Abstract

Unprecedented levels of device connectivity and the emergence of futuristic digital services are driving fundamental changes to underlying fixed and wireless data transport networks. Projected bandwidth requirements, coupled with increased network centralization and virtualization, will lead to the convergence of data-center, fixed and wireless systems, and a greater onus being placed on the optical routing/transport portion of these networks. Such converged networks will require the development of optical technologies capable of servicing a multitude of network user types. In this work, we propose the use of a Silicon Photonic (SiP) space-and-wavelength selective switch fabric as a flexible wavelength provisioning platform for converged optical networks. The envisaged converged network is presented and an experimental test-bed which demonstrates flexible Cloud Radio Access Networking (C-RAN), using a 4 × 4 micro-ring resonator based switch, is described. Successful provisioning and transmission of Wavelength Division Multiplexed (WDM) based analog Radio-over-Fiber (RoF) services, over 10 km of fiber, in the converged test-bed is demonstrated and evaluated in terms of the received Bit Error Rate (BER) and Error Vector Magnitude (EVM). Furthermore, the wavelength multi-casting capabilities of the SiP switch is shown to enable dynamic resource allocation in the optical domain, and this is highlighted through the experimental implementation and evaluation of two C-RAN use cases - representing high and low mobile traffic demand scenarios.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Cisco visual networking index: Global mobile data traffic forecast update, 2017-2022,” Cisco, San Jose, CA, USA, White Paper, 2019.
  2. X. Wang, “Virtualized cloud radio access network for 5G transport,” IEEE Commun. Mag., vol. 55, no. 9, pp. 202–209,  2017.
  3. C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068,  2018.
  4. C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.
  5. A. Tzanakaki, M. P. Anastasopoulos, and D. Simeonidou, “Converged optical, wireless, and data center network infrastructures for 5G services,” J. Opt. Commun. Netw., vol. 11, no. 2, pp. A111–A122,  2019.
  6. C. Browning, “Wired and wireless convergence in future optical access networks - invited,” in Proc. IEEE Photon. Conf., 2019, pp. 1–2.
  7. T. Pfeiffer, “Next generation mobile fronthaul and midhaul architectures - invited,” J. Opt. Commun. Netw., vol. 7, no. 11, pp. B38–B45,  2015.
  8. A. D. La Oliva, “Xhaul: Toward an integrated fronthaul/backhaul architecture in 5G networks,” IEEE Wireless Commun., vol. 22, no. 5, pp. 32–40,  2015.
  9. CPRI, “ecpri specification v2.0 (2019-05-10),” Common Public Radio Interface: eCPRI Interface Specification, 2019.
  10. S. Noor, P. Assimakopoulos, and N. J. Gomes, “A flexible subcarrier multiplexing system with analog transport and digital processing for 5G (and beyond) fronthaul,” J. Lightw. Technol., vol. 37, no. 14, pp. 3689–3700,  2019.
  11. L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1808–1811,  2017.
  12. C. Browning, “5G wireless and wired convergence in a passive optical network using UF-OFDM and GFDM,” in Poc. IEEE Int. Conf. Commun. Workshops, 2017, pp. 386–392.
  13. R. Sabella, “Silicon photonics for 5G and future networks,” IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 2, pp. 1–11,  2020.
