar, communications and surveillance systems,” in 2009 Int. Radar Conf. “Surveillance for a Safer World” (RADAR), Bordeaux, France, 2009, pp. 1–5.

Long, X.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All- optical-central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6, 2016.

Lou, J. W.

M. Currie and J. W. Lou, “Weighted, summing photonic digital-to-analog converter,” Electron. Lett., vol. 42, no. 1, pp. 54–55, 2006.

Lourdiane, M.

S. Constant, Y. Guennec, G. Maury, M. Lourdiane, and B. Cabon, “Directly modulated laser diode in the nonlinear regime for low-cost digital frequency up-conversion,” Microw. Opt. Technol. Lett., vol. 50, no. 5, pp. 1214–1219, 2008.

Lowery, A.

Lubecke, V.

A. Singh and V. Lubecke, “Adaptive noise cancellation for two frequency radar using frequency doubling passive RF tags,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2975–2981, 2013.

Lucarz, F.

Lutes, G. F.

K. Y. Lau, G. F. Lutes, and R. L. Tjoelker, “Ultra-stable RF-over-fiber transport in NASA antennas, phased arrays and radars,” J. Lightw. Technol., vol. 32, no. 20, pp. 3440–3451, 2014.

K. Y. Lau and G. F. Lutes, “Planetary radar imaging and RF-over-fiber,” Opt. Photon. News, vol. 25, pp. 44–51, 2014.

Madden, S.

Madhavan, V.

A. Poddar, U. Rohde, V. Madhavan, A. Apte, and S. Koul, “Ka-Band metamaterial Möbius Oscillator (MMO) circuit,” in 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, USA, 2016, pp. 1–4.

Madni, A.

A. Madni, P. McDonald, R. Hansen, and L. Wan, “High-dynamic-range airborne tracking and fire control radar subsystem,” IEEE Trans. Microw. Theory Technol., vol. 37, no. 12, pp. 1942–1948, 1989.

Maleki, L.

X. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron., vol. 32, no. 7, pp. 1141–1149, 1996.

X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett., vol. 30, no. 18, pp. 1525–1526, 1994.

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system,” in 2008 IEEE Int. Frequency Control Symp., Honolulu, USA, 2008, pp. 811–814.

Mamyshev, P.

Marchal, P.

P. Marchal “Spatial division multiplexing: a novel approach for guaranteed throughput on NoCs,” in 2005 Third IEEE/ACM/IFIP Int. Conf. Hardware/Software Codesign and System Synthesis (CODES+ISSS), Jersey City, USA, 2005, pp. 81–86.

Maresca, S.

S. Maresca, “Photonics for coherent MIMO radar: an experimental multi-target surveillance scenario,” in 2019 20th Int. Radar Symp. (IRS), Ulm, Germany, 2019, pp. 1–6.

Marincek, M.

Marpaung, A.

A. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Marpaung, D.

Marti, J.

V. Polo, B. Vidal, J. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N x N AWG-based delay lines,” IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 584–586, 2003.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett., vol. 31, no. 13, pp. 1095–1096, 1995.

Maruta, A.

S. Oda and A. Maruta, “All-optical digital-to-analog conversion using nonlinear optical loop mirrors,” IEEE Photon. Technol. Lett., vol. 18, no. 5, pp. 703–705, 2006.

Matei, D. G.

D. G. Matei, “1.5um Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett., vol. 118, pp. 263202-1–263202-6, 2017.

Matsuo, S.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw Technol., vol. 34, no. 1, pp. 55–66, 2016.

Matthews, P.

P. Matthews, L. Pao-Lo, J. Medberry, M. Franekl, and R. Esman, “Demonstration of a wide-band fiber-optic nulling system for array antennas,” IEEE Trans. Microw. Theory Technol., vol. 47, no. 7, pp. 1327–1331, 1999.

Maury, G.

S. Constant, Y. Guennec, G. Maury, M. Lourdiane, and B. Cabon, “Directly modulated laser diode in the nonlinear regime for low-cost digital frequency up-conversion,” Microw. Opt. Technol. Lett., vol. 50, no. 5, pp. 1214–1219, 2008.

McDonald, P.

A. Madni, P. McDonald, R. Hansen, and L. Wan, “High-dynamic-range airborne tracking and fire control radar subsystem,” IEEE Trans. Microw. Theory Technol., vol. 37, no. 12, pp. 1942–1948, 1989.

Mckinney, J.

V. Urick, J. Diehl, and J. Mckinney, “Nonlinear optical angle modulation for suppression of RF interference.” IEEE Trans. Microw. Theory Technol., vol. 64, no. 7, pp. 1–7, 2016.

J. McKinney, “Photonics illuminates the future of radar,” Nature, vol. 507, no. 7492, pp. 310–312, 2014.

V. Urick, K. Williams, and J. McKinney, Fundamentals of Microwave Photonics. USA: John Wiley & Sons, 2015.

McMichael, J.

K. Kolodziej, B. Perry, and J. McMichael, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4321–4334, 2016.

Mears, R.

R. Mears, L. Reekie, S. Poole, and D. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett., vol. 21, no. 17, pp. 738–740, 1985.

Medberry, J.

P. Matthews, L. Pao-Lo, J. Medberry, M. Franekl, and R. Esman, “Demonstration of a wide-band fiber-optic nulling system for array antennas,” IEEE Trans. Microw. Theory Technol., vol. 47, no. 7, pp. 1327–1331, 1999.

Melo, S.

S. Melo, “Photonics-based dual-band radar for landslides monitoring in presence of multiple scatterers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2337–2343, 2018.

S. Melo, “Dual-use system combining simultaneous active radar & communication, based on a single photonics-assisted transceiver,” in 2016 17th Int. Radar Symp. (IRS), Krakow, Poland, 2016, pp. 1–4.

Meltz, G.

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276, 1997.

Meng, Z.

Mercante, A.

Miller, M.

P. Kollias, E. Clothiaux, M. Miller, B. Albrecht, G. Stephens, and T. Ackerman, “Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research,” Bull. Amer. Meteorol. Soc., vol. 88, no. 10, pp. 1608–1624, 2007.

Minasian, R.

E. Chan, W. Zhang, and R. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678, 2012.

X. Yi, L. Li, T. Huang, and R. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett., vol. 37, no. 4, pp. 608–610, 2012.

X. K. Yi, T. Huang, and R. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3088–3093, 2010.

R. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Technol., vol. 54, no. 2, pp. 832–846, 2006.

E. Heyde and R. Minasian, “A solution to the synthesis problem of recirculating optical delay line filters,” IEEE Photon. Technol. Lett., vol. 6, no. 7, pp. 833–835, 1994.

Mitchell, A.

L. Bui, A. Mitchell, K. Ghorbani, and T. Chio, “Wide-band RF photonic second order vector sum phase-shifter,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, 2005.

Mollenauer, L.

P. Mamyshev and L. Mollenauer, “Pseudo-phase-matched four-wave mixing in soliton wavelength-division multiplexing transmission,” Opt. Lett., vol. 21, no. 6, pp. 396–398, 1996.

S. Evangelides, L. Mollenauer, J. Gordon, and N. Bergano, “Polarization multiplexing with solitons,” J. Lightw. Technol., vol. 10, no. 1, pp. 28–35, 1992.

Mora, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1744–1746, 2006.

Moreira, R.

R. Moreira, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett., vol. 25, no. 12, pp. 1165–1168, 2013.

Morioka, T.

T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond,” in 2009 14th OptoElectronics and Communications Conf. (OECC), Vienna, Austria, 2009, pp. 1–2.

Mork, J.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett., vol. 21, no. 1–4, pp. 167–169, 2009.

Mørk, J.

Munoz, P.

J. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nature Photon., vol. 11, no. 2, pp. 124–129, 2017.

Murakowski, J.

G. Schneider, J. Murakowski, C. Schuetz, S. Shi, and D. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon., vol. 7, pp. 118–122, 2013.

Muramoto, Y.

H. Ito, T. Furuta, Y. Muramoto, T. Ito, and T. Ishibashi, “Photonic millimetre-and sub-millimetre-wave generation using J-band rectangular-waveguide-output uni-travelling-carrier photodiode module,” Electron. Lett., vol. 42, no. 24, pp. 1424–1425, 2006.

Muriel, M.

Murphy, T.

Na, Y.

Nagashima, T.

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photon. Technol. Lett., vol. 29, no. 1, pp. 74–77, 2017.

Nayebi, M.

M. Sebt, A. Sheikhi, and M. Nayebi, “Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio,” IET Radar Sonar Navig., vol. 3, no. 2, pp. 122–132, 2009.

Nelson, L.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

Newberg, I.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightw. Technol., vol. 9, no. 9, pp. 1124–1131, 1991.

Ng, W.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightw. Technol., vol. 9, no. 9, pp. 1124–1131, 1991.

Nie, H.

H. Nie, F. Zhang, Y. Yang, and S. Pan, “Photonics-based integrated communication and radar system,” in 2019 Int. Topical Meeting on Microwave Photonics (MWP), Ottawa, Canada, 2019, pp. 1–4.

Nielsen, M.

Nikfal, B.

C. Caloz, S. Gupta, Q. Zhang, and B. Nikfal, “Analog signal processing: A possible alternative or complement to dominantly digital radio schemes,” IEEE Microw. Mag., vol. 14, no. 6, pp. 87–103, 2013.

Nishimura, M.

Nishitani, T.

Niu, T.

X. Wang, T. Niu, E. Chan, X. Feng, B. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J., vol. 9, no. 3, pp. 5501710, 2017.

Niu, Z.

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband optical multipath interference cancellation based on a dispersive element,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 849–851, 2016.

Noordegraaf, D.

Norberg, E.

E. Norberg, R. Guzzon, J. Parker, L. Johansson, and L. Coldren, “Programmable photonic microwave filters monolithically integrated in InP-InGaAsP,” J. Lightw. Technol., vol. 29, no. 11, pp. 1611–1619, 2011.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, no. 6, pp. 319–330, 2007.

Oda, S.

S. Oda and A. Maruta, “All-optical digital-to-analog conversion using nonlinear optical loop mirrors,” IEEE Photon. Technol. Lett., vol. 18, no. 5, pp. 703–705, 2006.

Okamoto, K.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett., vol. 37, no. 20, pp. 1237–1238, 2001.

Olcina, R.

Olmos, J.

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightw. Technol., vol. 28, no. 16, pp. 2247–2257, 2010.

Onori, D.

F. Scotti, F. Laghezza, D. Onori, and A. Bogoni, “Field trial of a photonics-based dual-band fully coherent radar system in a maritime scenario,” IET Radar Sonar Navig., vol. 11, pp. 420–425, 2017.

F. Scotti, D. Onori, M. Scaffardi, E. Lazzeri, A. Bogoni, and F. Laghezza, “Multi-frequency lidar/radar integrated system for robust and flexible doppler measurements,” IEEE Photon. Technol. Lett., vol. 27, no. 21, pp. 2268–2271, 2015.

F. Scotti, D. Onori, and F. Laghezza, “Fully coherent S-and X-band photonics-aided radar system demonstration,” IEEE Microw. Compon. Lett., vol. 25, no. 11, pp. 757–759, 2015.

F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “ISAR imaging of non-cooperative targets via dual band photonics-based radar system,” in 2016 17th Int. Radar Symp. (IRS), Krakow, Poland, 2016, pp. 1–4.

Oohashi, H.

H. Oohashi, “46.9-nm wavelength-selectable arrayed DFB lasers with integrated MMI coupler and SOA,” in 2001 Int. Conf. Indium Phosphide and Related Materials (13th IPRM), Nara, Japan, 2001, pp. 575–578.

Ortega, B.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229, 2006.

Pagán, V.

Pagani, M.

Palushani, E.

E. Palushani, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Topics Quantum Electron., vol. 18, no. 2, pp. 681–688, 2012.

Pan, S

X. Zhu, D. Zhu, and S Pan,“A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring,” in 2017 Int. Topical Meeting on Microwave Photonics (MWP), Beijing, China, 2017, pp. 1–3.

Pan, S.

Z. Tang, Y. Li, J. Yao, and S. Pan, “Photonics-based microwave frequency mixing: methodology and applications,” Laser Photon. Rev., vol. 14, no. 1, 2020.

S. Pan, Z. Tang, M. Huang, and S. Li, “Reflective-type microring resonator for on-chip reconfigurable microwave photonic systems,” IEEE J. Sel. Top. Quantum Electron., vol. 26, no. 5, pp. 1–12, 2020.

C. Xie, D. Zhu, W. Chen and S. Pan, “Microwave photonic channelizer based on polarization multiplexing and photonic dual output image reject mixer,” IEEE Access, vol. 7, pp. 158308–158316, 2019.

B. Gao, F. Zhang, E. Zhao, D. Zhang, and S. Pan, “High-resolution phased array radar imaging by photonics-based broadband digital beamforming,” Opt. Express, vol. 27, no. 9, pp. 13194–13203, 2019.

J. Shi, F. Zhang, X. Ye, Y. Yang, D. Ben, and S. Pan, “Photonics-based dual-functional system for simultaneous high-resolution radar imaging and fast frequency measurement,” Opt. Lett., vol. 44, no. 9, pp. 1948–1951, 2019.

X. Ye, F. Zhang, Y. Yang, D. Zhu, and S. Pan, “Photonics-based high-resolution 3D inverse synthetic aperture radar imaging,” IEEE Access, vol. 7, pp. 79503–79509, 2019.

X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging,” Photon. Res., vol. 7, no. 3, pp. 265–272, 2019.

B. Zhang, D. Zhu, P. Zhou, C. Xie, and S. Pan, “Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser,” Appl. Opt., vol. 58, no. 20, pp. 5479–5485, 2019.

W. Chen, D. Zhu, C. Xie, J. Liu, and S. Pan, “Microwave channelizer based on a photonic dual-output image-reject mixer,” Opt. Lett., vol. 44, no. 16, pp. 4052–4055, 2019.

Z. Tang, D. Zhu, and S. Pan, “Coherent optical RF channelizer with large instantaneous bandwidth and large in-band interference suppression,” J. Lightw. Technol., vol. 36, no. 19, pp. 4219–4226, 2018.

W. Chen, D. Zhu, C. Xie, T. Zhou, X. Zhong, and S. Pan, “Photonics-based reconfigurable multi-band linearly frequency-modulated signal generation,” Opt. Express, vol. 26, no. 25, pp. 32491–32499, 2018.

F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express, vol. 26, no. 13, pp. 17529–17540, 2018.

D. Zhu and S. Pan, “Photonics-based microwave image-reject mixer,” MDPI Photon., vol. 5, no. 2, pp. 6-1-12, 2018.

D. Zhu, W. Chen, and S. Pan, “Photonics-enabled balanced Hartley architecture for broadband image-reject microwave mixing,” Opt. Express, vol. 26, no. 21, pp. 28022–28029, 2018.

J. Wei, S. Zhang, J. Kim, and S. Pan, “Compact phase detector for optical-microwave synchronization using polarization modulation,” J. Lightw. Technol., vol. 36, no. 19, pp. 4267–4272, 2018.

J. Wei, D. Kwon, S. Zhang, S. Pan, and J. Kim, “All-fiber-photonics-based ultralow-noise agile frequency synthesizer for X-band radars,” Photon. Res., vol. 6, no. 1, pp. 12–17, 2018.

Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron., vol. 54, no. 4, pp. 0700112, 2018.

J. Fu, F. Zhang, D. Zhu, and S. Pan, “Fiber-distributed ultra-wideband radar network based on wavelength reusing transceivers,” Opt. Express, vol. 26, no. 14, pp. 18457–18469, 2018.

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by optical frequency quadrupling and polarization multiplexing,” IEEE Photon. Technol. Lett., vol. 29, no. 16, pp. 1320–1323, 2017.

Y. Zhang, F. Zhang, and S. Pan, “Generation of frequency-multiplied and phase-coded signal using an optical polarization division multiplexing modulator,” IEEE Trans. Microw. Theory Technol., vol. 65, no. 2, pp. 651–660, 2017.

Y. Xiang, G. Li, and S. Pan, “Ultrawideband optical cancellation of RF interference with phase change.” Opt. Express, vol. 25, no. 18, pp. 21259–21264, 2017.

Y. Zhang, X. Ye, Q. Guo, F. Zhang, and S. Pan, “Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1821–1829, 2017.

P. Zhou, F. Zhang, Q. Guo, S. Li, and S. Pan, “Reconfigurable radar waveform generation based on an optically injected semiconductor laser,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, pp. 1801109, 2017.

X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightw. Technol., vol. 35, no. 23, pp. 5010–5019, 2017.

Y. Zhang and S. Pan, “A photonics-based multi-function analog signal processor based on a polarization division multiplexing Mach-Zehnder modulator,” Opt. Lett., vol. 42, no. 23, pp. 5034–5037, 2017.

X. Ye, B. Zhang, Y. Zhang, D. Zhu, and S. Pan, “Performance evaluation of optical beamforming-based wideband antenna array,” Chin. Opt. Lett., vol. 15, no. 1, p. 010013, 2017.

X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett., vol. 41, no. 17, pp. 3956–3959, 2016.

Y. Zhang and S. Pan, “Frequency-multiplying microwave photonic phase shifter for independent multichannel phase shifting,” Opt. Lett., vol. 41, no. 6, pp. 1261–1264, 2016.

Z. Tang and S. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightw. Technol., vol. 34, no. 20, pp. 4729–4735, 2016.

P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express, vol. 24, no. 16, pp. 18460–18467, 2016.

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J., vol. 8, no. 6, pp. 5501909, 2016.

F. Zhang, B. Gao, and S. Pan, “Two-bit photonic digital-to-analog conversion unit based on polarization multiplexing,” Opt. Eng., vol. 55, no. 3, pp. 031115-1-4, 2016.

Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Technol., vol. 64, no. 9, pp. 3017–3025, 2016.

D. Zhu, J. Chen, and S. Pan, “Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator,” Opt. Express, vol. 24, no. 10, 2016.

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband optical multipath interference cancellation based on a dispersive element,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 849–851, 2016.

Z. Tang and S. Pan, “A full-duplex radio-over-fiber link based on a dual-polarization Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 852–855, 2016.

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634, 2015.

X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express, vol. 23, no. 8, pp. 10002–10008, 2015.

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634, 2015.

S. Liu, D. Zhu, Z. Wei, and S. Pan, “Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator,” Opt. Lett., vol. 39, no. 13, pp. 3958–3961, 2014.

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 31, no. 3, pp. 219–240, 2014.

F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photon. Res., vol. 2, no. 4, pp. B5–B10, 2014.

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett., vol. 38, no. 5, pp. 766–768, 2013.

Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 187–189, 2013.

Y. Zhang and S. Pan, “Tunable multitap microwave photonic filter with all complex coefficients,” Opt. Lett., vol. 38, no. 5, pp. 802–804, 2013.

S. Pan and Y. Zhang, “Tunable and wideband photonic microwave phase shifter based on a single sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485, 2012.

S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485, 2012.

M. Huang, J. Fu, and S. Pan, “Linearized analog photonic links based on a dual-parallel polarization modulator,” Opt. Lett., vol. 37, no. 11, pp. 1823–1825, 2012.

M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 715–717, 2011.

X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar transceiver for full-polarimetric inverse synthetic aperture imaging,” in 2018 Int. Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018, pp. 1–4.

H. Nie, F. Zhang, Y. Yang, and S. Pan, “Photonics-based integrated communication and radar system,” in 2019 Int. Topical Meeting on Microwave Photonics (MWP), Ottawa, Canada, 2019, pp. 1–4.