  14. B. Skubic, G. Bottari, A. Rostami, F. Cavaliere, and P. Öhlén, “Rethinking optical transport to pave the way for 5G and the networked society,” J. Lightw. Technol., vol. 33, no. 5, pp. 1084–1091,  2015.
  15. D. Nikolova, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express, vol. 23, no. 2, pp. 1159–1175,  2015.
  16. C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. Int. Topical Meeting Microw. Photon., 2018, pp. 1–4.
  17. K. Van Gasse, “Analog radio-over-fiber transceivers based on iii-v-on-silicon photonics,” IEEE Photon. Technol. Lett., vol. 30, no. 21, pp. 1818–1821,  2018.
  18. V. Sorianello, “Polarization insensitive silicon photonic roadm with selectable communication direction for radio access networks,” Opt. Lett., vol. 41, no. 24, pp. 5688–5691,  2016.
  19. P. Iovanna, “Future proof optical network infrastructure for 5G transport,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 12, pp. B80–B92,  2016.
  20. Ericsson, “Edge computing and deployment strategies for communication service providers,” Stockholm, Sweden, Ericsson, White Paper, 2020.
  21. Radio-Over-Fibre (RoF) Technologies and Their Applications, International Telecommunication Union, Geneva, Switzerland, 2015.
  22. 5G Wireless Fronthaul Requirements in a Passive Optical Network, International Telecommunication Union, Geneva, Switzerland, 2015.
  23. J. Kani, J. Terada, K. Suzuki, and A. Otaka, “Solutions for future mobile fronthaul and access-network convergence,” J. Lightw. Technol., vol. 35, no. 3, pp. 527–534,  2017.
  24. D. Nesset, “Pon roadmap [invited],” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 1, pp. A71–A76,  2017.
  25. Z. Zhang, Y. Chen, S. Cai, B. Zhang, M. Zhang, and X. Chen, “Colorless-light and tunable-light-source schemes for TWDM and WDM pons,” IEEE Commun. Mag., vol. 56, no. 8, pp. 120–128,  2018.
  26. J. S. Wey, “The outlook for PON standardization: A tutorial,” J. Lightw. Technol., vol. 38, no. 1, pp. 31–42,  2020.
  27. Q. Cheng, “Silicon photonic switch topologies and routing strategies for disaggregated data centers,” IEEE J. Sel. Topics Quantum Electron., to be published, doi: .
    [Crossref]
  28. M. C. Wu, T. J. Seok, K. Kwon, J. Henriksson, and J. Luo, “Large scale silicon photonics switches based on mems technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2019, pp. 1–3.
  29. Q. Cheng, “Ultralow-crosstalk, strictly non-blocking microring-based optical switch,” Photon. Res., vol. 7, no. 2, pp. 155–161,  2019.
  30. M. Bahadori, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Lightw. Technol., vol. 36, no. 3, pp. 773–788,  2018.
  31. A. Gazman, “Software-defined control-plane for wavelength selective unicast and multicast of optical data in a silicon photonic platform,” Opt. Express, vol. 25, no. 1, pp. 232–242,  2017.
  32. B. Farhang-Boroujeny and H. Moradi, “OFDM inspired waveforms for 5G,” IEEE Commun. Surv. Tut., vol. 18, no. 4, pp. 2474–2492,  2016.
  33. G. Giannoulis, “Analog radio-over-fiber solutions for 5G communications in the beyond-CPRI era,” in Proc. 20th Int. Conf. Transparent Opt. Netw., 2018, pp. 1–5.
  34. N. J. Gomes and P. Assimakopoulos, “Optical fronthaul options for meeting 5G requirements,” in Proc. Int. Conf. Transparent Opt. Netw., We.A2.4, 2018, pp. 1–4. [Online]. Available: https://kar.kent.ac.uk/69102/

2020 (3)

R. Sabella, “Silicon photonics for 5G and future networks,” IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 2, pp. 1–11,  2020.

Ericsson, “Edge computing and deployment strategies for communication service providers,” Stockholm, Sweden, Ericsson, White Paper, 2020.

J. S. Wey, “The outlook for PON standardization: A tutorial,” J. Lightw. Technol., vol. 38, no. 1, pp. 31–42,  2020.

2019 (4)

Q. Cheng, “Ultralow-crosstalk, strictly non-blocking microring-based optical switch,” Photon. Res., vol. 7, no. 2, pp. 155–161,  2019.

A. Tzanakaki, M. P. Anastasopoulos, and D. Simeonidou, “Converged optical, wireless, and data center network infrastructures for 5G services,” J. Opt. Commun. Netw., vol. 11, no. 2, pp. A111–A122,  2019.

CPRI, “ecpri specification v2.0 (2019-05-10),” Common Public Radio Interface: eCPRI Interface Specification, 2019.

S. Noor, P. Assimakopoulos, and N. J. Gomes, “A flexible subcarrier multiplexing system with analog transport and digital processing for 5G (and beyond) fronthaul,” J. Lightw. Technol., vol. 37, no. 14, pp. 3689–3700,  2019.

2018 (4)

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068,  2018.

K. Van Gasse, “Analog radio-over-fiber transceivers based on iii-v-on-silicon photonics,” IEEE Photon. Technol. Lett., vol. 30, no. 21, pp. 1818–1821,  2018.

M. Bahadori, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Lightw. Technol., vol. 36, no. 3, pp. 773–788,  2018.

Z. Zhang, Y. Chen, S. Cai, B. Zhang, M. Zhang, and X. Chen, “Colorless-light and tunable-light-source schemes for TWDM and WDM pons,” IEEE Commun. Mag., vol. 56, no. 8, pp. 120–128,  2018.

2017 (6)

X. Wang, “Virtualized cloud radio access network for 5G transport,” IEEE Commun. Mag., vol. 55, no. 9, pp. 202–209,  2017.

A. Gazman, “Software-defined control-plane for wavelength selective unicast and multicast of optical data in a silicon photonic platform,” Opt. Express, vol. 25, no. 1, pp. 232–242,  2017.

J. Kani, J. Terada, K. Suzuki, and A. Otaka, “Solutions for future mobile fronthaul and access-network convergence,” J. Lightw. Technol., vol. 35, no. 3, pp. 527–534,  2017.

D. Nesset, “Pon roadmap [invited],” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 1, pp. A71–A76,  2017.

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1808–1811,  2017.

C. Browning, “5G wireless and wired convergence in a passive optical network using UF-OFDM and GFDM,” in Poc. IEEE Int. Conf. Commun. Workshops, 2017, pp. 386–392.

2016 (3)

V. Sorianello, “Polarization insensitive silicon photonic roadm with selectable communication direction for radio access networks,” Opt. Lett., vol. 41, no. 24, pp. 5688–5691,  2016.

P. Iovanna, “Future proof optical network infrastructure for 5G transport,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 12, pp. B80–B92,  2016.

B. Farhang-Boroujeny and H. Moradi, “OFDM inspired waveforms for 5G,” IEEE Commun. Surv. Tut., vol. 18, no. 4, pp. 2474–2492,  2016.

2015 (6)

B. Skubic, G. Bottari, A. Rostami, F. Cavaliere, and P. Öhlén, “Rethinking optical transport to pave the way for 5G and the networked society,” J. Lightw. Technol., vol. 33, no. 5, pp. 1084–1091,  2015.

D. Nikolova, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express, vol. 23, no. 2, pp. 1159–1175,  2015.

Radio-Over-Fibre (RoF) Technologies and Their Applications, International Telecommunication Union, Geneva, Switzerland, 2015.

5G Wireless Fronthaul Requirements in a Passive Optical Network, International Telecommunication Union, Geneva, Switzerland, 2015.

T. Pfeiffer, “Next generation mobile fronthaul and midhaul architectures - invited,” J. Opt. Commun. Netw., vol. 7, no. 11, pp. B38–B45,  2015.

A. D. La Oliva, “Xhaul: Toward an integrated fronthaul/backhaul architecture in 5G networks,” IEEE Wireless Commun., vol. 22, no. 5, pp. 32–40,  2015.

2014 (1)

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

Abrams, N.

C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. Int. Topical Meeting Microw. Photon., 2018, pp. 1–4.

Anastasopoulos, M. P.

Assimakopoulos, P.

S. Noor, P. Assimakopoulos, and N. J. Gomes, “A flexible subcarrier multiplexing system with analog transport and digital processing for 5G (and beyond) fronthaul,” J. Lightw. Technol., vol. 37, no. 14, pp. 3689–3700,  2019.