X. Gu, D. Zhu, S. Li, Y. Zhao, and S. Pan, “Photonic RF channelization based on series-coupled asymmetric double-ring resonator filter,” in The 7th IEEE/Int. Conf. on Advanced Infocomm Technology, Fuzhou, China, 2014, pp. 240–244.

Y. Zhang and S. Pan, “Experimental demonstration of frequency-octupled millimeter-wave signal generation based on a dual-parallel Mach-Zehnder modulator,” in 2012 IEEE MTT-S Int. Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, Nanjing, China, 2012, pp. 1–4.

Y. Zhang and S. Pan, “An electrically-tunable microwave photonic filter based on polarization modulation,” in 2014 IEEE MTT-S Int. Microwave Symp. (IMS), Tampa, USA, 2014, pp. 1–3.

G. Li, Y. Xiang, and S. Pan, “Wideband optical cancellation of RF interference with phase change,” in 2017 16th Int. Conf. Optical Communications and Networks (ICOCN), Wuzhen, China, 2017, pp. 1–3.

M. Huang, D. Zhu, and S. Pan, “Optical RF interference cancellation based on a dual-parallel polarization modulator,” in Asia Communications and Photonics Conf. 2014, Nov. 2014, p. ATh1F.6.

S. Pan and D. Zhu, “Broadband cognitive radio enabled by photonics,” in the 45th Eur. Conf. Exhib. Optical Communications (ECOC), Dublin, Ireland, 2019.

Pan, S. L.

S. L. Pan and J. P. Yao, “Photonics-based broadband microwave measurement,” IEEE/OSA J. Lightw. Technol., vol. 35, no. 16, pp. 3498–3513, 2017.

B. D. Gao, F. Z. Zhang, and S. L. Pan, “Experimental demonstration of arbitrary waveform generation by a 4-bit photonic digital-to-analog converter,” Opt. Commun., vol. 383, pp. 191–196, 2017.

Y. Chen and S. L. Pan, “Photonics-assisted radio-frequency self-interference cancellation and fiber transmission using a DP-QPSK modulator,” in 2018 Int. Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018, pp. 1–4.

Pan, W.

X. Zou, P. Li, W. Pan, and L. S. Yan, “Photonic microwave filters with ultra-high noise rejection [Invited],” Chin. Opt. Lett., vol. 17, no. 3, 2019.

Panasenko, D.

Pantell, R.

J. Fontana and R. Pantell, “Theoretical considerations on millimeter wave generation by optical frequency mixing,” Proc. IRE, vol. 50, no. 8, pp. 1796–1800, 1962.

Pao-Lo, L.

P. Matthews, L. Pao-Lo, J. Medberry, M. Franekl, and R. Esman, “Demonstration of a wide-band fiber-optic nulling system for array antennas,” IEEE Trans. Microw. Theory Technol., vol. 47, no. 7, pp. 1327–1331, 1999.

Paquet, S.

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable mm-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 10, pp. 3090–3097, 2005.

Park, H.

S. Park, C. Lee, K. Jeong, H. Park, J. Ahn, and K. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591, 2004.

Park, S.

S. Park, C. Lee, K. Jeong, H. Park, J. Ahn, and K. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591, 2004.

S. Park, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1834–1836, 2004.

Parker, J.

E. Norberg, R. Guzzon, J. Parker, L. Johansson, and L. Coldren, “Programmable photonic microwave filters monolithically integrated in InP-InGaAsP,” J. Lightw. Technol., vol. 29, no. 11, pp. 1611–1619, 2011.

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229, 2006.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett., vol. 31, no. 13, pp. 1095–1096, 1995.

Payne, D.

R. Mears, L. Reekie, S. Poole, and D. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett., vol. 21, no. 17, pp. 738–740, 1985.

Peng, H.

Peng, M.

Peng, P.

C. Lin, J. Chen, S. Dai, P. Peng, and S. Chi, “Impact of nonlinear transfer function and imperfect splitting ratio of MZM on optical up-conversion employing double sideband with carrier suppression modulation,” J. Lightw. Technol., vol. 26, no. 15, pp. 2449–2459, 2008.

Peng, S.

Peng, S.-W.

Peng, Y.

Y. Peng, “Photonic digital-to-analog converter based on summing of serial weighted multiwavelength pulses,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2135–2137, 2008.

Perry, B.

K. Kolodziej, S. Yegnanarayanan, and B. Perry, “Photonic-enabled RF canceller for wideband in-band full-duplex wireless systems,” IEEE Trans. Microw. Theory Technol., vol. 67, no. 5, pp. 2076–2086, 2019.

K. Kolodziej, B. Perry, and J. McMichael, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4321–4334, 2016.

Perry, T.

T. Perry, “In search of the future of air traffic control,” IEEE Spectrum, vol. 34, no. 8, pp. 18–35, 1997.

Pettengill, G. H.

G. H. Pettengill and I. I. Shapiro, “Radar astronomy,” Ann. Rev. Astron. Astrophys., vol. 3, no. 1, pp. 377–411, 1965.

Philippet, D.

Picardi, G.

G. Picardi, S. Sorge, R. Seu, G. Fedele, and R. Jordan, “Coherent cancellation of surface clutter for radar sounding,” in IEEE 1999 Int. Geoscience and Remote Sensing Symp. (IGARSS), Hamburg, Germany, 1999, vol. 5, pp. 2678–2680.

Pinna, S.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in 2013 IEEE Radar Conf. (RadarCon), Ottawa, Canada, 2013, pp. 1–5.

Poddar, A.

A. Poddar, U. Rohde, V. Madhavan, A. Apte, and S. Koul, “Ka-Band metamaterial Möbius Oscillator (MMO) circuit,” in 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, USA, 2016, pp. 1–4.

Polo, V.

V. Polo, B. Vidal, J. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N x N AWG-based delay lines,” IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 584–586, 2003.

Poole, S.

R. Mears, L. Reekie, S. Poole, and D. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett., vol. 21, no. 17, pp. 738–740, 1985.

Porzi, C.

C. Porzi, “High-capacity single-sideband suppressed-carrier modulation with integrated optical filter in silicon-on-insulator technology,” in 2019 Int. Workshop on Fiber Optics in Access Networks (FOAN), Sarajevo, Bosnia and Herzegovina, 2019, pp. 29–33.

Prather, D.

F. Wang, S. Shi, and D. Prather, “Microwave photonic link with improved SFDR using two parallel MZMs and a polarization beam combiner,” J. Lightw. Technol., vol. 37, no. 24, pp. 6156–6164, 2019.

G. Schneider, J. Murakowski, C. Schuetz, S. Shi, and D. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon., vol. 7, pp. 118–122, 2013.

Prather, D. W.

Prucnal, P.

M. Chang, C. Lee, B. Wu, and P. Prucnal, “Adaptive Optical Self-Interference Cancellation Using a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett., vol. 27, no. 9, pp. 1018–1021, 2015.

J. Suarez, K. Kravtsov, and P. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 402–408, 2009.

Pu, M.

Qi, G.

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable mm-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 10, pp. 3090–3097, 2005.

Qian, D.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol., vol. 28, no. 4, pp. 484–493, 2010.

Qian, J.

M. Lei, Z. Zheng, J. Qian, M. Xie, X. Gao, and S. Huang, “Photonics-assisted super-octave microwave phase shifter,” IEEE Photon. J., vol. 11, no. 1, pp. 1–11, 2019.

Qian, N.

N. Qian, W. Zou, S. Zhang, and J. Chen, “Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation,” Opt. Lett., vol. 43, no. 23, pp. 5869–5872, 2018.

S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett., vol. 30, no. 11, pp. 1028–1031, 2018.

Qixiang, C.

N. Janosik, C. Qixiang, M. Glick, H. Yishen, and K. Bergman, “High-resolution silicon microring based architecture for optical matrix multiplication,” in 2019 Conf. Lasers and Electro-Optics (CLEO), San Jose, USA, 2019, pp. SM2J.3.

Qu, P.

Radic, S.

Raible, D.

Rambach, K.

K. Rambach and B. Yang, “MIMO radar: time division multiplexing vs. code division multiplexing,” in Int. Conf. Radar Systems (Radar 2017), Belfast, UK, 2017, pp. 1–5.

Rampone, T.

C. Bohemond, T. Rampone, and A. Sharaiha, “Performances of a photonic microwave mixer based on cross-gain modulation in a semiconductor optical amplifier,” J. Lightw. Technol., vol. 29, no. 16, pp. 2402–2409, 15, 2011.

Rangarajan, S.

A. Sabharwal, P. Schniter, D. Guo, D. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, 2014.

Rashidinejad, A.

A. Rashidinejad and A. Weiner, “Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability,” J. Lightw. Technol., vol. 32, no. 20, pp. 3383–3393, 2014.

Y. Li, A. Rashidinejad, J. Wun, D. Leaird, J. Shi, and A. Weiner, “Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9 mm range resolution,” Optica, vol. 1, no. 6, pp. 446–454, 2014.

Raz, O.

R. Rotman, O. Raz, S. Barzilay, S. R. Rotman, and M. Tur, “Wideband antenna patterns and impulse response of broadband RF phased arrays with RF and photonic beamforming,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 36–44, 2007.

Reekie, L.

R. Mears, L. Reekie, S. Poole, and D. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett., vol. 21, no. 17, pp. 738–740, 1985.

Richards, M.

M. Richards, J. A. Scheer, and W. A. Holm, Principle of Modern Radar: Basic Principle. SciTech Publishing, 2010.

Richardson, D.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

Riza, N.

N. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightw. Technol., vol. 12, no. 8, pp. 1440–1447, 1994.

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science, vol. 288, no. 5463, pp. 119–122, 2000.

Rodriguez, J.

M. Bagnell, J. Rodriguez, and P. Delfyett, “Millimeter-wave generation in an optoelectronic oscillator using an ultrahigh finesse etalon as a photonic filter,” J. Lightw. Technol., vol. 32, no. 6, pp. 1063–1067, 2014.

Roeloffzen, C.

L. Zhuang, C. Roeloffzen, M. Hoekman, K. Boller, and A. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica, vol. 2, no. 5, pp. 854–859, 2015.

A. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Rohde, U.

A. Poddar, U. Rohde, V. Madhavan, A. Apte, and S. Koul, “Ka-Band metamaterial Möbius Oscillator (MMO) circuit,” in 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, USA, 2016, pp. 1–4.

Rohling, H.

A. Zwanetski and H. Rohling, “Continuous wave MIMO radar based on time division multiplexing,” in 2012 13th Int. Radar Symp., Warsaw, Poland, 2012, pp. 119–121.

Roman, J.

J. Roman, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Technol., vol. 46, no. 12, pp. 2317–2323, 1998.

Rossi, J.

Rotman, R.

R. Rotman, O. Raz, S. Barzilay, S. R. Rotman, and M. Tur, “Wideband antenna patterns and impulse response of broadband RF phased arrays with RF and photonic beamforming,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 36–44, 2007.

Rotman, S. R.

R. Rotman, O. Raz, S. Barzilay, S. R. Rotman, and M. Tur, “Wideband antenna patterns and impulse response of broadband RF phased arrays with RF and photonic beamforming,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 36–44, 2007.

Sabharwal, A.

A. Sabharwal, P. Schniter, D. Guo, D. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, 2014.

Sagues, M.

M. Sagues, R. Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express, vol. 16, no. 1, pp. 295–303, 2008.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1744–1746, 2006.

Saida, T.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett., vol. 37, no. 20, pp. 1237–1238, 2001.

Saitoh, K.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw Technol., vol. 34, no. 1, pp. 55–66, 2016.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express, vol. 6, no. 2, pp. 98–103, 2009.

Salem,

Sales, S.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

A. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° photonic microwave phase shifter based on a single semiconductor optical amplifier,” Opt. Express, vol. 19, no. 18, pp. 17421–17426, 2011.

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360° photonic microwave phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express, vol. 18, no. 6, pp. 6156–6163, 2010.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett., vol. 21, no. 1–4, pp. 167–169, 2009.

M. Sagues, R. Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express, vol. 16, no. 1, pp. 295–303, 2008.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett., vol. 31, no. 13, pp. 1095–1096, 1995.

I. Gasulla, D. Barrera, and S. Sales, “Microwave photonic devices based on multicore fibers,” in 2014 16th Int. Conf. Transparent Optical Networks (ICTON), Graz, Austria, 2014, pp. 1–4.

Sancho, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° photonic microwave phase shifter based on a single semiconductor optical amplifier,” Opt. Express, vol. 19, no. 18, pp. 17421–17426, 2011.

Saperstein, R.

Sasaki, Y.

Y. Sasaki, “Few-mode multicore fibers for long-haul transmission line,” Opt. Fiber Technol., vol. 35, pp. 19–27, 2017.

Savchenkov, A.

A. Savchenkov, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 EEE Int. Frequency Control Symp., Newport Beach, USA, 2010, pp. 554–557.

Scaffardi, M.

F. Scotti, D. Onori, M. Scaffardi, E. Lazzeri, A. Bogoni, and F. Laghezza, “Multi-frequency lidar/radar integrated system for robust and flexible doppler measurements,” IEEE Photon. Technol. Lett., vol. 27, no. 21, pp. 2268–2271, 2015.

Schaffer, T. A.

T. A. Schaffer, H. P. Warren, M. J. Bustamante, and K. W. Kong, “A 2 GHz 12-bit digital-to-analog converter for direct digital synthesis applications,” Techn. Digest GaAs Ie Symp., 1996, pp. 61–64.

Scheer, J. A.

M. Richards, J. A. Scheer, and W. A. Holm, Principle of Modern Radar: Basic Principle. SciTech Publishing, 2010.

Scheunert, U.

L. Andreone, F. Tango, U. Scheunert, H. Cramer, G. Wanielik, and A. Amditis, “A new driving supporting system, integrating an infrared camera and an anti-collision micro-wave radar: the EUCLIDE project,” in Intell. Vehicle Symp., 2002. IEEE, Versailles, France, 2002, vol. 2, pp. 519–526.

Schmidhammer, E.

N. Kees, E. Schmidhammer, and J. Detlefsen, “Improvement of angular resolution of a millimeterwave imaging system by transmitter location multiplexing,” in IEEE NTC, Conf. Proc. Microwave Systems Conf., Orlando, USA, 1995, pp. 105–108.

Schnabel, R.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Tech. vol. 60, no. 3, pp. 845–860, 2012.

Schnebelin, C.

Schnébelin, C.

C. Schnébelin, J. Azaña, and H. Chatellus, “Programmable broadband optical field spectral shaping with megahertz resolution using a simple frequency shifting loop,” Nature Commun., vol. 10, no. 1, pp. 1–11, 2019.

H. Chatellus, L. Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nature Commun., vol. 9, no. 1, p. 2438, 2018.

Schneider, G.

G. Schneider, J. Murakowski, C. Schuetz, S. Shi, and D. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon., vol. 7, pp. 118–122, 2013.

Schniter, P.

A. Sabharwal, P. Schniter, D. Guo, D. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, 2014.

Schuetz, C.

G. Schneider, J. Murakowski, C. Schuetz, S. Shi, and D. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon., vol. 7, pp. 118–122, 2013.

Scott, G.

Q. Zhou, H. Feng, and G. Scott, “Wideband co-site interference cancellation based on hybrid electrical and optical techniques.” Opt. Lett., vol. 39, no. 22, pp. 6357–6540, 2014.

Scotti, F.

F. Scotti, F. Laghezza, D. Onori, and A. Bogoni, “Field trial of a photonics-based dual-band fully coherent radar system in a maritime scenario,” IET Radar Sonar Navig., vol. 11, pp. 420–425, 2017.

F. Scotti, D. Onori, M. Scaffardi, E. Lazzeri, A. Bogoni, and F. Laghezza, “Multi-frequency lidar/radar integrated system for robust and flexible doppler measurements,” IEEE Photon. Technol. Lett., vol. 27, no. 21, pp. 2268–2271, 2015.

F. Scotti, D. Onori, and F. Laghezza, “Fully coherent S-and X-band photonics-aided radar system demonstration,” IEEE Microw. Compon. Lett., vol. 25, no. 11, pp. 757–759, 2015.

F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “ISAR imaging of non-cooperative targets via dual band photonics-based radar system,” in 2016 17th Int. Radar Symp. (IRS), Krakow, Poland, 2016, pp. 1–4.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in 2013 IEEE Radar Conf. (RadarCon), Ottawa, Canada, 2013, pp. 1–5.

Sebt, M.

M. Sebt, A. Sheikhi, and M. Nayebi, “Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio,” IET Radar Sonar Navig., vol. 3, no. 2, pp. 122–132, 2009.

Seeds, A.

A. Seeds and K. Williams, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641, 2006.

Seeds, A. J.

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Technol., vol. 43, no. 9, pp. 2378–2386, 1995.

Sefler, G.

G. Sefler, J. Chou, J. Conway, and G. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightw. Technol., vol. 28, no. 10, pp. 1468–1476, 2010.

J. Chou, J. Conway, G. Sefler, G. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightw. Technol., vol. 27, no. 22, pp. 5073–5077, 2009.

Seidel, D.

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system,” in 2008 IEEE Int. Frequency Control Symp., Honolulu, USA, 2008, pp. 811–814.

Seo, J.

J. Seo, C. Choi, W. Choi, Y. Kang, Y. Chung, and J. Kim, “Remote optoelectronic frequency down-conversion using 60-GHz optical heterodyne signals and an electro-absorption modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1073–1075, 2005.

Serafino, G.

G. Serafino, “Toward a new generation of radar systems based on microwave photonic technologies,” J. Lightw. Technol., vol. 37, no. 2, pp. 643–650, 2019.

Seregelyi, J.

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable mm-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 10, pp. 3090–3097, 2005.

Set, S.

Seu, R.

G. Picardi, S. Sorge, R. Seu, G. Fedele, and R. Jordan, “Coherent cancellation of surface clutter for radar sounding,” in IEEE 1999 Int. Geoscience and Remote Sensing Symp. (IGARSS), Hamburg, Germany, 1999, vol. 5, pp. 2678–2680.

Shahoei, H.

Shao, L.

M. Li, L. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 314–316, 2011.

Shao, Y.

X. Han, B. Huo, Y. Shao, C. Wang, and M. Zhao, “RF self-interference cancellation using phase modulation and optical sideband filtering.” IEEE Photon. Technol. Lett., vol. 29, no. 11, pp. 917–920, 2017.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation for full-duplex communication using an integrated DP-MZM,” in 2017 Progress in Electromagnetics Research Symp.-Spring (PIERS), St. Petersburg, Russia, 2017, pp. 2240–2244.

Shapiro, I. I.

G. H. Pettengill and I. I. Shapiro, “Radar astronomy,” Ann. Rev. Astron. Astrophys., vol. 3, no. 1, pp. 377–411, 1965.

Sharaiha, A.

C. Bohemond, T. Rampone, and A. Sharaiha, “Performances of a photonic microwave mixer based on cross-gain modulation in a semiconductor optical amplifier,” J. Lightw. Technol., vol. 29, no. 16, pp. 2402–2409, 15, 2011.

Sheikhi, A.

M. Sebt, A. Sheikhi, and M. Nayebi, “Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio,” IET Radar Sonar Navig., vol. 3, no. 2, pp. 122–132, 2009.

Shi, J.

Shi, J.-W.

Shi, N.

N. Shi, Q. Song, J. Tang, W. Li, N. Zhu, and M. Li, “A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array.” Opt. Commun., vol. 447. pp. 55–60, 2019.