N. J. Gomes and P. Assimakopoulos, “Optical fronthaul options for meeting 5G requirements,” in Proc. Int. Conf. Transparent Opt. Netw., We.A2.4, 2018, pp. 1–4. [Online]. Available: https://kar.kent.ac.uk/69102/

Bahadori, M.

M. Bahadori, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Lightw. Technol., vol. 36, no. 3, pp. 773–788,  2018.

Barry, L. P.

C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. Int. Topical Meeting Microw. Photon., 2018, pp. 1–4.

Bauwelinck, J.

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1808–1811,  2017.

Bergman, K.

C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. Int. Topical Meeting Microw. Photon., 2018, pp. 1–4.

Bottari, G.

B. Skubic, G. Bottari, A. Rostami, F. Cavaliere, and P. Öhlén, “Rethinking optical transport to pave the way for 5G and the networked society,” J. Lightw. Technol., vol. 33, no. 5, pp. 1084–1091,  2015.

Breyne, L.

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1808–1811,  2017.

Browning, C.

C. Browning, “5G wireless and wired convergence in a passive optical network using UF-OFDM and GFDM,” in Poc. IEEE Int. Conf. Commun. Workshops, 2017, pp. 386–392.

C. Browning, “Wired and wireless convergence in future optical access networks - invited,” in Proc. IEEE Photon. Conf., 2019, pp. 1–2.

C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. Int. Topical Meeting Microw. Photon., 2018, pp. 1–4.

Cai, S.

Z. Zhang, Y. Chen, S. Cai, B. Zhang, M. Zhang, and X. Chen, “Colorless-light and tunable-light-source schemes for TWDM and WDM pons,” IEEE Commun. Mag., vol. 56, no. 8, pp. 120–128,  2018.

Cavaliere, F.

B. Skubic, G. Bottari, A. Rostami, F. Cavaliere, and P. Öhlén, “Rethinking optical transport to pave the way for 5G and the networked society,” J. Lightw. Technol., vol. 33, no. 5, pp. 1084–1091,  2015.

Chang, G.

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

Chen, X.

Z. Zhang, Y. Chen, S. Cai, B. Zhang, M. Zhang, and X. Chen, “Colorless-light and tunable-light-source schemes for TWDM and WDM pons,” IEEE Commun. Mag., vol. 56, no. 8, pp. 120–128,  2018.

Chen, Y.

Z. Zhang, Y. Chen, S. Cai, B. Zhang, M. Zhang, and X. Chen, “Colorless-light and tunable-light-source schemes for TWDM and WDM pons,” IEEE Commun. Mag., vol. 56, no. 8, pp. 120–128,  2018.

Cheng, L.

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

Cheng, Q.

Q. Cheng, “Ultralow-crosstalk, strictly non-blocking microring-based optical switch,” Photon. Res., vol. 7, no. 2, pp. 155–161,  2019.

Q. Cheng, “Silicon photonic switch topologies and routing strategies for disaggregated data centers,” IEEE J. Sel. Topics Quantum Electron., to be published, doi: .
[Crossref]

Demeester, P.

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1808–1811,  2017.

Farhang-Boroujeny, B.

B. Farhang-Boroujeny and H. Moradi, “OFDM inspired waveforms for 5G,” IEEE Commun. Surv. Tut., vol. 18, no. 4, pp. 2474–2492,  2016.

Gasse, K. Van

K. Van Gasse, “Analog radio-over-fiber transceivers based on iii-v-on-silicon photonics,” IEEE Photon. Technol. Lett., vol. 30, no. 21, pp. 1818–1821,  2018.

Gazman, A.

A. Gazman, “Software-defined control-plane for wavelength selective unicast and multicast of optical data in a silicon photonic platform,” Opt. Express, vol. 25, no. 1, pp. 232–242,  2017.

C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. Int. Topical Meeting Microw. Photon., 2018, pp. 1–4.

Giannoulis, G.

G. Giannoulis, “Analog radio-over-fiber solutions for 5G communications in the beyond-CPRI era,” in Proc. 20th Int. Conf. Transparent Opt. Netw., 2018, pp. 1–5.

Gomes, N. J.

S. Noor, P. Assimakopoulos, and N. J. Gomes, “A flexible subcarrier multiplexing system with analog transport and digital processing for 5G (and beyond) fronthaul,” J. Lightw. Technol., vol. 37, no. 14, pp. 3689–3700,  2019.

N. J. Gomes and P. Assimakopoulos, “Optical fronthaul options for meeting 5G requirements,” in Proc. Int. Conf. Transparent Opt. Netw., We.A2.4, 2018, pp. 1–4. [Online]. Available: https://kar.kent.ac.uk/69102/

Henriksson, J.

M. C. Wu, T. J. Seok, K. Kwon, J. Henriksson, and J. Luo, “Large scale silicon photonics switches based on mems technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2019, pp. 1–3.

Iovanna, P.

P. Iovanna, “Future proof optical network infrastructure for 5G transport,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 12, pp. B80–B92,  2016.

Jayasundara, C.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068,  2018.

Kani, J.

J. Kani, J. Terada, K. Suzuki, and A. Otaka, “Solutions for future mobile fronthaul and access-network convergence,” J. Lightw. Technol., vol. 35, no. 3, pp. 527–534,  2017.

Kwon, K.

M. C. Wu, T. J. Seok, K. Kwon, J. Henriksson, and J. Luo, “Large scale silicon photonics switches based on mems technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2019, pp. 1–3.

Lim, C.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068,  2018.

Liu, C.

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

Luo, J.

M. C. Wu, T. J. Seok, K. Kwon, J. Henriksson, and J. Luo, “Large scale silicon photonics switches based on mems technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2019, pp. 1–3.

Moradi, H.

B. Farhang-Boroujeny and H. Moradi, “OFDM inspired waveforms for 5G,” IEEE Commun. Surv. Tut., vol. 18, no. 4, pp. 2474–2492,  2016.

Nesset, D.

D. Nesset, “Pon roadmap [invited],” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 1, pp. A71–A76,  2017.

Nikolova, D.

Nirmalathas, A.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068,  2018.

Noor, S.

S. Noor, P. Assimakopoulos, and N. J. Gomes, “A flexible subcarrier multiplexing system with analog transport and digital processing for 5G (and beyond) fronthaul,” J. Lightw. Technol., vol. 37, no. 14, pp. 3689–3700,  2019.

Öhlén, P.

B. Skubic, G. Bottari, A. Rostami, F. Cavaliere, and P. Öhlén, “Rethinking optical transport to pave the way for 5G and the networked society,” J. Lightw. Technol., vol. 33, no. 5, pp. 1084–1091,  2015.

Oliva, A. D. La

A. D. La Oliva, “Xhaul: Toward an integrated fronthaul/backhaul architecture in 5G networks,” IEEE Wireless Commun., vol. 22, no. 5, pp. 32–40,  2015.

Otaka, A.

J. Kani, J. Terada, K. Suzuki, and A. Otaka, “Solutions for future mobile fronthaul and access-network convergence,” J. Lightw. Technol., vol. 35, no. 3, pp. 527–534,  2017.

Pfeiffer, T.

Ranaweera, C.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068,  2018.

Rostami, A.

B. Skubic, G. Bottari, A. Rostami, F. Cavaliere, and P. Öhlén, “Rethinking optical transport to pave the way for 5G and the networked society,” J. Lightw. Technol., vol. 33, no. 5, pp. 1084–1091,  2015.

Sabella, R.

R. Sabella, “Silicon photonics for 5G and future networks,” IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 2, pp. 1–11,  2020.

Seok, T. J.

M. C. Wu, T. J. Seok, K. Kwon, J. Henriksson, and J. Luo, “Large scale silicon photonics switches based on mems technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2019, pp. 1–3.