N. Shi, W. Li, N. Zhu, and M. Li, “Optically controlled phase array antenna,” Chin. Opt. Lett., vol. 17, no. 5, p. 052301, 2019.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun., vol. 407, pp. 27–32, 2018.

Shi, S.

F. Wang, S. Shi, and D. Prather, “Microwave photonic link with improved SFDR using two parallel MZMs and a polarization beam combiner,” J. Lightw. Technol., vol. 37, no. 24, pp. 6156–6164, 2019.

A. Mercante, S. Shi, P. Yao, L. Xie, R. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express, vol. 26, no. 11, pp. 14810–14816, 2018.

G. Schneider, J. Murakowski, C. Schuetz, S. Shi, and D. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon., vol. 7, pp. 118–122, 2013.

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science, vol. 288, no. 5463, pp. 119–122, 2000.

Shi, Z.

Z. Shi, S. Zhu, M. Li, N. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun., vol. 428, pp. 131–135, 2018.

Shibata, T.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett., vol. 37, no. 20, pp. 1237–1238, 2001.

Singh, A.

A. Singh and V. Lubecke, “Adaptive noise cancellation for two frequency radar using frequency doubling passive RF tags,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2975–2981, 2013.

Skinner, B.

B. Skinner, J. Donohoe, and F. Ingels, “Simplified performance estimation of FSK/PSK hybrid signaling radar systems,” in Proc. IEEE 1993 National Aerospace and Electronics Conf.-NAECON 1993, Dayton, USA, 1993, vol. 1, pp. 255–261.

Skolnik, M.

M. Skolnik, Radar Handbook, 3rd ed. USA: McGraw-Hill, 2008.

Skovgaard, P.

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett., vol. 91, no. 16, p. 161105, 2007.

Song, K.

S. Park, C. Lee, K. Jeong, H. Park, J. Ahn, and K. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591, 2004.

Song, L.

S. Dug, L. Song, and K. Gyoun, “Optical true time-delay feeder for X-band phased array antennas composed of 2x2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1364–1366, 2004.

Song, Q.

N. Shi, Q. Song, J. Tang, W. Li, N. Zhu, and M. Li, “A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array.” Opt. Commun., vol. 447. pp. 55–60, 2019.

Song, Y.

Sorge, S.

G. Picardi, S. Sorge, R. Seu, G. Fedele, and R. Jordan, “Coherent cancellation of surface clutter for radar sounding,” in IEEE 1999 Int. Geoscience and Remote Sensing Symp. (IGARSS), Hamburg, Germany, 1999, vol. 5, pp. 2678–2680.

Spezio, A.

G. Anderson, D. Webb, A. Spezio, and J. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE, vol. 79, no. 3, pp. 355–388, 1991.

Steier, W. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science, vol. 288, no. 5463, pp. 119–122, 2000.

Stephens, G.

P. Kollias, E. Clothiaux, M. Miller, B. Albrecht, G. Stephens, and T. Ackerman, “Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research,” Bull. Amer. Meteorol. Soc., vol. 88, no. 10, pp. 1608–1624, 2007.

Strutz, S.

S. Strutz and K. Williams, “A 0.8-8.8-GHz image rejection microwave photonic downconverter,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1376–1378, 2002.

S. Strutz and K. Williams, “An 8-18-GHz all-optical microwave downconverter with channelization,” IEEE Trans. Microw. Theory Technol., vol. 49, no. 10, pp. 1992–1995, 2001.

Suarez, J.

J. Suarez, K. Kravtsov, and P. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 402–408, 2009.

Subbaraman, H.

M. Chen, H. Subbaraman, and R. Chen, “Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 375–377, 2008.

Sugita, A.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett., vol. 37, no. 20, pp. 1237–1238, 2001.

Sun, C.-K.

Sun, H.

X. Guo, H. Sun, and T. Yeo, “Interference cancellation for high-frequency surface wave radar,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 7, pp. 1879–1891, 2008.

Sun, W.

W. Li, W. Sun, W. Wang, L. Wang, J. Liu, and N. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express, vol. 22, no. 5, pp. 5522–5527, 2014.

W. Li, W. Wang, W. Sun, J. Liu, and N. Zhu, “Microwave photonic notch filter with complex coefficient based on DDMZM,” IEEE Photon. Technol. Lett., vol. 26, no. 18, pp. 1859–1862, 2014.

Suo, J.

C. Deng, J. Suo, Y. Wang, Z. Zhang, and Q. Dai, “Single-shot thermal ghost imaging using wavelength-division multiplexing,” Appl. Phys. Lett., vol. 112, no. 5, 2018.

Supradeepa, V.

V. Supradeepa, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nature Photon., vol. 6, no. 3, pp. 186–194, 2012.

Takiguchi, K.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett., vol. 37, no. 20, pp. 1237–1238, 2001.

Tang, J.

N. Shi, Q. Song, J. Tang, W. Li, N. Zhu, and M. Li, “A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array.” Opt. Commun., vol. 447. pp. 55–60, 2019.

J. Tang, “Integrated optoelectronic oscillator,” Opt. Express, vol. 26, no. 9, pp. 12257–12265, 2018.

Tang, S.

Tang, Z.

Z. Tang, Y. Li, J. Yao, and S. Pan, “Photonics-based microwave frequency mixing: methodology and applications,” Laser Photon. Rev., vol. 14, no. 1, 2020.

S. Pan, Z. Tang, M. Huang, and S. Li, “Reflective-type microring resonator for on-chip reconfigurable microwave photonic systems,” IEEE J. Sel. Top. Quantum Electron., vol. 26, no. 5, pp. 1–12, 2020.

Z. Tang, D. Zhu, and S. Pan, “Coherent optical RF channelizer with large instantaneous bandwidth and large in-band interference suppression,” J. Lightw. Technol., vol. 36, no. 19, pp. 4219–4226, 2018.

Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Technol., vol. 64, no. 9, pp. 3017–3025, 2016.

Z. Tang and S. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightw. Technol., vol. 34, no. 20, pp. 4729–4735, 2016.

Z. Tang and S. Pan, “A full-duplex radio-over-fiber link based on a dual-polarization Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 852–855, 2016.

Tango, F.

L. Andreone, F. Tango, U. Scheunert, H. Cramer, G. Wanielik, and A. Amditis, “A new driving supporting system, integrating an infrared camera and an anti-collision micro-wave radar: the EUCLIDE project,” in Intell. Vehicle Symp., 2002. IEEE, Versailles, France, 2002, vol. 2, pp. 519–526.

Tangonan, G.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightw. Technol., vol. 9, no. 9, pp. 1124–1131, 1991.

Tatoli, T.

Teng, F.

S. Hu, L. W. Li, X. Yi, and F. Teng, “Tunable dual-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 330–333, 2017.

Thomson, R.

Tjoelker, R. L.

K. Y. Lau, G. F. Lutes, and R. L. Tjoelker, “Ultra-stable RF-over-fiber transport in NASA antennas, phased arrays and radars,” J. Lightw. Technol., vol. 32, no. 20, pp. 3440–3451, 2014.

Tocnaye, J.

Toda, H.

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightw. Technol., vol. 28, no. 16, pp. 2247–2257, 2010.

Toda, Y.

Y. Awaji, N. Wada, Y. Toda, and T. Hayashi, “World first mode/spatial division multiplexing in multi-core fiber using Laguerre-Gaussian mode,” in 2011 37th Eur. Conf. Optical Communication (ECOC), Geneva, Switzerland, 2011, pp. We.10.P1.55.

Toernig, J.

W. Gruener, J. Toernig, and P. Fielding, “Active-electronically-scanned-array based radar system features,” in Radar 97 (Conf. Publ. No. 449), Edinburgh, UK, 1997, pp. 339–343.

Topak, E.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Tech. vol. 60, no. 3, pp. 845–860, 2012.

Toughlian, E. N.

H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar. USA: Artech House, 1994.

Tseng, T.-F.

Tsia, K.

K. Goda, K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature, vol. 458, pp. 1145–1150, 2009.

K. Goda, K. Tsia, and B. Jalali, “Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett., vol. 93, no. 13, pp. 131109-1–131109-3, 2008.

Tu, K.-Y.

A. Leven, J. Lin, J. Lee, K.-Y. Tu, Y. Baeyens, and Y. K. Chen, “A 12.5G sample/s optical digital-to-analog converter with 3.8 effective bits,” in Proc. 17th Ann. Meet. IEEE Lasers and Electro-Optics Society, Puerto Rico, 2004, pp. 270–271.

Tu, Z.

Z. Tu, A. Wen, W. Zhang, Z. Xiu, and G. Yu, “All-optical image-reject frequency down-conversion based on cascaded electro-optical modulators,” Opt. Commun., vol. 430, pp. 158–162, 2019.

Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation.” IEEE Photon. Technol. Lett., vol. 30, no. 14. pp. 1297–1300, 2018.

Tur, M.

R. Rotman, O. Raz, S. Barzilay, S. R. Rotman, and M. Tur, “Wideband antenna patterns and impulse response of broadband RF phased arrays with RF and photonic beamforming,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 36–44, 2007.

Uchiyama, K.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett., vol. 37, no. 20, pp. 1237–1238, 2001.

Uden, R.

R. Uden, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, no. 11, pp. 865, 2014.

Urick, V.

V. Urick, J. Diehl, and J. Mckinney, “Nonlinear optical angle modulation for suppression of RF interference.” IEEE Trans. Microw. Theory Technol., vol. 64, no. 7, pp. 1–7, 2016.

V. Urick, K. Williams, and J. McKinney, Fundamentals of Microwave Photonics. USA: John Wiley & Sons, 2015.

Vahala, K.

J. Li, H. Lee, and K. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, no. 2097, pp. 1–7, 2013.

Vaillancourt, W.

K. L. Koester and W. Vaillancourt, “TALONS 95 GHz radar sensor for autonomous landing guidance,” IEEE Aerosp. Electron. Syst. Mag., vol. 7, no. 7, pp. 40–44, 1992.

Valley, G.

G. Sefler, J. Chou, J. Conway, and G. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightw. Technol., vol. 28, no. 10, pp. 1468–1476, 2010.

J. Chou, J. Conway, G. Sefler, G. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightw. Technol., vol. 27, no. 22, pp. 5073–5077, 2009.

G. Valley, “Photonic analog-to-digital converters,” Opt. Express, vol. 15, no. 5, pp. 1955–1982, 2007.

Vidal, B.

V. Polo, B. Vidal, J. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N x N AWG-based delay lines,” IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 584–586, 2003.

Visscher, I.

I. Visscher,“Broadband true time delay microwave photonic beamformer for phased array antennas,” in 2019 13th Eur. Conf. on Antennas and Propagation (EuCAP), Krakow, Poland, 2019, pp. 1–5.

Wada, N.

Y. Awaji, N. Wada, Y. Toda, and T. Hayashi, “World first mode/spatial division multiplexing in multi-core fiber using Laguerre-Gaussian mode,” in 2011 37th Eur. Conf. Optical Communication (ECOC), Geneva, Switzerland, 2011, pp. We.10.P1.55.

Waldschmidt, C.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Tech. vol. 60, no. 3, pp. 845–860, 2012.

Walker, J.

K. Ho, J. Walker, and J. Kahn, “External optical feedback effects on intensity noise of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 5, no. 8, pp. 892–895, 1993.

Walston, A.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightw. Technol., vol. 9, no. 9, pp. 1124–1131, 1991.

Wan, L.

A. Madni, P. McDonald, R. Hansen, and L. Wan, “High-dynamic-range airborne tracking and fire control radar subsystem,” IEEE Trans. Microw. Theory Technol., vol. 37, no. 12, pp. 1942–1948, 1989.

Wang, A.

Wang, B.

Z. Wang, B. Wang, D. Zhao, and R. Wang, “Full analog broadband time-reversal module for ultra-wideband communication system,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 1–10, 2019.

B. Wang, “Precise and continuous time and frequency synchronisation at the 5× 10-19 accuracy level,” Sci. Rep., vol. 2, p. 556, 2012.

Wang, C.

X. Han, B. Huo, Y. Shao, C. Wang, and M. Zhao, “RF self-interference cancellation using phase modulation and optical sideband filtering.” IEEE Photon. Technol. Lett., vol. 29, no. 11, pp. 917–920, 2017.

M. Li, C. Wang, W. Li, and J. Yao, “An imbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Technol., vol. 58, no. 11, pp. 2968–2975, 2010.

C. Wang and J. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac loop mirror incorporating a chirped fiber bragg grating,” J. Lightw. Technol., vol. 27, no. 16, pp. 3336–3341, 2009.

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 9–12, pp. 882–884, 2008.

Wang, F.

F. Wang, S. Shi, and D. Prather, “Microwave photonic link with improved SFDR using two parallel MZMs and a polarization beam combiner,” J. Lightw. Technol., vol. 37, no. 24, pp. 6156–6164, 2019.

Wang, G.

G. Wang, “Ultrafast optical imaging using multimode fiber based compressed sensing and photonic time stretch,” 2018, arXiv preprint, arXiv:1803.03061.

Wang, J.

Wang, K.

X. Yu, K. Wang, X. Zheng, and H. Zhang, “Incoherent photonic digital-to-analogue converter based on broadband optical source,” Electron. Lett., vol. 43, no. 19, pp. 1044–1045, 2007.

Wang, L.

Wang, L. X.

W. Li, N. H. Zhu, and L. X. Wang, “Continuously tunable microwave photonic notch filter with a complex coefficient,” IEEE Photon. J., vol. 3, no. 3, pp. 462–467, 2011.

Wang, M.

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband optical multipath interference cancellation based on a dispersive element,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 849–851, 2016.

Wang, Q.

J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett., vol. 19, no. 9–12, pp. 644–646, 2007.

Wang, R.

Z. Wang, B. Wang, D. Zhao, and R. Wang, “Full analog broadband time-reversal module for ultra-wideband communication system,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 1–10, 2019.

Wang, T.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol., vol. 28, no. 4, pp. 484–493, 2010.

Wang, W.

W. Wang, “Photonic generation of pulsed microwave signal based on phase shifted lyot optical filter,” IEEE Photon. Technol. Lett., vol. 27, no. 17, pp. 1845–1848, 2015.

W. Li, W. Wang, W. Sun, J. Liu, and N. Zhu, “Microwave photonic notch filter with complex coefficient based on DDMZM,” IEEE Photon. Technol. Lett., vol. 26, no. 18, pp. 1859–1862, 2014.

W. Li, W. Sun, W. Wang, L. Wang, J. Liu, and N. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express, vol. 22, no. 5, pp. 5522–5527, 2014.

Wang, X.

X. Wang, “High-accuracy optical time delay measurement in fiber link [Invited],” Chin. Opt. Lett., vol. 17, no. 6, 2019.

T. Li, H. Chan, X. Wang, X. Feng, B. Guan, and J. Yao, “Broadband photonic microwave signal processor with frequency up/down conversion and phase shifting capability,” IEEE Photon. J., vol. 9, no. 6, 2017.

X. Wang, T. Niu, E. Chan, X. Feng, B. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J., vol. 9, no. 3, pp. 5501710, 2017.

Wang, Y.

C. Deng, J. Suo, Y. Wang, Z. Zhang, and Q. Dai, “Single-shot thermal ghost imaging using wavelength-division multiplexing,” Appl. Phys. Lett., vol. 112, no. 5, 2018.

Wang, Z.

Z. Wang, B. Wang, D. Zhao, and R. Wang, “Full analog broadband time-reversal module for ultra-wideband communication system,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 1–10, 2019.

Wanielik, G.

L. Andreone, F. Tango, U. Scheunert, H. Cramer, G. Wanielik, and A. Amditis, “A new driving supporting system, integrating an infrared camera and an anti-collision micro-wave radar: the EUCLIDE project,” in Intell. Vehicle Symp., 2002. IEEE, Versailles, France, 2002, vol. 2, pp. 519–526.

Warren, H. P.

T. A. Schaffer, H. P. Warren, M. J. Bustamante, and K. W. Kong, “A 2 GHz 12-bit digital-to-analog converter for direct digital synthesis applications,” Techn. Digest GaAs Ie Symp., 1996, pp. 61–64.

Webb, D.

G. Anderson, D. Webb, A. Spezio, and J. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE, vol. 79, no. 3, pp. 355–388, 1991.

Wei, C.

Wei, F.

X. K. Yi, F. Wei, N. Hong, and L. Chao, “Tunable microwave filter design using wavelength conversion technique and high dispersion time delays,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 857–859, 2001.

Wei, J.

J. Wei, D. Kwon, S. Zhang, S. Pan, and J. Kim, “All-fiber-photonics-based ultralow-noise agile frequency synthesizer for X-band radars,” Photon. Res., vol. 6, no. 1, pp. 12–17, 2018.

J. Wei, S. Zhang, J. Kim, and S. Pan, “Compact phase detector for optical-microwave synchronization using polarization modulation,” J. Lightw. Technol., vol. 36, no. 19, pp. 4267–4272, 2018.

Wei, Z.

Weigel, R.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Tech. vol. 60, no. 3, pp. 845–860, 2012.

Weikle, R.

Weiner, A.

Y. Li, A. Rashidinejad, J. Wun, D. Leaird, J. Shi, and A. Weiner, “Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9 mm range resolution,” Optica, vol. 1, no. 6, pp. 446–454, 2014.

A. Rashidinejad and A. Weiner, “Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability,” J. Lightw. Technol., vol. 32, no. 20, pp. 3383–3393, 2014.

S. Cundiff and A. Weiner, “Optical arbitrary waveform generation,” Nature Photon., vol. 4, no. 11, p. 760, 2010.

Welch, P.

P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust., vol. 15, no. 2, pp. 70–73, 1967.

Wen, A.

Z. Tu, A. Wen, W. Zhang, Z. Xiu, and G. Yu, “All-optical image-reject frequency down-conversion based on cascaded electro-optical modulators,” Opt. Commun., vol. 430, pp. 158–162, 2019.

Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation.” IEEE Photon. Technol. Lett., vol. 30, no. 14. pp. 1297–1300, 2018.

Y. Gao, A. Wen, W. Chen, and X. Li, “All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter,” Opt. Lett., vol. 42, no. 6, pp. 1105–1108, 2017.

Wen, H.

White, G.

Y. Deng, A. Burr, and G. White, “Performance of MIMO systems with combined polarization multiplexing and transmit diversity,” in 2005 IEEE 61st Vehicular Technology Conf., Stockholm, Sweden, 2005, vol. 2, pp. 869–873.

Wiberg, A.

Wichman, R.

A. Sabharwal, P. Schniter, D. Guo, D. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, 2014.

Williams, K.

J. Zhao, Y. E, K. Williams, X. Zhang, and R. W. Boyd, “Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding,” Light Sci. Appl., vol. 8, pp. 55, 2019.

A. Seeds and K. Williams, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641, 2006.

S. Strutz and K. Williams, “A 0.8-8.8-GHz image rejection microwave photonic downconverter,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1376–1378, 2002.

S. Strutz and K. Williams, “An 8-18-GHz all-optical microwave downconverter with channelization,” IEEE Trans. Microw. Theory Technol., vol. 49, no. 10, pp. 1992–1995, 2001.

V. Urick, K. Williams, and J. McKinney, Fundamentals of Microwave Photonics. USA: John Wiley & Sons, 2015.

Woodward, T.

A. Agarwal, T. Banwell, and T. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightw. Technol., vol. 29, no. 16, pp. 2394–2401, 2011.

Wu, B.

M. Chang, C. Lee, B. Wu, and P. Prucnal, “Adaptive Optical Self-Interference Cancellation Using a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett., vol. 27, no. 9, pp. 1018–1021, 2015.

Wu, C.

J. Shi, Y. Wu, C. Wu, P. Chiu, and C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1929–1931, 2005.

Wu, D.

Wu, K.

Z. Li and K. Wu, “On the leakage of FMCW radar front-end receiver,” in Global Symp. Millimeter Waves, IEEE, 2008, pp. 127–130.

Wu, P.

Wu, Y.

J. Shi, Y. Wu, C. Wu, P. Chiu, and C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1929–1931, 2005.

Wun, J.

Wun, J.-M.

Xiang, P.

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband optical multipath interference cancellation based on a dispersive element,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 849–851, 2016.

P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, “A novel approach to photonic generation of RF binary digital modulation signals,” Opt. Express, vol. 21, no. 1, pp. 631–639, 2013.

Xiang, Y.

Y. Xiang, G. Li, and S. Pan, “Ultrawideband optical cancellation of RF interference with phase change.” Opt. Express, vol. 25, no. 18, pp. 21259–21264, 2017.

G. Li, Y. Xiang, and S. Pan, “Wideband optical cancellation of RF interference with phase change,” in 2017 16th Int. Conf. Optical Communications and Networks (ICOCN), Wuzhen, China, 2017, pp. 1–3.

Xiao, J.

J. Yu, X. Li, J. Zhang, and J. Xiao, “432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing,” in 2014 The Eur. Conf. Optical Communication (ECOC), Cannes, France, 2014, pp. 1–3.

Xiao, S.

Xiao, X.

Xie, C.

Xie, L.

Xie, M.

M. Lei, Z. Zheng, J. Qian, M. Xie, X. Gao, and S. Huang, “Photonics-assisted super-octave microwave phase shifter,” IEEE Photon. J., vol. 11, no. 1, pp. 1–11, 2019.

Xie, X.

X. Xie, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nature Photon., vol. 11, no. 1, pp. 44–47, 2017.

X. Xie, “Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb,” IEEE Photon. Technol. Lett., vol. 24, no. 8, pp. 661–663, 2012.

Xie, Y.

Y. Xie, “System-level performance of chip-based Brillouin microwave photonic bandpass filters,” J. Lightw. Technol., vol. 37, no. 20, pp. 5246–5258, 2019.

Xin, M.

M. Xin, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl., vol. 6, 2017.

Xiu, Z.

Z. Tu, A. Wen, W. Zhang, Z. Xiu, and G. Yu, “All-optical image-reject frequency down-conversion based on cascaded electro-optical modulators,” Opt. Commun., vol. 430, pp. 158–162, 2019.

Xu, K.

Xu, X.

X. Xu, “Photonic RF phase-encoded signal generation with a microcomb source,” J. Lightw. Technol., early access, 2019.

X. Xu, “Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source,” J. Lightw. Technol., vol. 37, no. 4, pp. 1288–1295, 2019.

X. Xu, “Reconfigurable microwave photonic transversal filter based on an integrated optical micro-comb source,” in Integrated Optics: Devices, Materials, and Technologies XXIII, San Francisco, USA, 2019, vol. 10921, pp. 1092104.

Xue, W.

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360° photonic microwave phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express, vol. 18, no. 6, pp. 6156–6163, 2010.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett., vol. 21, no. 1–4, pp. 167–169, 2009.

Xue, X.

D. Wu, S. Li, X. Xue, X. Xiao, S. Peng, and X. Zheng, “Photonics based microwave dynamic 3D reconstruction of moving targets,” Opt. Express, vol. 26, no. 21, pp. 27659–27667, 2018.

X. Xue, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Lightw. Technol., vol. 36, no. 12, pp. 2312–2321, 2018.

X. Xue, “Programmable single-bandpass photonic RF filter based on kerr comb from a microring,” J. Lightw. Technol., vol. 32, no. 20, pp. 3557–3565, 2014.

Yacoubian, A.

A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 117–119, 2003.

Yan, J.

J. Yan, L. Li, X. Yi, and S. Chew, “Widely tunable single bandpass microwave photonic filter based on dual-fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett., vol. 61, no. 4, pp. 954–958, 2019.

Yan, L. S.

X. Zou, P. Li, W. Pan, and L. S. Yan, “Photonic microwave filters with ultra-high noise rejection [Invited],” Chin. Opt. Lett., vol. 17, no. 3, 2019.

Yang, B.

K. Rambach and B. Yang, “MIMO radar: time division multiplexing vs. code division multiplexing,” in Int. Conf. Radar Systems (Radar 2017), Belfast, UK, 2017, pp. 1–5.

Yang, F.

Yang, J.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1172–1174, 2002.

Yang, Y.

J. Shi, F. Zhang, X. Ye, Y. Yang, D. Ben, and S. Pan, “Photonics-based dual-functional system for simultaneous high-resolution radar imaging and fast frequency measurement,” Opt. Lett., vol. 44, no. 9, pp. 1948–1951, 2019.

X. Ye, F. Zhang, Y. Yang, D. Zhu, and S. Pan, “Photonics-based high-resolution 3D inverse synthetic aperture radar imaging,” IEEE Access, vol. 7, pp. 79503–79509, 2019.

X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging,” Photon. Res., vol. 7, no. 3, pp. 265–272, 2019.

H. Nie, F. Zhang, Y. Yang, and S. Pan, “Photonics-based integrated communication and radar system,” in 2019 Int. Topical Meeting on Microwave Photonics (MWP), Ottawa, Canada, 2019, pp. 1–4.

X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar transceiver for full-polarimetric inverse synthetic aperture imaging,” in 2018 Int. Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018, pp. 1–4.

Yao, J.

Z. Tang, Y. Li, J. Yao, and S. Pan, “Photonics-based microwave frequency mixing: methodology and applications,” Laser Photon. Rev., vol. 14, no. 1, 2020.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, no. 2, pp. 80–90, 2019.

T. Li, H. Chan, X. Wang, X. Feng, B. Guan, and J. Yao, “Broadband photonic microwave signal processor with frequency up/down conversion and phase shifting capability,” IEEE Photon. J., vol. 9, no. 6, 2017.

X. Wang, T. Niu, E. Chan, X. Feng, B. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J., vol. 9, no. 3, pp. 5501710, 2017.

W. Li, W. Zhang, and J. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express, vol. 20, no. 28, pp. 29838–29843, 2012.

M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 715–717, 2011.

M. Li, L. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 314–316, 2011.

J. Yao, “Microwave photonics: Photonic generation of microwave and millimeter-wave signals,” Int. J. Microw. Opt. Technol., vol. 5, no. 1, pp. 16–21, 2010.

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Technol., vol. 58, no. 11, pp. 3259–3268, 2010.

J. Yao, “Arbitrary waveform generation,” Nature Photon., vol. 4, no. 2, pp. 79–80, 2010.

M. Li, C. Wang, W. Li, and J. Yao, “An imbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Technol., vol. 58, no. 11, pp. 2968–2975, 2010.

J. Yao, “Microwave photonics,” J. Lightw. Technol., vol. 27, no. 3, pp. 314–335, 2009.

C. Wang and J. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac loop mirror incorporating a chirped fiber bragg grating,” J. Lightw. Technol., vol. 27, no. 16, pp. 3336–3341, 2009.

Y. Dai and J. Yao, “Arbitrary phase-modulated RF signal generation based on optical pulse position modulation,” J. Lightw. Technol., vol. 26, no. 17–20, pp. 3329–3336, 2008.

Y. Dai and J. Yao, “Nonuniformly-spaced photonic microwave delay-line filter,” Opt. Express, vol. 16, no. 7, pp. 4713–4718, 2008.

J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett., vol. 19, no. 9–12, pp. 644–646, 2007.

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett., vol. 30, no. 17, pp. 2203–2205, 2005.

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable mm-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 10, pp. 3090–3097, 2005.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1172–1174, 2002.

Yao, J. P.

S. L. Pan and J. P. Yao, “Photonics-based broadband microwave measurement,” IEEE/OSA J. Lightw. Technol., vol. 35, no. 16, pp. 3498–3513, 2017.

H. Shahoei and J. P. Yao, “Tunable photonic microwave phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express, vol. 20, no. 13, pp. 14009–14014, 2012.

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 694–696, 2011.

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 9–12, pp. 882–884, 2008.

Yao, P.

Yao, T.

Yao, X.

X. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron., vol. 32, no. 7, pp. 1141–1149, 1996.

Yao, X. S.

X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett., vol. 30, no. 18, pp. 1525–1526, 1994.

Yao, Y.

Y. Yao, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in 2018 Optical Fiber Commun. Conf. and National Fiber Optic Engineers Conf. (OFC), San Diego, USA, 2018, pp. Th3G.5.

Yariv, A.

D. Hall, A. Yariv, and E. Garmire, “Optical guiding and electro-optic modulation in GaAs epitaxial layers,” Opt. Commun., vol. 1, no. 9, pp. 403–405, 1970.

Yarlagadda, R.

R. Yarlagadda, Analog and Digital Signals and Systems. USA: Springer, 2010.

Ye, X.

X. Ye, F. Zhang, Y. Yang, D. Zhu, and S. Pan, “Photonics-based high-resolution 3D inverse synthetic aperture radar imaging,” IEEE Access, vol. 7, pp. 79503–79509, 2019.

X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging,” Photon. Res., vol. 7, no. 3, pp. 265–272, 2019.

J. Shi, F. Zhang, X. Ye, Y. Yang, D. Ben, and S. Pan, “Photonics-based dual-functional system for simultaneous high-resolution radar imaging and fast frequency measurement,” Opt. Lett., vol. 44, no. 9, pp. 1948–1951, 2019.

X. Ye, B. Zhang, Y. Zhang, D. Zhu, and S. Pan, “Performance evaluation of optical beamforming-based wideband antenna array,” Chin. Opt. Lett., vol. 15, no. 1, p. 010013, 2017.

Y. Zhang, X. Ye, Q. Guo, F. Zhang, and S. Pan, “Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1821–1829, 2017.

X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightw. Technol., vol. 35, no. 23, pp. 5010–5019, 2017.

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J., vol. 8, no. 6, pp. 5501909, 2016.

X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett., vol. 41, no. 17, pp. 3956–3959, 2016.

X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express, vol. 23, no. 8, pp. 10002–10008, 2015.

X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar transceiver for full-polarimetric inverse synthetic aperture imaging,” in 2018 Int. Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018, pp. 1–4.

Yegnanarayanan, S.

K. Kolodziej, S. Yegnanarayanan, and B. Perry, “Photonic-enabled RF canceller for wideband in-band full-duplex wireless systems,” IEEE Trans. Microw. Theory Technol., vol. 67, no. 5, pp. 2076–2086, 2019.

Yeo, T.

X. Guo, H. Sun, and T. Yeo, “Interference cancellation for high-frequency surface wave radar,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 7, pp. 1879–1891, 2008.

Yerolatsitis, S.

Yi, X.

J. Yan, L. Li, X. Yi, and S. Chew, “Widely tunable single bandpass microwave photonic filter based on dual-fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett., vol. 61, no. 4, pp. 954–958, 2019.

S. Hu, L. W. Li, X. Yi, and F. Teng, “Tunable dual-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 330–333, 2017.

X. Yi, L. Li, T. Huang, and R. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett., vol. 37, no. 4, pp. 608–610, 2012.

Yi, X. K.

X. K. Yi, T. Huang, and R. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3088–3093, 2010.

X. K. Yi, F. Wei, N. Hong, and L. Chao, “Tunable microwave filter design using wavelength conversion technique and high dispersion time delays,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 857–859, 2001.

Yin, F.

Yishen, H.

N. Janosik, C. Qixiang, M. Glick, H. Yishen, and K. Bergman, “High-resolution silicon microring based architecture for optical matrix multiplication,” in 2019 Conf. Lasers and Electro-Optics (CLEO), San Jose, USA, 2019, pp. SM2J.3.

Yu, G.

Z. Tu, A. Wen, W. Zhang, Z. Xiu, and G. Yu, “All-optical image-reject frequency down-conversion based on cascaded electro-optical modulators,” Opt. Commun., vol. 430, pp. 158–162, 2019.

Yu, J.

J. Yu, X. Li, J. Zhang, and J. Xiao, “432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing,” in 2014 The Eur. Conf. Optical Communication (ECOC), Cannes, France, 2014, pp. 1–3.

Yu, X.

X. Yu, K. Wang, X. Zheng, and H. Zhang, “Incoherent photonic digital-to-analogue converter based on broadband optical source,” Electron. Lett., vol. 43, no. 19, pp. 1044–1045, 2007.

Yu, Y.

Y. Yu, Y. Zhang, L. Huang, and S. Xiao, “Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration.” Appl. Opt., vol. 57, no. 6, pp. 1284–1291, 2018.

X. Li, J. Dong, Y. Yu, and X. Zhang, “A tunable microwave photonic filter based on an all-optical differentiator,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 308–310, 2011.

Zeng, F.

Zeng, Z.

Z. Zeng, “Freely tunable dual-passband microwave photonic filter based on phase-to-intensity modulation conversion by stimulated Brillouin scattering,” IEEE Photon. J., vol. 11, no. 1, 2019.

Zhang, B.

Zhang, C.

Zhang, D.

Zhang, F.

B. Gao, F. Zhang, E. Zhao, D. Zhang, and S. Pan, “High-resolution phased array radar imaging by photonics-based broadband digital beamforming,” Opt. Express, vol. 27, no. 9, pp. 13194–13203, 2019.

J. Shi, F. Zhang, X. Ye, Y. Yang, D. Ben, and S. Pan, “Photonics-based dual-functional system for simultaneous high-resolution radar imaging and fast frequency measurement,” Opt. Lett., vol. 44, no. 9, pp. 1948–1951, 2019.

X. Ye, F. Zhang, Y. Yang, D. Zhu, and S. Pan, “Photonics-based high-resolution 3D inverse synthetic aperture radar imaging,” IEEE Access, vol. 7, pp. 79503–79509, 2019.

X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging,” Photon. Res., vol. 7, no. 3, pp. 265–272, 2019.

F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express, vol. 26, no. 13, pp. 17529–17540, 2018.

J. Fu, F. Zhang, D. Zhu, and S. Pan, “Fiber-distributed ultra-wideband radar network based on wavelength reusing transceivers,” Opt. Express, vol. 26, no. 14, pp. 18457–18469, 2018.

P. Zhou, F. Zhang, Q. Guo, S. Li, and S. Pan, “Reconfigurable radar waveform generation based on an optically injected semiconductor laser,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, pp. 1801109, 2017.

Y. Zhang, X. Ye, Q. Guo, F. Zhang, and S. Pan, “Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1821–1829, 2017.

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.

Y. Zhang, F. Zhang, and S. Pan, “Generation of frequency-multiplied and phase-coded signal using an optical polarization division multiplexing modulator,” IEEE Trans. Microw. Theory Technol., vol. 65, no. 2, pp. 651–660, 2017.

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by optical frequency quadrupling and polarization multiplexing,” IEEE Photon. Technol. Lett., vol. 29, no. 16, pp. 1320–1323, 2017.

P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express, vol. 24, no. 16, pp. 18460–18467, 2016.

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J., vol. 8, no. 6, pp. 5501909, 2016.

F. Zhang, B. Gao, and S. Pan, “Two-bit photonic digital-to-analog conversion unit based on polarization multiplexing,” Opt. Eng., vol. 55, no. 3, pp. 031115-1-4, 2016.

X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett., vol. 41, no. 17, pp. 3956–3959, 2016.

X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express, vol. 23, no. 8, pp. 10002–10008, 2015.

F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photon. Res., vol. 2, no. 4, pp. B5–B10, 2014.

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 31, no. 3, pp. 219–240, 2014.

H. Nie, F. Zhang, Y. Yang, and S. Pan, “Photonics-based integrated communication and radar system,” in 2019 Int. Topical Meeting on Microwave Photonics (MWP), Ottawa, Canada, 2019, pp. 1–4.

X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar transceiver for full-polarimetric inverse synthetic aperture imaging,” in 2018 Int. Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018, pp. 1–4.

Zhang, F. Z.

F. Z. Zhang, “Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett., vol. 15, no. 11, 2017.

B. D. Gao, F. Z. Zhang, and S. L. Pan, “Experimental demonstration of arbitrary waveform generation by a 4-bit photonic digital-to-analog converter,” Opt. Commun., vol. 383, pp. 191–196, 2017.

F. Z. Zhang, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express, vol. 25, no. 14, pp. 16274–16281, 2017.

Zhang, H.

Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation.” IEEE Photon. Technol. Lett., vol. 30, no. 14. pp. 1297–1300, 2018.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All- optical-central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6, 2016.

P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, “A novel approach to photonic generation of RF binary digital modulation signals,” Opt. Express, vol. 21, no. 1, pp. 631–639, 2013.

X. Yu, K. Wang, X. Zheng, and H. Zhang, “Incoherent photonic digital-to-analogue converter based on broadband optical source,” Electron. Lett., vol. 43, no. 19, pp. 1044–1045, 2007.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science, vol. 288, no. 5463, pp. 119–122, 2000.

Zhang, J.

J. Yu, X. Li, J. Zhang, and J. Xiao, “432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing,” in 2014 The Eur. Conf. Optical Communication (ECOC), Cannes, France, 2014, pp. 1–3.

Zhang, L.

Zhang, Q.

C. Caloz, S. Gupta, Q. Zhang, and B. Nikfal, “Analog signal processing: A possible alternative or complement to dominantly digital radio schemes,” IEEE Microw. Mag., vol. 14, no. 6, pp. 87–103, 2013.

Zhang, S.

S. Zhang, X. Li, J. Chen, and W. Zou, “Maintenance of broadband detection in photonic time-stretched coherent radar employing phase diversity,” Opt. Express, vol. 27, no. 23, pp. 32892–32899, 2019.

N. Qian, W. Zou, S. Zhang, and J. Chen, “Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation,” Opt. Lett., vol. 43, no. 23, pp. 5869–5872, 2018.

S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett., vol. 30, no. 11, pp. 1028–1031, 2018.

J. Wei, D. Kwon, S. Zhang, S. Pan, and J. Kim, “All-fiber-photonics-based ultralow-noise agile frequency synthesizer for X-band radars,” Photon. Res., vol. 6, no. 1, pp. 12–17, 2018.

J. Wei, S. Zhang, J. Kim, and S. Pan, “Compact phase detector for optical-microwave synchronization using polarization modulation,” J. Lightw. Technol., vol. 36, no. 19, pp. 4267–4272, 2018.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All- optical-central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6, 2016.

Z. Zhang, H. Li, S. Zhang, and Y. Liu, “Analog-to-digital converters using photonic technology,” Chin. Sci. Bull., vol. 59, no. 22, pp. 2666–2671, 2014.

Zhang, W.

Z. Tu, A. Wen, W. Zhang, Z. Xiu, and G. Yu, “All-optical image-reject frequency down-conversion based on cascaded electro-optical modulators,” Opt. Commun., vol. 430, pp. 158–162, 2019.

Y. Huang, W. Zhang, F. Yang, J. Du, and Z. He, “Programmable matrix operation with reconfigurable time-wavelength plane manipulation and dispersed time delay,” Opt. Express, vol. 27, no. 15, pp. 20456–20467, 2019.

W. Zhang, “Mode division multiplexing communication using microwave orbital angular momentum: An experimental study,” IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1308–1318, 2017.

W. Li, W. Zhang, and J. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express, vol. 20, no. 28, pp. 29838–29843, 2012.