Simeonidou, D.

Skubic, B.

B. Skubic, G. Bottari, A. Rostami, F. Cavaliere, and P. Öhlén, “Rethinking optical transport to pave the way for 5G and the networked society,” J. Lightw. Technol., vol. 33, no. 5, pp. 1084–1091,  2015.

Sorianello, V.

Suzuki, K.

J. Kani, J. Terada, K. Suzuki, and A. Otaka, “Solutions for future mobile fronthaul and access-network convergence,” J. Lightw. Technol., vol. 35, no. 3, pp. 527–534,  2017.

Terada, J.

J. Kani, J. Terada, K. Suzuki, and A. Otaka, “Solutions for future mobile fronthaul and access-network convergence,” J. Lightw. Technol., vol. 35, no. 3, pp. 527–534,  2017.

Torfs, G.

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1808–1811,  2017.

Tzanakaki, A.

Wang, J.

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

Wang, X.

X. Wang, “Virtualized cloud radio access network for 5G transport,” IEEE Commun. Mag., vol. 55, no. 9, pp. 202–209,  2017.

Wey, J. S.

J. S. Wey, “The outlook for PON standardization: A tutorial,” J. Lightw. Technol., vol. 38, no. 1, pp. 31–42,  2020.

Wong, E.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068,  2018.

Wu, M. C.

M. C. Wu, T. J. Seok, K. Kwon, J. Henriksson, and J. Luo, “Large scale silicon photonics switches based on mems technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2019, pp. 1–3.

Yin, X.

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1808–1811,  2017.

Zhang, B.

Z. Zhang, Y. Chen, S. Cai, B. Zhang, M. Zhang, and X. Chen, “Colorless-light and tunable-light-source schemes for TWDM and WDM pons,” IEEE Commun. Mag., vol. 56, no. 8, pp. 120–128,  2018.

Zhang, M.

Z. Zhang, Y. Chen, S. Cai, B. Zhang, M. Zhang, and X. Chen, “Colorless-light and tunable-light-source schemes for TWDM and WDM pons,” IEEE Commun. Mag., vol. 56, no. 8, pp. 120–128,  2018.

Zhang, Z.

Z. Zhang, Y. Chen, S. Cai, B. Zhang, M. Zhang, and X. Chen, “Colorless-light and tunable-light-source schemes for TWDM and WDM pons,” IEEE Commun. Mag., vol. 56, no. 8, pp. 120–128,  2018.

Zhu, M.

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

5G Wireless Fronthaul Requirements in a Passive Optical Network (1)

5G Wireless Fronthaul Requirements in a Passive Optical Network, International Telecommunication Union, Geneva, Switzerland, 2015.

Common Public Radio Interface: eCPRI Interface Specification (1)

CPRI, “ecpri specification v2.0 (2019-05-10),” Common Public Radio Interface: eCPRI Interface Specification, 2019.

IEEE Commun. Mag. (2)

X. Wang, “Virtualized cloud radio access network for 5G transport,” IEEE Commun. Mag., vol. 55, no. 9, pp. 202–209,  2017.

Z. Zhang, Y. Chen, S. Cai, B. Zhang, M. Zhang, and X. Chen, “Colorless-light and tunable-light-source schemes for TWDM and WDM pons,” IEEE Commun. Mag., vol. 56, no. 8, pp. 120–128,  2018.

IEEE Commun. Surv. Tut. (1)

B. Farhang-Boroujeny and H. Moradi, “OFDM inspired waveforms for 5G,” IEEE Commun. Surv. Tut., vol. 18, no. 4, pp. 2474–2492,  2016.

IEEE J. Sel. Topics Quantum Electron. (2)

Q. Cheng, “Silicon photonic switch topologies and routing strategies for disaggregated data centers,” IEEE J. Sel. Topics Quantum Electron., to be published, doi: .
[Crossref]

R. Sabella, “Silicon photonics for 5G and future networks,” IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 2, pp. 1–11,  2020.