E. Chan, W. Zhang, and R. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678, 2012.

Zhang, X.

J. Zhao, Y. E, K. Williams, X. Zhang, and R. W. Boyd, “Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding,” Light Sci. Appl., vol. 8, pp. 55, 2019.

Y. Duan, L. Chen, L. Zhang, X. Zhou, C. Zhang, and X. Zhang, “Temporal radio-frequency spectrum analyzer, based on asynchronous optical sampling assisted temporal convolution,” Opt. Express, vol. 26, no. 16, pp. 20735–20743, 2018.

Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification,” Opt. Express, vol. 25, no. 7, pp. 7520–7529, 2017.

X. Li, J. Dong, Y. Yu, and X. Zhang, “A tunable microwave photonic filter based on an all-optical differentiator,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 308–310, 2011.

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 694–696, 2011.

Zhang, Y.

Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron., vol. 54, no. 4, pp. 0700112, 2018.

Y. Yu, Y. Zhang, L. Huang, and S. Xiao, “Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration.” Appl. Opt., vol. 57, no. 6, pp. 1284–1291, 2018.

Y. Zhang and S. Pan, “A photonics-based multi-function analog signal processor based on a polarization division multiplexing Mach-Zehnder modulator,” Opt. Lett., vol. 42, no. 23, pp. 5034–5037, 2017.

X. Ye, B. Zhang, Y. Zhang, D. Zhu, and S. Pan, “Performance evaluation of optical beamforming-based wideband antenna array,” Chin. Opt. Lett., vol. 15, no. 1, p. 010013, 2017.

X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightw. Technol., vol. 35, no. 23, pp. 5010–5019, 2017.

Y. Zhang, X. Ye, Q. Guo, F. Zhang, and S. Pan, “Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1821–1829, 2017.

Y. Zhang, F. Zhang, and S. Pan, “Generation of frequency-multiplied and phase-coded signal using an optical polarization division multiplexing modulator,” IEEE Trans. Microw. Theory Technol., vol. 65, no. 2, pp. 651–660, 2017.

Y. Zhang and S. Pan, “Frequency-multiplying microwave photonic phase shifter for independent multichannel phase shifting,” Opt. Lett., vol. 41, no. 6, pp. 1261–1264, 2016.

Y. Zhang, S. Xiao, and H. Feng, “Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system.” Opt. Express, vol. 23, no. 26, pp. 33205, 2015.

Y. Zhang and S. Pan, “Tunable multitap microwave photonic filter with all complex coefficients,” Opt. Lett., vol. 38, no. 5, pp. 802–804, 2013.

Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 187–189, 2013.

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett., vol. 38, no. 5, pp. 766–768, 2013.

S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485, 2012.

S. Pan and Y. Zhang, “Tunable and wideband photonic microwave phase shifter based on a single sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485, 2012.

Y. Zhang and S. Pan, “Experimental demonstration of frequency-octupled millimeter-wave signal generation based on a dual-parallel Mach-Zehnder modulator,” in 2012 IEEE MTT-S Int. Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, Nanjing, China, 2012, pp. 1–4.

Y. Zhang and S. Pan, “An electrically-tunable microwave photonic filter based on polarization modulation,” in 2014 IEEE MTT-S Int. Microwave Symp. (IMS), Tampa, USA, 2014, pp. 1–3.

Zhang, Z.

C. Deng, J. Suo, Y. Wang, Z. Zhang, and Q. Dai, “Single-shot thermal ghost imaging using wavelength-division multiplexing,” Appl. Phys. Lett., vol. 112, no. 5, 2018.

Y. Dai, J. Li, Z. Zhang, F. Yin, W. Li, and K. Xu, “Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion,” Opt. Express, vol. 25, no. 14, pp. 16660–16671, 2017.

Z. Zhang, H. Li, S. Zhang, and Y. Liu, “Analog-to-digital converters using photonic technology,” Chin. Sci. Bull., vol. 59, no. 22, pp. 2666–2671, 2014.

Zhao, D.

Z. Wang, B. Wang, D. Zhao, and R. Wang, “Full analog broadband time-reversal module for ultra-wideband communication system,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 1–10, 2019.

Zhao, E.

Zhao, J.

J. Zhao, Y. E, K. Williams, X. Zhang, and R. W. Boyd, “Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding,” Light Sci. Appl., vol. 8, pp. 55, 2019.

Zhao, M.

X. Han, B. Huo, Y. Shao, C. Wang, and M. Zhao, “RF self-interference cancellation using phase modulation and optical sideband filtering.” IEEE Photon. Technol. Lett., vol. 29, no. 11, pp. 917–920, 2017.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation for full-duplex communication using an integrated DP-MZM,” in 2017 Progress in Electromagnetics Research Symp.-Spring (PIERS), St. Petersburg, Russia, 2017, pp. 2240–2244.

Zhao, S.

Z. Zhu, S. Zhao, X. Chu, and Y. Dong, “Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter,” Opt. Commun., vol. 354, pp. 40–47, 2015.

Zhao, Y.

Y. Zhao, “Super-channel oriented routing, spectrum and core assignment under crosstalk limit in spatial division multiplexing elastic optical networks,” Opt. Fiber Technol., vol. 36, pp. 249–254, 2017.

X. Gu, D. Zhu, S. Li, Y. Zhao, and S. Pan, “Photonic RF channelization based on series-coupled asymmetric double-ring resonator filter,” in The 7th IEEE/Int. Conf. on Advanced Infocomm Technology, Fuzhou, China, 2014, pp. 240–244.

Zhao, Z.

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, pp. 121001-1–121001-7, 2017.

Zheng, X.

Zheng, Y.

Zheng, Z.

M. Lei, Z. Zheng, J. Qian, M. Xie, X. Gao, and S. Huang, “Photonics-assisted super-octave microwave phase shifter,” IEEE Photon. J., vol. 11, no. 1, pp. 1–11, 2019.

Zhong, X.

Zhou, H.

Zhou, P.

B. Zhang, D. Zhu, P. Zhou, C. Xie, and S. Pan, “Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser,” Appl. Opt., vol. 58, no. 20, pp. 5479–5485, 2019.

P. Zhou, F. Zhang, Q. Guo, S. Li, and S. Pan, “Reconfigurable radar waveform generation based on an optically injected semiconductor laser,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, pp. 1801109, 2017.

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by optical frequency quadrupling and polarization multiplexing,” IEEE Photon. Technol. Lett., vol. 29, no. 16, pp. 1320–1323, 2017.

P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express, vol. 24, no. 16, pp. 18460–18467, 2016.

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J., vol. 8, no. 6, pp. 5501909, 2016.

Zhou, Q.

Q. Zhou, H. Feng, and G. Scott, “Wideband co-site interference cancellation based on hybrid electrical and optical techniques.” Opt. Lett., vol. 39, no. 22, pp. 6357–6540, 2014.

Zhou, T.

Zhou, W.

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband optical multipath interference cancellation based on a dispersive element,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 849–851, 2016.

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 3, pp. 929–933, 2005.

Zhou, X.

Zhu, D.

B. Zhang, D. Zhu, P. Zhou, C. Xie, and S. Pan, “Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser,” Appl. Opt., vol. 58, no. 20, pp. 5479–5485, 2019.

X. Ye, F. Zhang, Y. Yang, D. Zhu, and S. Pan, “Photonics-based high-resolution 3D inverse synthetic aperture radar imaging,” IEEE Access, vol. 7, pp. 79503–79509, 2019.

W. Chen, D. Zhu, C. Xie, J. Liu, and S. Pan, “Microwave channelizer based on a photonic dual-output image-reject mixer,” Opt. Lett., vol. 44, no. 16, pp. 4052–4055, 2019.

C. Xie, D. Zhu, W. Chen and S. Pan, “Microwave photonic channelizer based on polarization multiplexing and photonic dual output image reject mixer,” IEEE Access, vol. 7, pp. 158308–158316, 2019.

D. Zhu, W. Chen, and S. Pan, “Photonics-enabled balanced Hartley architecture for broadband image-reject microwave mixing,” Opt. Express, vol. 26, no. 21, pp. 28022–28029, 2018.

Z. Tang, D. Zhu, and S. Pan, “Coherent optical RF channelizer with large instantaneous bandwidth and large in-band interference suppression,” J. Lightw. Technol., vol. 36, no. 19, pp. 4219–4226, 2018.

W. Chen, D. Zhu, C. Xie, T. Zhou, X. Zhong, and S. Pan, “Photonics-based reconfigurable multi-band linearly frequency-modulated signal generation,” Opt. Express, vol. 26, no. 25, pp. 32491–32499, 2018.

D. Zhu and S. Pan, “Photonics-based microwave image-reject mixer,” MDPI Photon., vol. 5, no. 2, pp. 6-1-12, 2018.

J. Fu, F. Zhang, D. Zhu, and S. Pan, “Fiber-distributed ultra-wideband radar network based on wavelength reusing transceivers,” Opt. Express, vol. 26, no. 14, pp. 18457–18469, 2018.

X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightw. Technol., vol. 35, no. 23, pp. 5010–5019, 2017.

X. Ye, B. Zhang, Y. Zhang, D. Zhu, and S. Pan, “Performance evaluation of optical beamforming-based wideband antenna array,” Chin. Opt. Lett., vol. 15, no. 1, p. 010013, 2017.

D. Zhu, J. Chen, and S. Pan, “Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator,” Opt. Express, vol. 24, no. 10, 2016.

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634, 2015.

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634, 2015.

S. Liu, D. Zhu, Z. Wei, and S. Pan, “Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator,” Opt. Lett., vol. 39, no. 13, pp. 3958–3961, 2014.

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 31, no. 3, pp. 219–240, 2014.

M. Huang, D. Zhu, and S. Pan, “Optical RF interference cancellation based on a dual-parallel polarization modulator,” in Asia Communications and Photonics Conf. 2014, Nov. 2014, p. ATh1F.6.

X. Zhu, D. Zhu, and S Pan,“A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring,” in 2017 Int. Topical Meeting on Microwave Photonics (MWP), Beijing, China, 2017, pp. 1–3.

X. Gu, D. Zhu, S. Li, Y. Zhao, and S. Pan, “Photonic RF channelization based on series-coupled asymmetric double-ring resonator filter,” in The 7th IEEE/Int. Conf. on Advanced Infocomm Technology, Fuzhou, China, 2014, pp. 240–244.

S. Pan and D. Zhu, “Broadband cognitive radio enabled by photonics,” in the 45th Eur. Conf. Exhib. Optical Communications (ECOC), Dublin, Ireland, 2019.

Zhu, N.

N. Shi, W. Li, N. Zhu, and M. Li, “Optically controlled phase array antenna,” Chin. Opt. Lett., vol. 17, no. 5, p. 052301, 2019.

N. Shi, Q. Song, J. Tang, W. Li, N. Zhu, and M. Li, “A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array.” Opt. Commun., vol. 447. pp. 55–60, 2019.

H. Wen, M. Li, W. Li, and N. Zhu, “Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated Brillouin scattering and a fiber ring resonator,” Opt. Lett., vol. 43, no. 19, pp. 4659–4662, 2018.

Z. Shi, S. Zhu, M. Li, N. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun., vol. 428, pp. 131–135, 2018.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun., vol. 407, pp. 27–32, 2018.

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, pp. 121001-1–121001-7, 2017.

W. Li, W. Wang, W. Sun, J. Liu, and N. Zhu, “Microwave photonic notch filter with complex coefficient based on DDMZM,” IEEE Photon. Technol. Lett., vol. 26, no. 18, pp. 1859–1862, 2014.

W. Li, W. Sun, W. Wang, L. Wang, J. Liu, and N. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express, vol. 22, no. 5, pp. 5522–5527, 2014.

Zhu, N. H.

W. Li, N. H. Zhu, and L. X. Wang, “Continuously tunable microwave photonic notch filter with a complex coefficient,” IEEE Photon. J., vol. 3, no. 3, pp. 462–467, 2011.

Zhu, S.

Z. Shi, S. Zhu, M. Li, N. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun., vol. 428, pp. 131–135, 2018.

Zhu, X.

X. Zhu, F. Chen, H. Peng, and Z. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” Opt. Express, vol. 25, no. 8, pp. 9232–9243, 2017.

X. Zhu, D. Zhu, and S Pan,“A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring,” in 2017 Int. Topical Meeting on Microwave Photonics (MWP), Beijing, China, 2017, pp. 1–3.

Zhu, Z.

Z. Zhu, S. Zhao, X. Chu, and Y. Dong, “Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter,” Opt. Commun., vol. 354, pp. 40–47, 2015.

Zhuang, L.

Zlatanovic, S.

Zmuda, H.

H. Zmuda, “Optically assisted high-speed, high resolution analog-to-digital conversion,” in Enabling Photonics Technologies for Defense, Security, and Aerospace Applications, Orlando, USA, 2005, pp. 51–61.

H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar. USA: Artech House, 1994.

Zomp, J.

Zou, W.

S. Zhang, X. Li, J. Chen, and W. Zou, “Maintenance of broadband detection in photonic time-stretched coherent radar employing phase diversity,” Opt. Express, vol. 27, no. 23, pp. 32892–32899, 2019.

S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett., vol. 30, no. 11, pp. 1028–1031, 2018.

N. Qian, W. Zou, S. Zhang, and J. Chen, “Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation,” Opt. Lett., vol. 43, no. 23, pp. 5869–5872, 2018.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All- optical-central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6, 2016.

Zou, X.

X. Zou, P. Li, W. Pan, and L. S. Yan, “Photonic microwave filters with ultra-high noise rejection [Invited],” Chin. Opt. Lett., vol. 17, no. 3, 2019.

X. Zou, “Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing,” J. Lightw. Technol., vol.36, no. 19, pp. 4337–4346, 2018.

Zwanetski, A.

A. Zwanetski and H. Rohling, “Continuous wave MIMO radar based on time division multiplexing,” in 2012 13th Int. Radar Symp., Warsaw, Poland, 2012, pp. 119–121.

Zwick, T.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Tech. vol. 60, no. 3, pp. 845–860, 2012.

?roc. SPIE (1)

Α. Levine, “Fiber optics for radar and data system,” Ρroc. SPIE, vol. 150, 1978.

Adv. Opt. Photon. (3)

AIAA J. (1)

C. Elachi, “Space imaging radar in planetary exploration and earth observation,” AIAA J., vol. 39, no. 4, pp. 553–563, 2001.

Ann. Rev. Astron. Astrophys. (1)

G. H. Pettengill and I. I. Shapiro, “Radar astronomy,” Ann. Rev. Astron. Astrophys., vol. 3, no. 1, pp. 377–411, 1965.

Appl. Opt. (9)

H. Heckscher and J. Rossi, “Flashlight-size external cavity semiconductor laser with narrow-linewidth tunable output,” Appl. Opt., vol. 14, no. 1, pp. 94–96, 1975.

B. Zhang, D. Zhu, P. Zhou, C. Xie, and S. Pan, “Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser,” Appl. Opt., vol. 58, no. 20, pp. 5479–5485, 2019.

R. Saperstein and Y. Fainman, “Information processing with longitudinal spectral decomposition of ultrafast pulses,” Appl. Opt., vol. 47, no. 4, pp. A21–A31, 2008.

C. Schnebelin and H. Chatellus, “Fractional Fourier transform-based description of the Talbot effect: application to analog signal processing,” Appl. Opt., vol. 56, no. 1, pp. A62–A68, 2017.

Y. Yu, Y. Zhang, L. Huang, and S. Xiao, “Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration.” Appl. Opt., vol. 57, no. 6, pp. 1284–1291, 2018.

P. Qu, “Design of a vector-sum integrated photonic microwave phase shifter in silicon-on-insulator waveguides,” Appl. Opt., vol. 50, no. 17, pp. 2523–2530, 2011.

A. Goutzoulis, K. Davies, J. Zomp, P. Hrycak, and A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased-array antennas,” Appl. Opt., vol. 33, no. 35, pp. 8173–8185, 1994.

D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt., vol. 35, no. 26, pp. 5293–5300, 1996.

T. Tatoli, D. Conteduca, F. Dell'Olio, C. Ciminelli, and M. Armenise, “Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas,” Appl. Opt., vol. 55, no. 16, pp. 4342–4349, 2016.

Appl. Phys. Lett. (3)

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett., vol. 91, no. 16, p. 161105, 2007.

C. Deng, J. Suo, Y. Wang, Z. Zhang, and Q. Dai, “Single-shot thermal ghost imaging using wavelength-division multiplexing,” Appl. Phys. Lett., vol. 112, no. 5, 2018.

K. Goda, K. Tsia, and B. Jalali, “Amplified dispersive fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett., vol. 93, no. 13, pp. 131109-1–131109-3, 2008.

Bull. Amer. Meteorol. Soc. (1)

P. Kollias, E. Clothiaux, M. Miller, B. Albrecht, G. Stephens, and T. Ackerman, “Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research,” Bull. Amer. Meteorol. Soc., vol. 88, no. 10, pp. 1608–1624, 2007.

Chin. Opt. Lett. (5)

X. Wang, “High-accuracy optical time delay measurement in fiber link [Invited],” Chin. Opt. Lett., vol. 17, no. 6, 2019.

X. Zou, P. Li, W. Pan, and L. S. Yan, “Photonic microwave filters with ultra-high noise rejection [Invited],” Chin. Opt. Lett., vol. 17, no. 3, 2019.

N. Shi, W. Li, N. Zhu, and M. Li, “Optically controlled phase array antenna,” Chin. Opt. Lett., vol. 17, no. 5, p. 052301, 2019.

X. Ye, B. Zhang, Y. Zhang, D. Zhu, and S. Pan, “Performance evaluation of optical beamforming-based wideband antenna array,” Chin. Opt. Lett., vol. 15, no. 1, p. 010013, 2017.

F. Z. Zhang, “Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett., vol. 15, no. 11, 2017.

Chin. Sci. Bull. (1)

Z. Zhang, H. Li, S. Zhang, and Y. Liu, “Analog-to-digital converters using photonic technology,” Chin. Sci. Bull., vol. 59, no. 22, pp. 2666–2671, 2014.

Comp. Rendus Geosci. (1)

J. Crétaux and C. Birkett, “Lake studies from satellite radar altimetry,” Comp. Rendus Geosci., vol. 338, no. 14–15, pp. 1098–1112, 2006.

Comput. Standards Interfaces (1)

A. Johnstone, M. Lewis, J. D. Hares, and P. Kellet, “High-speed opto-electronic transient waveform digitiser,” Comput. Standards Interfaces, vol. 23, no. 2, pp. 73–84, 2001.

Cosmic Res. (1)

N. Bobrinsky and L. Del Monte, “The space situational awareness program of the European Space Agency,” Cosmic Res., vol. 48, no. 5, 2010.

Electron. Lett. (9)

R. Mears, L. Reekie, S. Poole, and D. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett., vol. 21, no. 17, pp. 738–740, 1985.

H. Ito, T. Furuta, Y. Muramoto, T. Ito, and T. Ishibashi, “Photonic millimetre-and sub-millimetre-wave generation using J-band rectangular-waveguide-output uni-travelling-carrier photodiode module,” Electron. Lett., vol. 42, no. 24, pp. 1424–1425, 2006.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett., vol. 31, no. 13, pp. 1095–1096, 1995.

M. Currie and J. W. Lou, “Weighted, summing photonic digital-to-analog converter,” Electron. Lett., vol. 42, no. 1, pp. 54–55, 2006.

X. Yu, K. Wang, X. Zheng, and H. Zhang, “Incoherent photonic digital-to-analogue converter based on broadband optical source,” Electron. Lett., vol. 43, no. 19, pp. 1044–1045, 2007.

T. Saida, K. Okamoto, K. Uchiyama, K. Takiguchi, T. Shibata, and A. Sugita, “Integrated optical digital-to-analogue converter and its application to pulse pattern recognition,” Electron. Lett., vol. 37, no. 20, pp. 1237–1238, 2001.

X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett., vol. 30, no. 18, pp. 1525–1526, 1994.

K. Alameh, “Frequency downconverter for high-capacity fibre grating based beamformers for phased arrays,” Electron. Lett., vol. 35, no. 1, pp. 66–67, 1999.

J. Cruz, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett., vol. 33, no. 7, pp. 545–546, 1997.

IEEE Access (2)

C. Xie, D. Zhu, W. Chen and S. Pan, “Microwave photonic channelizer based on polarization multiplexing and photonic dual output image reject mixer,” IEEE Access, vol. 7, pp. 158308–158316, 2019.

X. Ye, F. Zhang, Y. Yang, D. Zhu, and S. Pan, “Photonics-based high-resolution 3D inverse synthetic aperture radar imaging,” IEEE Access, vol. 7, pp. 79503–79509, 2019.

IEEE Aerosp. Electron. Syst. Mag. (2)

K. Garenaux, “Recent breakthroughs in RF photonics for radar systems,” IEEE Aerosp. Electron. Syst. Mag., vol. 22, no. 2, pp. 3–8, 2007.

K. L. Koester and W. Vaillancourt, “TALONS 95 GHz radar sensor for autonomous landing guidance,” IEEE Aerosp. Electron. Syst. Mag., vol. 7, no. 7, pp. 40–44, 1992.

IEEE J. Quantum Electron. (4)

X. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron., vol. 32, no. 7, pp. 1141–1149, 1996.

Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron., vol. 54, no. 4, pp. 0700112, 2018.

J. Suarez, K. Kravtsov, and P. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 402–408, 2009.

R. Bonjour, “Ultra-fast millimeter wave beam steering,” IEEE J. Quantum Electron., vol. 52, no. 1, p. 0600708, 2016.

IEEE J. Sel. Areas Commun. (1)

A. Sabharwal, P. Schniter, D. Guo, D. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, 2014.

IEEE J. Sel. Top. Quantum Electron. (1)

S. Pan, Z. Tang, M. Huang, and S. Li, “Reflective-type microring resonator for on-chip reconfigurable microwave photonic systems,” IEEE J. Sel. Top. Quantum Electron., vol. 26, no. 5, pp. 1–12, 2020.

IEEE J. Sel. Topics Quantum Electron. (2)

P. Zhou, F. Zhang, Q. Guo, S. Li, and S. Pan, “Reconfigurable radar waveform generation based on an optically injected semiconductor laser,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, pp. 1801109, 2017.

E. Palushani, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Topics Quantum Electron., vol. 18, no. 2, pp. 681–688, 2012.

IEEE Microw. Compon. Lett. (1)

F. Scotti, D. Onori, and F. Laghezza, “Fully coherent S-and X-band photonics-aided radar system demonstration,” IEEE Microw. Compon. Lett., vol. 25, no. 11, pp. 757–759, 2015.

IEEE Microw. Mag. (1)

C. Caloz, S. Gupta, Q. Zhang, and B. Nikfal, “Analog signal processing: A possible alternative or complement to dominantly digital radio schemes,” IEEE Microw. Mag., vol. 14, no. 6, pp. 87–103, 2013.

IEEE Microw. Wireless Compon. Lett. (2)

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 694–696, 2011.

L. Bui, A. Mitchell, K. Ghorbani, and T. Chio, “Wide-band RF photonic second order vector sum phase-shifter,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, 2005.

IEEE Photon. J. (9)

X. Wang, T. Niu, E. Chan, X. Feng, B. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J., vol. 9, no. 3, pp. 5501710, 2017.

W. Hao, “Frequency-oriented subsampling by photonic Fourier transform and I/Q demodulation,” IEEE Photon. J., vol. 9, no. 6, pp. 5503508, 2017.

M. Lei, Z. Zheng, J. Qian, M. Xie, X. Gao, and S. Huang, “Photonics-assisted super-octave microwave phase shifter,” IEEE Photon. J., vol. 11, no. 1, pp. 1–11, 2019.

I. Gasulla and J. Capmany, “Microwave photonics applications of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.

P. Zhou, F. Zhang, X. Ye, Q. Guo, and S. Pan, “Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser,” IEEE Photon. J., vol. 8, no. 6, pp. 5501909, 2016.

T. Li, H. Chan, X. Wang, X. Feng, B. Guan, and J. Yao, “Broadband photonic microwave signal processor with frequency up/down conversion and phase shifting capability,” IEEE Photon. J., vol. 9, no. 6, 2017.

C. Albert, C. Huang, and E. Chan, “Intensity noise suppression using dual-polarization dual-parallel modulator and balanced detector,” IEEE Photon. J., vol. 10, no. 2, 2018.

W. Li, N. H. Zhu, and L. X. Wang, “Continuously tunable microwave photonic notch filter with a complex coefficient,” IEEE Photon. J., vol. 3, no. 3, pp. 462–467, 2011.

Z. Zeng, “Freely tunable dual-passband microwave photonic filter based on phase-to-intensity modulation conversion by stimulated Brillouin scattering,” IEEE Photon. J., vol. 11, no. 1, 2019.

IEEE Photon. Technol. Lett. (46)

S. Hu, L. W. Li, X. Yi, and F. Teng, “Tunable dual-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 330–333, 2017.

W. Li, W. Wang, W. Sun, J. Liu, and N. Zhu, “Microwave photonic notch filter with complex coefficient based on DDMZM,” IEEE Photon. Technol. Lett., vol. 26, no. 18, pp. 1859–1862, 2014.

Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 187–189, 2013.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett., vol. 21, no. 1–4, pp. 167–169, 2009.

X. Li, J. Dong, Y. Yu, and X. Zhang, “A tunable microwave photonic filter based on an all-optical differentiator,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 308–310, 2011.

J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett., vol. 19, no. 9–12, pp. 644–646, 2007.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1744–1746, 2006.

E. Heyde and R. Minasian, “A solution to the synthesis problem of recirculating optical delay line filters,” IEEE Photon. Technol. Lett., vol. 6, no. 7, pp. 833–835, 1994.

V. Polo, B. Vidal, J. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N x N AWG-based delay lines,” IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 584–586, 2003.

X. K. Yi, F. Wei, N. Hong, and L. Chao, “Tunable microwave filter design using wavelength conversion technique and high dispersion time delays,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 857–859, 2001.

S. Strutz and K. Williams, “A 0.8-8.8-GHz image rejection microwave photonic downconverter,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1376–1378, 2002.

X. Xie, “Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb,” IEEE Photon. Technol. Lett., vol. 24, no. 8, pp. 661–663, 2012.

A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 117–119, 2003.

J. Seo, C. Choi, W. Choi, Y. Kang, Y. Chung, and J. Kim, “Remote optoelectronic frequency down-conversion using 60-GHz optical heterodyne signals and an electro-absorption modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1073–1075, 2005.

S. Oda and A. Maruta, “All-optical digital-to-analog conversion using nonlinear optical loop mirrors,” IEEE Photon. Technol. Lett., vol. 18, no. 5, pp. 703–705, 2006.

J. Ding, “Optical digital-to-analog converter based on microring switches,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2066–2069, 2014.

J. Liao, “Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 126–128, 2013.

Y. Peng, “Photonic digital-to-analog converter based on summing of serial weighted multiwavelength pulses,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2135–2137, 2008.

M. Chang, C. Lee, B. Wu, and P. Prucnal, “Adaptive Optical Self-Interference Cancellation Using a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett., vol. 27, no. 9, pp. 1018–1021, 2015.

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband optical multipath interference cancellation based on a dispersive element,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 849–851, 2016.

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by optical frequency quadrupling and polarization multiplexing,” IEEE Photon. Technol. Lett., vol. 29, no. 16, pp. 1320–1323, 2017.

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 9–12, pp. 882–884, 2008.

M. Li, L. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 314–316, 2011.

W. Wang, “Photonic generation of pulsed microwave signal based on phase shifted lyot optical filter,” IEEE Photon. Technol. Lett., vol. 27, no. 17, pp. 1845–1848, 2015.

U. Gliese, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 936–938, 1992.

J. Azana, N. Berger, B. Levit, and B. Fischer, “Spectra-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 882–884, 2004.

Z. Tang and S. Pan, “A full-duplex radio-over-fiber link based on a dual-polarization Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 28, no. 8, pp. 852–855, 2016.

Y. Gao, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett., vol. 26, no. 12, pp. 1199–1202, 2014.

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photon. Technol. Lett., vol. 29, no. 1, pp. 74–77, 2017.

Z. Wang, B. Wang, D. Zhao, and R. Wang, “Full analog broadband time-reversal module for ultra-wideband communication system,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 1–10, 2019.

K. Ho, J. Walker, and J. Kahn, “External optical feedback effects on intensity noise of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 5, no. 8, pp. 892–895, 1993.

J. Shi, Y. Wu, C. Wu, P. Chiu, and C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1929–1931, 2005.

J. Klamkin, “High output saturation and high-linearity uni-traveling-carrier waveguide photodiodes,” IEEE Photon. Technol. Lett., vol. 19, no. 3, pp. 149–151, 2007.

S. Park, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1834–1836, 2004.

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

S. Li, “Optical fiber transfer delay measurement based on phase-derived ranging,” IEEE Photon. Technol. Lett., vol. 31, no. 16, pp. 1351–1354, 2019.

Z. Tu, A. Wen, X. Li, and H. Zhang, “A photonic pre-distortion technique for RF self-interference cancellation.” IEEE Photon. Technol. Lett., vol. 30, no. 14. pp. 1297–1300, 2018.

X. Han, B. Huo, Y. Shao, C. Wang, and M. Zhao, “RF self-interference cancellation using phase modulation and optical sideband filtering.” IEEE Photon. Technol. Lett., vol. 29, no. 11, pp. 917–920, 2017.

M. Li, Y. Han, S. Pan, and J. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 715–717, 2011.

S. Dug, L. Song, and K. Gyoun, “Optical true time-delay feeder for X-band phased array antennas composed of 2x2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1364–1366, 2004.

R. Moreira, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett., vol. 25, no. 12, pp. 1165–1168, 2013.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1172–1174, 2002.

M. Chen, H. Subbaraman, and R. Chen, “Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 375–377, 2008.

S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett., vol. 30, no. 11, pp. 1028–1031, 2018.

J. Lin, “Photonic generation and detection of W-Band chirped millimeter-wave pulses for Radar,” IEEE Photon. Technol. Lett., vol. 24, pp. 1437–1439, 152012.

F. Scotti, D. Onori, M. Scaffardi, E. Lazzeri, A. Bogoni, and F. Laghezza, “Multi-frequency lidar/radar integrated system for robust and flexible doppler measurements,” IEEE Photon. Technol. Lett., vol. 27, no. 21, pp. 2268–2271, 2015.

IEEE Signal Proc. Mag. (1)

S. Haykin, “Cognitive radar: a way of the future,” IEEE Signal Proc. Mag., vol. 23, no. 1, pp. 30–40, 2006.

IEEE Spectrum (1)

T. Perry, “In search of the future of air traffic control,” IEEE Spectrum, vol. 34, no. 8, pp. 18–35, 1997.

IEEE Trans. Antennas Propag. (1)

R. Rotman, O. Raz, S. Barzilay, S. R. Rotman, and M. Tur, “Wideband antenna patterns and impulse response of broadband RF phased arrays with RF and photonic beamforming,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 36–44, 2007.

IEEE Trans. Antennas Propagat. (1)

J. Lee, “Photonic wideband array antennas,” IEEE Trans. Antennas Propagat., vol. 43, no. 9, pp. 966–982, 1995.

IEEE Trans. Audio Electroacoust. (1)

P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust., vol. 15, no. 2, pp. 70–73, 1967.

IEEE Trans. Electromagn. Compat. (1)

H. Harmuth, “Frequency-sharing and spread-spectrum transmission with large relative bandwidth,” IEEE Trans. Electromagn. Compat., no. 1, pp. 232–239, 1978.

IEEE Trans. Geosci. Remote Sens. (1)

X. Guo, H. Sun, and T. Yeo, “Interference cancellation for high-frequency surface wave radar,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 7, pp. 1879–1891, 2008.

IEEE Trans. Microw. Theory Tech. (1)

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Tech. vol. 60, no. 3, pp. 845–860, 2012.

IEEE Trans. Microw. Theory Techn. (2)

X. K. Yi, T. Huang, and R. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3088–3093, 2010.

A. Singh and V. Lubecke, “Adaptive noise cancellation for two frequency radar using frequency doubling passive RF tags,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2975–2981, 2013.

IEEE Trans. Microw. Theory Technol. (17)

A. Madni, P. McDonald, R. Hansen, and L. Wan, “High-dynamic-range airborne tracking and fire control radar subsystem,” IEEE Trans. Microw. Theory Technol., vol. 37, no. 12, pp. 1942–1948, 1989.

D. Bleh, “W-band time-domain multiplexing FMCW MIMO radar for far-field 3-D imaging,” IEEE Trans. Microw. Theory Technol., vol. 65, no. 9, pp. 3474–3484, 2017.

S. Strutz and K. Williams, “An 8-18-GHz all-optical microwave downconverter with channelization,” IEEE Trans. Microw. Theory Technol., vol. 49, no. 10, pp. 1992–1995, 2001.

Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Technol., vol. 64, no. 9, pp. 3017–3025, 2016.

R. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Technol., vol. 54, no. 2, pp. 832–846, 2006.

G. Gopalakrishnan, W. Burns, and C. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microw. Theory Technol., vol. 41, no. 12, pp. 2383–2391, 1993.

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 3, pp. 929–933, 2005.

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable mm-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 10, pp. 3090–3097, 2005.

Y. Zhang, F. Zhang, and S. Pan, “Generation of frequency-multiplied and phase-coded signal using an optical polarization division multiplexing modulator,” IEEE Trans. Microw. Theory Technol., vol. 65, no. 2, pp. 651–660, 2017.

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Technol., vol. 58, no. 11, pp. 3259–3268, 2010.

K. Kolodziej, S. Yegnanarayanan, and B. Perry, “Photonic-enabled RF canceller for wideband in-band full-duplex wireless systems,” IEEE Trans. Microw. Theory Technol., vol. 67, no. 5, pp. 2076–2086, 2019.

V. Urick, J. Diehl, and J. Mckinney, “Nonlinear optical angle modulation for suppression of RF interference.” IEEE Trans. Microw. Theory Technol., vol. 64, no. 7, pp. 1–7, 2016.

M. Li, C. Wang, W. Li, and J. Yao, “An imbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Technol., vol. 58, no. 11, pp. 2968–2975, 2010.

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter employing phase diversity,” IEEE Trans. Microw. Theory Technol., vol. 53, no. 4, pp. 1404–1408, 2005.

P. Matthews, L. Pao-Lo, J. Medberry, M. Franekl, and R. Esman, “Demonstration of a wide-band fiber-optic nulling system for array antennas,” IEEE Trans. Microw. Theory Technol., vol. 47, no. 7, pp. 1327–1331, 1999.

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Technol., vol. 43, no. 9, pp. 2378–2386, 1995.

J. Roman, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Technol., vol. 46, no. 12, pp. 2317–2323, 1998.

IEEE Trans. Wireless Commun. (2)

K. Kolodziej, B. Perry, and J. McMichael, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4321–4334, 2016.

W. Zhang, “Mode division multiplexing communication using microwave orbital angular momentum: An experimental study,” IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1308–1318, 2017.

IEEE/OSA J. Lightw. Technol. (1)

S. L. Pan and J. P. Yao, “Photonics-based broadband microwave measurement,” IEEE/OSA J. Lightw. Technol., vol. 35, no. 16, pp. 3498–3513, 2017.

IEICE Electron. Express (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express, vol. 6, no. 2, pp. 98–103, 2009.

IET Radar Sonar Navig (2)

M. Sebt, A. Sheikhi, and M. Nayebi, “Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio,” IET Radar Sonar Navig., vol. 3, no. 2, pp. 122–132, 2009.

F. Scotti, F. Laghezza, D. Onori, and A. Bogoni, “Field trial of a photonics-based dual-band fully coherent radar system in a maritime scenario,” IET Radar Sonar Navig., vol. 11, pp. 420–425, 2017.

Int. J. Microw. Opt. Technol. (1)

J. Yao, “Microwave photonics: Photonic generation of microwave and millimeter-wave signals,” Int. J. Microw. Opt. Technol., vol. 5, no. 1, pp. 16–21, 2010.

J. Lightw Technol. (1)

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw Technol., vol. 34, no. 1, pp. 55–66, 2016.

J. Lightw. Technol. (43)

X. Zou, “Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing,” J. Lightw. Technol., vol.36, no. 19, pp. 4337–4346, 2018.

X. Xu, “Photonic RF phase-encoded signal generation with a microcomb source,” J. Lightw. Technol., early access, 2019.

S. Evangelides, L. Mollenauer, J. Gordon, and N. Bergano, “Polarization multiplexing with solitons,” J. Lightw. Technol., vol. 10, no. 1, pp. 28–35, 1992.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightw. Technol., vol. 28, no. 4, pp. 484–493, 2010.

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightw. Technol., vol. 28, no. 16, pp. 2247–2257, 2010.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229, 2006.

F. Wang, S. Shi, and D. Prather, “Microwave photonic link with improved SFDR using two parallel MZMs and a polarization beam combiner,” J. Lightw. Technol., vol. 37, no. 24, pp. 6156–6164, 2019.

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations,” J. Lightw. Technol., vol. 21, no. 12, pp. 3085–3103, 2003.

S. Park, C. Lee, K. Jeong, H. Park, J. Ahn, and K. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591, 2004.

M. Burla, “Multiwavelength-integrated optical beamformer based on wavelength division multiplexing for 2-D phased array antennas,” J. Lightw. Technol., vol. 32, no. 20, pp. 3509–3520, 2014.

K. Y. Lau, G. F. Lutes, and R. L. Tjoelker, “Ultra-stable RF-over-fiber transport in NASA antennas, phased arrays and radars,” J. Lightw. Technol., vol. 32, no. 20, pp. 3440–3451, 2014.

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276, 1997.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightw. Technol., vol. 9, no. 9, pp. 1124–1131, 1991.

A. Seeds and K. Williams, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641, 2006.

J. Yao, “Microwave photonics,” J. Lightw. Technol., vol. 27, no. 3, pp. 314–335, 2009.

C. Lin, J. Chen, S. Dai, P. Peng, and S. Chi, “Impact of nonlinear transfer function and imperfect splitting ratio of MZM on optical up-conversion employing double sideband with carrier suppression modulation,” J. Lightw. Technol., vol. 26, no. 15, pp. 2449–2459, 2008.

A. Agarwal, T. Banwell, and T. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” J. Lightw. Technol., vol. 29, no. 16, pp. 2394–2401, 2011.

C. Wang and J. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac loop mirror incorporating a chirped fiber bragg grating,” J. Lightw. Technol., vol. 27, no. 16, pp. 3336–3341, 2009.

M. Bagnell, J. Rodriguez, and P. Delfyett, “Millimeter-wave generation in an optoelectronic oscillator using an ultrahigh finesse etalon as a photonic filter,” J. Lightw. Technol., vol. 32, no. 6, pp. 1063–1067, 2014.