IEEE Photon. Technol. Lett. (2)

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1808–1811,  2017.

K. Van Gasse, “Analog radio-over-fiber transceivers based on iii-v-on-silicon photonics,” IEEE Photon. Technol. Lett., vol. 30, no. 21, pp. 1818–1821,  2018.

IEEE Wireless Commun. (1)

A. D. La Oliva, “Xhaul: Toward an integrated fronthaul/backhaul architecture in 5G networks,” IEEE Wireless Commun., vol. 22, no. 5, pp. 32–40,  2015.

IEEE/OSA J. Opt. Commun. Netw. (2)

P. Iovanna, “Future proof optical network infrastructure for 5G transport,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 12, pp. B80–B92,  2016.

D. Nesset, “Pon roadmap [invited],” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 1, pp. A71–A76,  2017.

J. Lightw. Technol. (7)

M. Bahadori, “Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform,” J. Lightw. Technol., vol. 36, no. 3, pp. 773–788,  2018.

J. S. Wey, “The outlook for PON standardization: A tutorial,” J. Lightw. Technol., vol. 38, no. 1, pp. 31–42,  2020.

J. Kani, J. Terada, K. Suzuki, and A. Otaka, “Solutions for future mobile fronthaul and access-network convergence,” J. Lightw. Technol., vol. 35, no. 3, pp. 527–534,  2017.

B. Skubic, G. Bottari, A. Rostami, F. Cavaliere, and P. Öhlén, “Rethinking optical transport to pave the way for 5G and the networked society,” J. Lightw. Technol., vol. 33, no. 5, pp. 1084–1091,  2015.

C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN with optical fronthaul: An analysis from a deployment perspective,” J. Lightw. Technol., vol. 36, no. 11, pp. 2059–2068,  2018.

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightw. Technol., vol. 32, no. 20, pp. 3452–3460,  2014.

S. Noor, P. Assimakopoulos, and N. J. Gomes, “A flexible subcarrier multiplexing system with analog transport and digital processing for 5G (and beyond) fronthaul,” J. Lightw. Technol., vol. 37, no. 14, pp. 3689–3700,  2019.

J. Opt. Commun. Netw. (2)

Opt. Express (2)

Opt. Lett. (1)

Photon. Res. (1)

Poc. IEEE Int. Conf. Commun. Workshops (1)

C. Browning, “5G wireless and wired convergence in a passive optical network using UF-OFDM and GFDM,” in Poc. IEEE Int. Conf. Commun. Workshops, 2017, pp. 386–392.

Radio-Over-Fibre (RoF) Technologies and Their Applications (1)

Radio-Over-Fibre (RoF) Technologies and Their Applications, International Telecommunication Union, Geneva, Switzerland, 2015.

Other (7)

Ericsson, “Edge computing and deployment strategies for communication service providers,” Stockholm, Sweden, Ericsson, White Paper, 2020.

M. C. Wu, T. J. Seok, K. Kwon, J. Henriksson, and J. Luo, “Large scale silicon photonics switches based on mems technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2019, pp. 1–3.

G. Giannoulis, “Analog radio-over-fiber solutions for 5G communications in the beyond-CPRI era,” in Proc. 20th Int. Conf. Transparent Opt. Netw., 2018, pp. 1–5.

N. J. Gomes and P. Assimakopoulos, “Optical fronthaul options for meeting 5G requirements,” in Proc. Int. Conf. Transparent Opt. Netw., We.A2.4, 2018, pp. 1–4. [Online]. Available: https://kar.kent.ac.uk/69102/

C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. Int. Topical Meeting Microw. Photon., 2018, pp. 1–4.

C. Browning, “Wired and wireless convergence in future optical access networks - invited,” in Proc. IEEE Photon. Conf., 2019, pp. 1–2.

“Cisco visual networking index: Global mobile data traffic forecast update, 2017-2022,” Cisco, San Jose, CA, USA, White Paper, 2019.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.