A. Rashidinejad and A. Weiner, “Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability,” J. Lightw. Technol., vol. 32, no. 20, pp. 3383–3393, 2014.

J. Wei, S. Zhang, J. Kim, and S. Pan, “Compact phase detector for optical-microwave synchronization using polarization modulation,” J. Lightw. Technol., vol. 36, no. 19, pp. 4267–4272, 2018.

G. Serafino, “Toward a new generation of radar systems based on microwave photonic technologies,” J. Lightw. Technol., vol. 37, no. 2, pp. 643–650, 2019.

C. Bohemond, T. Rampone, and A. Sharaiha, “Performances of a photonic microwave mixer based on cross-gain modulation in a semiconductor optical amplifier,” J. Lightw. Technol., vol. 29, no. 16, pp. 2402–2409, 15, 2011.

Y. Zhang, X. Ye, Q. Guo, F. Zhang, and S. Pan, “Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1821–1829, 2017.

Y. Dai and J. Yao, “Arbitrary phase-modulated RF signal generation based on optical pulse position modulation,” J. Lightw. Technol., vol. 26, no. 17–20, pp. 3329–3336, 2008.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586, 2013.

Z. Tang, D. Zhu, and S. Pan, “Coherent optical RF channelizer with large instantaneous bandwidth and large in-band interference suppression,” J. Lightw. Technol., vol. 36, no. 19, pp. 4219–4226, 2018.

Z. Tang and S. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightw. Technol., vol. 34, no. 20, pp. 4729–4735, 2016.

S. Melo, “Photonics-based dual-band radar for landslides monitoring in presence of multiple scatterers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2337–2343, 2018.

G. Sefler, J. Chou, J. Conway, and G. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightw. Technol., vol. 28, no. 10, pp. 1468–1476, 2010.

N. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightw. Technol., vol. 12, no. 8, pp. 1440–1447, 1994.

E. Chan, W. Zhang, and R. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678, 2012.

P. Ghelfi, “Photonics for radars operating on multiple coherent bands,” J. Lightw. Technol., vol. 34, no. 2, pp. 500–507, 2016.

J. Cao, “Photonic deramp receiver for dual-band LFM-CW Radar,” J. Lightw. Technol., vol. 37, no. 10, pp. 2403–2408, 2019.

G. Hu, “Optical beamformer based on diffraction order multiplexing (DOM) of an arrayed waveguide grating,” J. Lightw. Technol., vol. 37, no. 13, pp. 2898–2904, 2019.

X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightw. Technol., vol. 35, no. 23, pp. 5010–5019, 2017.

Y. Xie, “System-level performance of chip-based Brillouin microwave photonic bandpass filters,” J. Lightw. Technol., vol. 37, no. 20, pp. 5246–5258, 2019.

E. Norberg, R. Guzzon, J. Parker, L. Johansson, and L. Coldren, “Programmable photonic microwave filters monolithically integrated in InP-InGaAsP,” J. Lightw. Technol., vol. 29, no. 11, pp. 1611–1619, 2011.

X. Xue, “Programmable single-bandpass photonic RF filter based on kerr comb from a microring,” J. Lightw. Technol., vol. 32, no. 20, pp. 3557–3565, 2014.

X. Xu, “Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source,” J. Lightw. Technol., vol. 37, no. 4, pp. 1288–1295, 2019.

X. Xue, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” J. Lightw. Technol., vol. 36, no. 12, pp. 2312–2321, 2018.

J. Chou, J. Conway, G. Sefler, G. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightw. Technol., vol. 27, no. 22, pp. 5073–5077, 2009.

W. Haur, “Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme,” J. Lightw. Technol., vol. 29, no. 2, pp. 3099–3106, 2011.

J. Opt. Soc. Am. (1)

J. Radars (1)

S. Liu, “Ultralow phase noise optoelectronic oscillator and its application to a frequency synthesizer,” (in Chinese), J. Radars, vol. 8, no. 2, pp. 245–250, 2019.

J. Semicond. (1)

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, “High-speed photodetectors in optical communication system,” J. Semicond., vol. 38, no. 12, pp. 121001-1–121001-7, 2017.

Laser Photon. Rev. (3)

A. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Z. Tang, Y. Li, J. Yao, and S. Pan, “Photonics-based microwave frequency mixing: methodology and applications,” Laser Photon. Rev., vol. 14, no. 1, 2020.

A. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photon. Rev., vol. 7, no. 2, pp. 207–263, 2013.

Light Sci. Appl. (3)

J. Zhao, Y. E, K. Williams, X. Zhang, and R. W. Boyd, “Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding,” Light Sci. Appl., vol. 8, pp. 55, 2019.

H. Wen, “Few-mode fibre-optic microwave photonic links,” Light Sci. Appl., vol. 6, no. 8, pp. e17021–e17021, 2017.

M. Xin, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl., vol. 6, 2017.

MDPI Photon (2)

D. Zhu and S. Pan, “Photonics-based microwave image-reject mixer,” MDPI Photon., vol. 5, no. 2, pp. 6-1-12, 2018.

M. Fok and J. Ge, “Tunable multiband microwave photonic filters,” MDPI Photon., vol. 4, no. 4, 2017.

Microw. Opt. Technol. Lett. (2)

S. Constant, Y. Guennec, G. Maury, M. Lourdiane, and B. Cabon, “Directly modulated laser diode in the nonlinear regime for low-cost digital frequency up-conversion,” Microw. Opt. Technol. Lett., vol. 50, no. 5, pp. 1214–1219, 2008.

J. Yan, L. Li, X. Yi, and S. Chew, “Widely tunable single bandpass microwave photonic filter based on dual-fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett., vol. 61, no. 4, pp. 954–958, 2019.

Nat. Commun. (1)

J. Li, H. Lee, and K. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, no. 2097, pp. 1–7, 2013.

Nature (3)

J. McKinney, “Photonics illuminates the future of radar,” Nature, vol. 507, no. 7492, pp. 310–312, 2014.

K. Goda, K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature, vol. 458, pp. 1145–1150, 2009.

P. Ghelfi, “A fully photonics-based coherent radar system,” Nature, vol. 507, no. 7492, pp. 341–345, 2014.

Nature Commun (3)

H. Chatellus, L. Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nature Commun., vol. 9, no. 1, p. 2438, 2018.

C. Schnébelin, J. Azaña, and H. Chatellus, “Programmable broadband optical field spectral shaping with megahertz resolution using a simple frequency shifting loop,” Nature Commun., vol. 10, no. 1, pp. 1–11, 2019.

W. Liang, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nature Commun., vol. 6, no. 7957, pp. 1–8, 2015.

Nature Photon (13)

J. Kim, J. Cox, J. Chen, and F. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nature Photon., vol. 2, pp. 733–736, 2008.

G. Schneider, J. Murakowski, C. Schuetz, S. Shi, and D. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon., vol. 7, pp. 118–122, 2013.

J. Lee, Y. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nature Photon., vol. 4, no. 10, pp. 716–720, 2010.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nature Photon., vol. 7, no. 2, pp. 102–112, 2013.

X. Xie, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nature Photon., vol. 11, no. 1, pp. 44–47, 2017.

T. Fortier, “Generation of ultrastable microwaves via optical frequency division,” Nature Photon., vol. 5, no. 7, pp. 425–429, 2011.

S. Cundiff and A. Weiner, “Optical arbitrary waveform generation,” Nature Photon., vol. 4, no. 11, p. 760, 2010.

J. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nature Photon., vol. 11, no. 2, pp. 124–129, 2017.

V. Supradeepa, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nature Photon., vol. 6, no. 3, pp. 186–194, 2012.

R. Uden, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, no. 11, pp. 865, 2014.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

J. Yao, “Arbitrary waveform generation,” Nature Photon., vol. 4, no. 2, pp. 79–80, 2010.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, no. 2, pp. 80–90, 2019.

Nature Photon. (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, no. 6, pp. 319–330, 2007.

Opt. Commun. (8)

D. Hall, A. Yariv, and E. Garmire, “Optical guiding and electro-optic modulation in GaAs epitaxial layers,” Opt. Commun., vol. 1, no. 9, pp. 403–405, 1970.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun., vol. 407, pp. 27–32, 2018.

Z. Zhu, S. Zhao, X. Chu, and Y. Dong, “Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter,” Opt. Commun., vol. 354, pp. 40–47, 2015.

F. Yang, “A microwave photonic phase-tunable mixer with local oscillator frequency doubling,” Opt. Commun., vol. 438, pp. 141–146, 2019.

B. D. Gao, F. Z. Zhang, and S. L. Pan, “Experimental demonstration of arbitrary waveform generation by a 4-bit photonic digital-to-analog converter,” Opt. Commun., vol. 383, pp. 191–196, 2017.

Z. Shi, S. Zhu, M. Li, N. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator,” Opt. Commun., vol. 428, pp. 131–135, 2018.

Z. Tu, A. Wen, W. Zhang, Z. Xiu, and G. Yu, “All-optical image-reject frequency down-conversion based on cascaded electro-optical modulators,” Opt. Commun., vol. 430, pp. 158–162, 2019.

N. Shi, Q. Song, J. Tang, W. Li, N. Zhu, and M. Li, “A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array.” Opt. Commun., vol. 447. pp. 55–60, 2019.

Opt. Eng. (1)

F. Zhang, B. Gao, and S. Pan, “Two-bit photonic digital-to-analog conversion unit based on polarization multiplexing,” Opt. Eng., vol. 55, no. 3, pp. 031115-1-4, 2016.

Opt. Express (51)

J. Wun, C. Wei, J. Chen, C. Goh, S. Set, and J. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express, vol. 21, no. 9, pp. 11475–11481, 2013.

V. Pagán, B. Haas, and T. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express, vol. 19, no. 2, pp. 883–95, 2011.

T. Nishitani, T. Konishi, H. Furukawa, and K. Itoh, “All-optical digital-to-analog conversion using pulse pattern recognition based on optical correlation processing,” Opt. Express, vol. 13, no. 25, pp. 10310–10315, 2005.

W. Chen, D. Zhu, C. Xie, T. Zhou, X. Zhong, and S. Pan, “Photonics-based reconfigurable multi-band linearly frequency-modulated signal generation,” Opt. Express, vol. 26, no. 25, pp. 32491–32499, 2018.

S. Peng, “High-resolution W-band ISAR imaging system utilizing a logic-operation based photonic digital-to-analog converter,” Opt. Express, vol. 26, no. 2, pp. 1978–1987, 2018.

F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express, vol. 26, no. 13, pp. 17529–17540, 2018.

R. Li, “Demonstration of a microwave photonic synthetic aperture radar based on photonic assisted signal generation and stretch processing,” Opt. Express, vol. 25, no. 13, pp. 14334–14340, 2017.

A. Wang, “Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information,” Opt. Express, vol. 26, no. 16, pp. 20708–20717, 2018.

M. Sagues, R. Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express, vol. 16, no. 1, pp. 295–303, 2008.

Y. Dai and J. Yao, “Nonuniformly-spaced photonic microwave delay-line filter,” Opt. Express, vol. 16, no. 7, pp. 4713–4718, 2008.

J. Lloret, “Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator,” Opt. Express, vol. 19, no. 13, pp. 12402–12407, 2011.

A. Khilo, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express, vol. 20, no. 4, pp. 4454–4469, 2012.

Y. Xiang, G. Li, and S. Pan, “Ultrawideband optical cancellation of RF interference with phase change.” Opt. Express, vol. 25, no. 18, pp. 21259–21264, 2017.

M. Peng, A. Kalaydzhyan, and F. Kartner, “Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization,” Opt. Express, vol. 22, no. 22, pp. 27102–27111, 2014.

C. Brès, S. Zlatanovic, A. Wiberg, and S. Radic, “Reconfigurable parametric channelized receiver for instantaneous spectral analysis,” Opt. Express, vol. 19, no. 4, pp. 3531–3541, 2011.

P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express, vol. 24, no. 16, pp. 18460–18467, 2016.

F. Z. Zhang, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express, vol. 25, no. 14, pp. 16274–16281, 2017.

X. Zhu, F. Chen, H. Peng, and Z. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” Opt. Express, vol. 25, no. 8, pp. 9232–9243, 2017.

Y. Cui, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express, vol. 21, no. 20, pp. 23433–23440, 2013.

D. Zhu, W. Chen, and S. Pan, “Photonics-enabled balanced Hartley architecture for broadband image-reject microwave mixing,” Opt. Express, vol. 26, no. 21, pp. 28022–28029, 2018.

Z. Meng, “Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q,” Opt. Express, vol. 25, no. 18, pp. 22055–22065, 2017.

D. Zhu, J. Chen, and S. Pan, “Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator,” Opt. Express, vol. 24, no. 10, 2016.

Y. Huang, W. Zhang, F. Yang, J. Du, and Z. He, “Programmable matrix operation with reconfigurable time-wavelength plane manipulation and dispersed time delay,” Opt. Express, vol. 27, no. 15, pp. 20456–20467, 2019.

M. Pagani, D. Marpaung, D. Choi, S. Madden, B. Davies, and B. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, no. 23, pp. 28810–28818, 2014.

M. Cornet, J. Degert, E. Abraham, and E. Freysz, “Frequency resolved cross-correlation between optical and terahertz pulses: application to ultrashort laser pulse characterization,” Opt. Express, vol. 24, no. 3, pp. 3003–3010, 2016.

K. Kikuchi, “Performance analyses of polarization demultiplexing based on constant-modulus algorithm in digital coherent optical receivers,” Opt. Express, vol. 19, no. 10, pp. 9868–9880, 2011.

D. Noordegraaf, P. Skovgaard, M. Nielsen, and J. Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express, vol. 17, no. 3, pp. 1988–1994, 2009.

P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, “A novel approach to photonic generation of RF binary digital modulation signals,” Opt. Express, vol. 21, no. 1, pp. 631–639, 2013.

Y. Dai, J. Li, Z. Zhang, F. Yin, W. Li, and K. Xu, “Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion,” Opt. Express, vol. 25, no. 14, pp. 16660–16671, 2017.

A. Mercante, S. Shi, P. Yao, L. Xie, R. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express, vol. 26, no. 11, pp. 14810–14816, 2018.

G. Valley, “Photonic analog-to-digital converters,” Opt. Express, vol. 15, no. 5, pp. 1955–1982, 2007.

Y. Zhang, S. Xiao, and H. Feng, “Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system.” Opt. Express, vol. 23, no. 26, pp. 33205, 2015.

W. Li, W. Zhang, and J. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express, vol. 20, no. 28, pp. 29838–29843, 2012.

W. Li, W. Sun, W. Wang, L. Wang, J. Liu, and N. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express, vol. 22, no. 5, pp. 5522–5527, 2014.

M. Pagani, D. Marpaung, D. Choi, S. Madden, B. Davies, and B. Eggleton, “Tunable wideband photonic microwave phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, no. 23, pp. 28810–28818, 2014.

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° photonic microwave phase shifter based on a single semiconductor optical amplifier,” Opt. Express, vol. 19, no. 18, pp. 17421–17426, 2011.

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360° photonic microwave phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express, vol. 18, no. 6, pp. 6156–6163, 2010.

H. Shahoei and J. P. Yao, “Tunable photonic microwave phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express, vol. 20, no. 13, pp. 14009–14014, 2012.

M. Pu, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express, vol. 18, no. 6, pp. 6172–6182, 2010.

Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification,” Opt. Express, vol. 25, no. 7, pp. 7520–7529, 2017.

Y. Duan, L. Chen, L. Zhang, X. Zhou, C. Zhang, and X. Zhang, “Temporal radio-frequency spectrum analyzer, based on asynchronous optical sampling assisted temporal convolution,” Opt. Express, vol. 26, no. 16, pp. 20735–20743, 2018.

P. Wu, S. Tang, and D. Raible, “A prototype high-speed optically-steered X-band phased array antenna,” Opt. Express, vol. 21, no. 16, pp. 32599–32604, 2013.

X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express, vol. 23, no. 8, pp. 10002–10008, 2015.

J. Cardenas, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express, vol. 18, no. 25, pp. 26525–26534, 2010.

X. Xiao, “Photonics-based wideband distributed coherent aperture radar system,” Opt. Express, vol. 26, no. 26, pp. 33783–33796, 2018.

J. Fu, F. Zhang, D. Zhu, and S. Pan, “Fiber-distributed ultra-wideband radar network based on wavelength reusing transceivers,” Opt. Express, vol. 26, no. 14, pp. 18457–18469, 2018.

S. Zhang, X. Li, J. Chen, and W. Zou, “Maintenance of broadband detection in photonic time-stretched coherent radar employing phase diversity,” Opt. Express, vol. 27, no. 23, pp. 32892–32899, 2019.

B. Gao, F. Zhang, E. Zhao, D. Zhang, and S. Pan, “High-resolution phased array radar imaging by photonics-based broadband digital beamforming,” Opt. Express, vol. 27, no. 9, pp. 13194–13203, 2019.

D. Wu, S. Li, X. Xue, X. Xiao, S. Peng, and X. Zheng, “Photonics based microwave dynamic 3D reconstruction of moving targets,” Opt. Express, vol. 26, no. 21, pp. 27659–27667, 2018.

T.-F. Tseng, J.-M. Wun, W. Chen, S.-W. Peng, J.-W. Shi, and C.-K. Sun, “High-depth-resolution 3-dimensional radar-imaging system based on a few-cycle W-band photonic millimeter-wave pulse generator,” Opt. Express, vol. 21, pp. 14109–14119, 2013.

J. Tang, “Integrated optoelectronic oscillator,” Opt. Express, vol. 26, no. 9, pp. 12257–12265, 2018.

Opt. Fiber Technol. (2)

Y. Zhao, “Super-channel oriented routing, spectrum and core assignment under crosstalk limit in spatial division multiplexing elastic optical networks,” Opt. Fiber Technol., vol. 36, pp. 249–254, 2017.

Y. Sasaki, “Few-mode multicore fibers for long-haul transmission line,” Opt. Fiber Technol., vol. 35, pp. 19–27, 2017.

Opt. Lett. (31)

S. Liu, D. Zhu, Z. Wei, and S. Pan, “Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator,” Opt. Lett., vol. 39, no. 13, pp. 3958–3961, 2014.

S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485, 2012.

M. Huang, J. Fu, and S. Pan, “Linearized analog photonic links based on a dual-parallel polarization modulator,” Opt. Lett., vol. 37, no. 11, pp. 1823–1825, 2012.

P. Li, “Improvement of linearity in phase-modulated analog photonic link,” Opt. Lett., vol. 38, no. 14, pp. 2391–2393, 2013.

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett., vol. 38, no. 5, pp. 766–768, 2013.

M. Gorjan, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er: ZBLAN fiber laser,” Opt. Lett., vol. 36, no. 10, pp. 1923–1925, 2011.

T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett., vol. 8, no. 4, p. 232, 1983.

P. Mamyshev and L. Mollenauer, “Pseudo-phase-matched four-wave mixing in soliton wavelength-division multiplexing transmission,” Opt. Lett., vol. 21, no. 6, pp. 396–398, 1996.

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634, 2015.

T. Kato, Y. Koyano, and M. Nishimura, “Temperature dependence of chromatic dispersion in various types of optical fiber,” Opt. Lett., vol. 25, no. 16, pp. 1156–1158, 2000.

G. Grosche, “Optical frequency transfer via 146 km fiber link with 10−19 relative accuracy,” Opt. Lett., vol. 34, no. 15, pp. 2270–2272, 2009.

M. Hasan, R. Guemri, R. Basilio, F. Lucarz, J. Tocnaye, and T. Hall, “Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation,” Opt. Lett., vol. 39, no. 24, pp. 6950–6953, 2014.

C. Jeon, Y. Na, B. Lee, and J. Kim, “Simple-structured, subfemtosecond-resolution optical-microwave phase detector,” Opt. Lett., vol. 43, no. 16, pp. 3997–4000, 2018.

Y. Gao, A. Wen, W. Chen, and X. Li, “All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter,” Opt. Lett., vol. 42, no. 6, pp. 1105–1108, 2017.

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett., vol. 30, no. 17, pp. 2203–2205, 2005.

Y. Zhang and S. Pan, “Tunable multitap microwave photonic filter with all complex coefficients,” Opt. Lett., vol. 38, no. 5, pp. 802–804, 2013.

H. Wen, M. Li, W. Li, and N. Zhu, “Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated Brillouin scattering and a fiber ring resonator,” Opt. Lett., vol. 43, no. 19, pp. 4659–4662, 2018.

W. Chen, D. Zhu, C. Xie, J. Liu, and S. Pan, “Microwave channelizer based on a photonic dual-output image-reject mixer,” Opt. Lett., vol. 44, no. 16, pp. 4052–4055, 2019.

S. Pan and Y. Zhang, “Tunable and wideband photonic microwave phase shifter based on a single sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485, 2012.

Y. Zhang and S. Pan, “Frequency-multiplying microwave photonic phase shifter for independent multichannel phase shifting,” Opt. Lett., vol. 41, no. 6, pp. 1261–1264, 2016.

Y. Zhang and S. Pan, “A photonics-based multi-function analog signal processor based on a polarization division multiplexing Mach-Zehnder modulator,” Opt. Lett., vol. 42, no. 23, pp. 5034–5037, 2017.

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634, 2015.

N. Qian, W. Zou, S. Zhang, and J. Chen, “Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation,” Opt. Lett., vol. 43, no. 23, pp. 5869–5872, 2018.

J. Shi, F. Zhang, X. Ye, Y. Yang, D. Ben, and S. Pan, “Photonics-based dual-functional system for simultaneous high-resolution radar imaging and fast frequency measurement,” Opt. Lett., vol. 44, no. 9, pp. 1948–1951, 2019.

I. Aryanfar, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett., vol. 42, no. 7, pp. 1313–1316, 2017.

X. Yi, L. Li, T. Huang, and R. Minasian, “Programmable multiple true-time-delay elements based on a Fourier-domain optical processor,” Opt. Lett., vol. 37, no. 4, pp. 608–610, 2012.

X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett., vol. 41, no. 17, pp. 3956–3959, 2016.

M. Muriel, J. Azana, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett., vol. 24, no. 1, p. 1, 1999.

Y. Zheng, J. Li, Y. Dai, F. Yin, and K. Xu, “Real-time Fourier transformation based on the bandwidth magnification of RF signals,” Opt. Lett., vol. 43, no. 2, pp. 194–197, 2018.

R. Saperstein, D. Panasenko, and Y. Fainman, “Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber,” Opt. Lett., vol. 29, no. 5, pp. 501–503, 2004.

Q. Zhou, H. Feng, and G. Scott, “Wideband co-site interference cancellation based on hybrid electrical and optical techniques.” Opt. Lett., vol. 39, no. 22, pp. 6357–6540, 2014.

Opt. Photon. News (1)

K. Y. Lau and G. F. Lutes, “Planetary radar imaging and RF-over-fiber,” Opt. Photon. News, vol. 25, pp. 44–51, 2014.

Optica (6)

Photon. Res. (3)

Phys. Rev. Lett. (3)

I. Kaminow, “Microwave modulation of the electro-optic effect in KH2PO4,” Phys. Rev. Lett., vol. 6, pp. 528–530, 1961.

S. Droste, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett., vol. 111, no. 11, p. 110801, 2013.

D. G. Matei, “1.5um Lasers with Sub-10 mHz Linewidth,” Phys. Rev. Lett., vol. 118, pp. 263202-1–263202-6, 2017.

Proc. IEEE (2)

F. Chen, “Modulators for optical communications,” Proc. IEEE, vol. 58, no. 10, pp. 1440–1457, 1970.

G. Anderson, D. Webb, A. Spezio, and J. Lee, “Advanced channelization for RF, microwave, and millimeterwave applications,” Proc. IEEE, vol. 79, no. 3, pp. 355–388, 1991.

Proc. IRE (1)

J. Fontana and R. Pantell, “Theoretical considerations on millimeter wave generation by optical frequency mixing,” Proc. IRE, vol. 50, no. 8, pp. 1796–1800, 1962.

Rev. Geophys. (1)

T. Farr, “The shuttle radar topography mission,” Rev. Geophys., vol. 45, no. 2, pp. RG2004, 2007.

Sci. Rep. (5)

B. Wang, “Precise and continuous time and frequency synchronisation at the 5× 10-19 accuracy level,” Sci. Rep., vol. 2, p. 556, 2012.

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep., vol. 7, no. 1, pp. 1–8, 2017.

I. Gasulla, “Spatial division multiplexed microwave signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017.

K. Goda, “Hybrid dispersion laser scanner,” Sci. Rep., vol. 2, 2012.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All- optical-central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6, 2016.

Science (2)

N. Bozinovic, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science, vol. 340, no. 6140, pp. 1545–1548, 2013.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science, vol. 288, no. 5463, pp. 119–122, 2000.

Trans. Nanjing Univ. Aeronaut. Astronaut. (1)

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 31, no. 3, pp. 219–240, 2014.

Other (69)

M. Skolnik, Radar Handbook, 3rd ed. USA: McGraw-Hill, 2008.

V. Urick, K. Williams, and J. McKinney, Fundamentals of Microwave Photonics. USA: John Wiley & Sons, 2015.

Ultra Low-Relative Intensity Noise Analog DFB Laser Module, APIC Corp., USA [Online]. Available: http://www.cybel-llc.com/wp-content/uploads/2018/10/Ultra-Low-RIN-Analog-DFB-Laser-CWL-series-Ver-1-30-Aug-2018.pdf. Accessed on: 2020.

E. Ackerman, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in 2007 IEEE/MTT-S Int. Microwave Symp. (IMS), Honolulu, USA, 2007, pp. 51–54.

H. Oohashi, “46.9-nm wavelength-selectable arrayed DFB lasers with integrated MMI coupler and SOA,” in 2001 Int. Conf. Indium Phosphide and Related Materials (13th IPRM), Nara, Japan, 2001, pp. 575–578.

J. Levinson, “Towards fully autonomous driving: systems and algorithms,” in 2011 IEEE Intell. Vehicles Symp. (IV), Baden, Germany, 2011, pp. 163–168.

B. Skinner, J. Donohoe, and F. Ingels, “Simplified performance estimation of FSK/PSK hybrid signaling radar systems,” in Proc. IEEE 1993 National Aerospace and Electronics Conf.-NAECON 1993, Dayton, USA, 1993, vol. 1, pp. 255–261.

ALL-Wave Optical Fiber-Zero Water Peak, OFS Corp., USA [Online]. Available: https://www.ofsoptics.com/wp-content/uploads/AllWave-117-web-7.pdf. Accessed on: 2020.

Corning SMF-28 Ultra Optical Fiber, Corning, USA [Online]. Available: https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf. Accessed on: 2020.

L. Andreone, F. Tango, U. Scheunert, H. Cramer, G. Wanielik, and A. Amditis, “A new driving supporting system, integrating an infrared camera and an anti-collision micro-wave radar: the EUCLIDE project,” in Intell. Vehicle Symp., 2002. IEEE, Versailles, France, 2002, vol. 2, pp. 519–526.

L. Conyers and D. Goodman, Ground-Penetrating Radar: An Introduction for Archaeologist. USA: AltaMira Press, 1997, pp. 131–159.

M. Davis, “A history of battlefield surveillance radar,” in 2015 IEEE Radar Conf. (RadarCon), Arlington, USA, 2015, pp. 1345–1350.

S. Blackman, Multiple-Target Tracking with Radar Applications. Dedham, 1986, pp. 463.

W. Gruener, J. Toernig, and P. Fielding, “Active-electronically-scanned-array based radar system features,” in Radar 97 (Conf. Publ. No. 449), Edinburgh, UK, 1997, pp. 339–343.

E. Cohen, “Trends in the development of MMICs and packages for active electronically scanned arrays (AESAs),” in Proc. Int. Symp. Phased Array Systems and Technology, Boston, USA, 1996, pp. 1–4.

D. Bliss and K. Forsythe, “Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution,” in The Thrity-Seventh Asilomar Conf. Signals, Systems & Computers, 2003, Pacific Grove, USA, 2003, vol. 1. pp. 54–59.

K. Forsythe, D. Bliss, and G. Fawcett, “Multiple-input multiple-output (MIMO) radar: performance issues,” in Conf. Record of the Thirty-Eighth Asilomar Conf. on Signals, Systems and Computers, 2004, Pacific Grove, USA, 2004, vol. 1, pp. 310–315.

N. Kees, E. Schmidhammer, and J. Detlefsen, “Improvement of angular resolution of a millimeterwave imaging system by transmitter location multiplexing,” in IEEE NTC, Conf. Proc. Microwave Systems Conf., Orlando, USA, 1995, pp. 105–108.

A. Zwanetski and H. Rohling, “Continuous wave MIMO radar based on time division multiplexing,” in 2012 13th Int. Radar Symp., Warsaw, Poland, 2012, pp. 119–121.

K. Rambach and B. Yang, “MIMO radar: time division multiplexing vs. code division multiplexing,” in Int. Conf. Radar Systems (Radar 2017), Belfast, UK, 2017, pp. 1–5.

I. Gasulla, D. Barrera, and S. Sales, “Microwave photonic devices based on multicore fibers,” in 2014 16th Int. Conf. Transparent Optical Networks (ICTON), Graz, Austria, 2014, pp. 1–4.

R. Yarlagadda, Analog and Digital Signals and Systems. USA: Springer, 2010.

J. Yu, X. Li, J. Zhang, and J. Xiao, “432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing,” in 2014 The Eur. Conf. Optical Communication (ECOC), Cannes, France, 2014, pp. 1–3.

Y. Deng, A. Burr, and G. White, “Performance of MIMO systems with combined polarization multiplexing and transmit diversity,” in 2005 IEEE 61st Vehicular Technology Conf., Stockholm, Sweden, 2005, vol. 2, pp. 869–873.

M. Huang, D. Zhu, and S. Pan, “Optical RF interference cancellation based on a dual-parallel polarization modulator,” in Asia Communications and Photonics Conf. 2014, Nov. 2014, p. ATh1F.6.

G. Wang, “Ultrafast optical imaging using multimode fiber based compressed sensing and photonic time stretch,” 2018, arXiv preprint, arXiv:1803.03061.

P. Marchal “Spatial division multiplexing: a novel approach for guaranteed throughput on NoCs,” in 2005 Third IEEE/ACM/IFIP Int. Conf. Hardware/Software Codesign and System Synthesis (CODES+ISSS), Jersey City, USA, 2005, pp. 81–86.

Y. Awaji, N. Wada, Y. Toda, and T. Hayashi, “World first mode/spatial division multiplexing in multi-core fiber using Laguerre-Gaussian mode,” in 2011 37th Eur. Conf. Optical Communication (ECOC), Geneva, Switzerland, 2011, pp. We.10.P1.55.

T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond,” in 2009 14th OptoElectronics and Communications Conf. (OECC), Vienna, Austria, 2009, pp. 1–2.

Y. Zhang and S. Pan, “Experimental demonstration of frequency-octupled millimeter-wave signal generation based on a dual-parallel Mach-Zehnder modulator,” in 2012 IEEE MTT-S Int. Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, Nanjing, China, 2012, pp. 1–4.

G. Picardi, S. Sorge, R. Seu, G. Fedele, and R. Jordan, “Coherent cancellation of surface clutter for radar sounding,” in IEEE 1999 Int. Geoscience and Remote Sensing Symp. (IGARSS), Hamburg, Germany, 1999, vol. 5, pp. 2678–2680.

N. Janosik, C. Qixiang, M. Glick, H. Yishen, and K. Bergman, “High-resolution silicon microring based architecture for optical matrix multiplication,” in 2019 Conf. Lasers and Electro-Optics (CLEO), San Jose, USA, 2019, pp. SM2J.3.

Y. Zhang and S. Pan, “An electrically-tunable microwave photonic filter based on polarization modulation,” in 2014 IEEE MTT-S Int. Microwave Symp. (IMS), Tampa, USA, 2014, pp. 1–3.

X. Xu, “Reconfigurable microwave photonic transversal filter based on an integrated optical micro-comb source,” in Integrated Optics: Devices, Materials, and Technologies XXIII, San Francisco, USA, 2019, vol. 10921, pp. 1092104.

C. Cox, Analog Optical Links: Theory and Practice. UK: Cambridge University Press, 2006.

M. Loïc, “Optical functions for microwave signal processing in radar, communications and surveillance systems,” in 2009 Int. Radar Conf. “Surveillance for a Safer World” (RADAR), Bordeaux, France, 2009, pp. 1–5.

G. Li, Y. Xiang, and S. Pan, “Wideband optical cancellation of RF interference with phase change,” in 2017 16th Int. Conf. Optical Communications and Networks (ICOCN), Wuzhen, China, 2017, pp. 1–3.

A. Poddar, U. Rohde, V. Madhavan, A. Apte, and S. Koul, “Ka-Band metamaterial Möbius Oscillator (MMO) circuit,” in 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, USA, 2016, pp. 1–4.

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system,” in 2008 IEEE Int. Frequency Control Symp., Honolulu, USA, 2008, pp. 811–814.

A. Savchenkov, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 EEE Int. Frequency Control Symp., Newport Beach, USA, 2010, pp. 554–557.

Y. Yao, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in 2018 Optical Fiber Commun. Conf. and National Fiber Optic Engineers Conf. (OFC), San Diego, USA, 2018, pp. Th3G.5.

D. Hunter, L. Edvell, and M. Englund, “Wideband microwave photonic channelised receiver,” in 2005 Int. Topical Meeting on Microwave Photonics (MWP), Seoul, Korea, 2005, pp. 249–252.

X. Gu, D. Zhu, S. Li, Y. Zhao, and S. Pan, “Photonic RF channelization based on series-coupled asymmetric double-ring resonator filter,” in The 7th IEEE/Int. Conf. on Advanced Infocomm Technology, Fuzhou, China, 2014, pp. 240–244.

H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar. USA: Artech House, 1994.

C. Porzi, “High-capacity single-sideband suppressed-carrier modulation with integrated optical filter in silicon-on-insulator technology,” in 2019 Int. Workshop on Fiber Optics in Access Networks (FOAN), Sarajevo, Bosnia and Herzegovina, 2019, pp. 29–33.

A. Leven, “High speed integrated InP photonic digital-to-analog converter,” in Proc. Indium Phosphide and Related Materials Conf., 2006, pp. 14–15.

A. Leven, J. Lin, J. Lee, K.-Y. Tu, Y. Baeyens, and Y. K. Chen, “A 12.5G sample/s optical digital-to-analog converter with 3.8 effective bits,” in Proc. 17th Ann. Meet. IEEE Lasers and Electro-Optics Society, Puerto Rico, 2004, pp. 270–271.

T. A. Schaffer, H. P. Warren, M. J. Bustamante, and K. W. Kong, “A 2 GHz 12-bit digital-to-analog converter for direct digital synthesis applications,” Techn. Digest GaAs Ie Symp., 1996, pp. 61–64.

J. D. Li “A segmented photonic digital-to-analog converter with a high effective number of bits,” 2019 Int. Topical Meeting on Microwave Photonics (MWP), Ottawa, ON, Canada,7-10 Oct. 2019.

Z. Li and K. Wu, “On the leakage of FMCW radar front-end receiver,” in Global Symp. Millimeter Waves, IEEE, 2008, pp. 127–130.

M. Richards, J. A. Scheer, and W. A. Holm, Principle of Modern Radar: Basic Principle. SciTech Publishing, 2010.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in 2013 IEEE Radar Conf. (RadarCon), Ottawa, Canada, 2013, pp. 1–5.

I. Visscher,“Broadband true time delay microwave photonic beamformer for phased array antennas,” in 2019 13th Eur. Conf. on Antennas and Propagation (EuCAP), Krakow, Poland, 2019, pp. 1–5.

A. Levine, “Fiber optic phased array antenna system for RF transmission,” U.S. Patent 4 028 702, 7, 1977.

Miniature Motorized Optical Variable Delay Line, General Photonics Corp., USA [Online]. Available: http://www.generalphotonics.com/wp-content/uploads/2017/12/MDL-002-spec-12-17-17.pdf. Accessed on: 2020.

Y. Chen and S. L. Pan, “Photonics-assisted radio-frequency self-interference cancellation and fiber transmission using a DP-QPSK modulator,” in 2018 Int. Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018, pp. 1–4.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation for full-duplex communication using an integrated DP-MZM,” in 2017 Progress in Electromagnetics Research Symp.-Spring (PIERS), St. Petersburg, Russia, 2017, pp. 2240–2244.

H. Zmuda, “Optically assisted high-speed, high resolution analog-to-digital conversion,” in Enabling Photonics Technologies for Defense, Security, and Aerospace Applications, Orlando, USA, 2005, pp. 51–61.

X. Zhu, D. Zhu, and S Pan,“A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring,” in 2017 Int. Topical Meeting on Microwave Photonics (MWP), Beijing, China, 2017, pp. 1–3.

S. Li, “Chip-based photonic radar for high-resolution imaging,” 2019, arXiv preprint, arXiv:1905.12802.

S. Pan and D. Zhu, “Broadband cognitive radio enabled by photonics,” in the 45th Eur. Conf. Exhib. Optical Communications (ECOC), Dublin, Ireland, 2019.

V. Duarte, “Modular and smooth introduction of photonics in high-throughput communication satellites-perspective of project BEACON,” in Int. Conf. on Space Optics -ICSO 2018, Chania, Greece, 2018, pp. 1118079.

S. Melo, “Dual-use system combining simultaneous active radar & communication, based on a single photonics-assisted transceiver,” in 2016 17th Int. Radar Symp. (IRS), Krakow, Poland, 2016, pp. 1–4.

H. Nie, F. Zhang, Y. Yang, and S. Pan, “Photonics-based integrated communication and radar system,” in 2019 Int. Topical Meeting on Microwave Photonics (MWP), Ottawa, Canada, 2019, pp. 1–4.

L. Lembo, “In-field demonstration of a photonic coherent MIMO distributed radar network,” in 2019 IEEE Radar Conf. (RadarCon), Boston, MA, USA, 2019, pp. 1–6.

S. Maresca, “Photonics for coherent MIMO radar: an experimental multi-target surveillance scenario,” in 2019 20th Int. Radar Symp. (IRS), Ulm, Germany, 2019, pp. 1–6.

OEwaves' micro-opto-electronic oscillator supports successful mina true interceptor test flight, OEwaves Inc., USA [Online]. Available: https://www.microwavejournal.com/articles/19733-oewaves-micro-opto-electronic-oscillator-supports-successful-mina-true-interceptor-test-flight. Accessed on: 2020.

F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “ISAR imaging of non-cooperative targets via dual band photonics-based radar system,” in 2016 17th Int. Radar Symp. (IRS), Krakow, Poland, 2016, pp. 1–4.

X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar transceiver for full-polarimetric inverse synthetic aperture imaging,” in 2018 Int. Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018, pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.