Abstract

The design of application-specific integrated circuits (ASIC) is at the core of modern ultra-high-speed transponders employing advanced digital signal processing (DSP) algorithms. This manuscript discusses the motivations for jointly utilizing transmission techniques such as probabilistic shaping and digital sub-carrier multiplexing in digital coherent optical transmissions systems. First, we describe the key-building blocks of modern high-speed DSP-based transponders working at up to 800G per wave. Second, we show the benefits of these transmission methods in terms of system level performance. Finally, we report, to the best of our knowledge, the first long-haul experimental transmission – e.g., over 1000 km – with a real-time 7 nm DSP ASIC and digital coherent optics (DCO) capable of data rates up to 1.6 Tb/s using two waves (2 × 800G).

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express, vol. 16, no. 2, pp. 873–879, 2008.
  2. M. Kuschnerov, “DSP for coherent single-carrier receivers,” J. Lightw. Technol., vol. 27, no. 16, pp. 3614–3622,  2009.
  3. K. Roberts, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightw. Technol., vol. 27, no. 16, pp. 3546–3559,  2009.
  4. Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express, vol. 13, no. 19, pp. 7527–7534, 2005.
  5. M. S. Alfiad, “111-Gb/s transmission over 1040-km field-deployed fiber with 10G/40G neighbors,” IEEE Photon. Technol. Lett., vol. 21, no. 10, pp. 615–617,  2009.
  6. “Cisco Visual Networking Index: Forecast and Methodology,” 2017. [Online]. Available: https://www.cisco.com/c/en/us/solutions/service-provider/visual-network% ing-index-vni/index.html
  7. J. Slovak, “Aware optical networks: Leaving the lab,” IEEE/OSA J. Opt. Commun. Netw., vol. 11, no. 2, pp. A134–A143, Feb. 2019.
  8. K. Sugihara, K. Ishii, K. Dohi, K. Kubo, T. Sugihara, and W. Matsumoto, “Scalable SD-FEC for efficient next-generation optical networks,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.
  9. M. Torbatian, D. Chan, H. H. Sun, S. Thomson, and K.-T. Wu, “Distribution matching for probabilistic constellation shaping with an arbitrary input/output alphabet,” U.S. Patent App. 16/152,353, 16, 2019.
  10. D. Pilori, L. Bertignono, A. Nespola, F. Forghieri, and G. Bosco, “Comparison of probabilistically shaped 64QAM with lower cardinality uniform constellations in long-haul optical systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 501–509,  2018.
  11. A. Ferrari, “Assessment on the achievable throughput of multi-band ITU-T G.652.D fiber transmission systems,” J. Lightw. Technol., to be published, doi: .
    [Crossref]
  12. R. Van Uden, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, pp. 865–870, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.243
  13. T. Kobayashi, “1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5B–1.
  14. Y. Pointurier, “Design of low-margin optical networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 1, pp. A9–A17,  2017.
  15. A. Napoli, “Novel DAC digital pre-emphasis algorithm for next-generation flexible optical transponders,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper Th3G–6.
  16. Y. Yoffe, “Low-resolution digital pre-compensation enabled by digital resolution enhancer,” J. Lightw. Technol., vol. 37, no. 6, pp. 1543–1551,  2019.
  17. P. W. Berenguer, “Nonlinear digital pre-distortion of transmitter components,” J. Lightw. Technol., vol. 34, no. 8, pp. 1739–1745,  2016.
  18. A. Napoli, M. M. Mezghanni, S. Calabro, R. Palmer, G. Saathoff, and B. Spinnler, “Digital predistortion techniques for finite extinction ratio IQ Mach–Zehnder modulators,” J. Lightw. Technol., vol. 35, no. 19, pp. 4289–4296,  2017.
  19. J. C. M. Diniz, F. Da Ros, E. P. da Silva, R. T. Jones, and D. Zibar, “Optimization of DP-M-QAM transmitter using cooperative coevolutionary genetic algorithm,” J. Lightw. Technol., vol. 36, no. 12, pp. 2450–2462, Jun. 2018.
  20. G. Khanna, S. Calabrò, B. Spinnler, E. De Man, and N. Hanik, “Joint adaptive pre-compensation of transmitter I/Q skew and frequency response for high order modulation formats and high baud rates,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper M2G–4.
  21. “Infinera 600G,” 2019. [Online]. Available: https://www.infinera.com/press-release/infinera-sets-highest-performance-600gtransmission-record
  22. “Ciena 800 G,” 2019. [Online]. Available: https://www.ciena.com/insights/articles/Ciena-unveils-WaveLogic-5-800G-and-somuch-more.html
  23. “Infinera 800 G,” 2019. [Online]. Available: https://www.infinera.com/press-release/infinera-announces-ice6-the-next-generationinfinite-capacity-engine-featuring-800g-waves
  24. S. Savory, “Digital equalisation of 40Gbit/s per wavelength transmission over 2480 km of standard fibre without optical dispersion compensation,” in Proc. IEEE Eur. Conf. Opt. Commun., 2006, pp. 1–2, doi: .
  25. J. C. Geyer, C. R. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Efficient frequency domain chromatic dispersion compensation in a coherent polmux QPSK-receiver,” in Proc. Opt. Fiber Commun. Conf., 2010, Paper OWV5.
  26. W. Shieh and K.-P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express, vol. 16, no. 20, pp. 15 718–15 727, 2008.
  27. X. Chen, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190 gbaud,” J. Lightw. Technol., vol. 35, no. 3, pp. 411–417,  2017.
  28. S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” IEEE J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.
  29. A. Kakkar, “Comprehensive study of equalization-enhanced phase noise in coherent optical systems,” J. Lightw. Technol., vol. 33, no. 23, pp. 4834–4841,  2015.
  30. X. Zhou and L. Nelson, “Advanced DSP for 400 gb/s and beyond optical networks,” J. Lightw. Technol., vol. 32, no. 16, pp. 2716–2725,  2014.
  31. A. Kakkar, “Overcoming EEPN in coherent transmission systems,” in Proc. IEEE Conf. Lasers Electro-Opt., 2016, pp. 1–2.
  32. G. Goldfarb, “Apparatus for compensating optical signal impairments,” U.S. Patent 8,923,707, 30, 2014.
  33. R. Going, “Multi-channel InP-based coherent PICs with hybrid integrated SiGe electronics operating up to 100 GBd, 32QAM,” in Proc. IEEE Eur. Conf. Opt. Commun., 2017, pp. 1–3, doi: .
  34. D. Krause, A. Awadalla, A. S. Karar, H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1D–1.
  35. T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken, NJ, USA: Wiley, 2012.
  36. F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929,  1993.
  37. F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.
  38. N. S. Loghin, J. Zöllner, B. Mouhouche, D. Ansorregui, J. Kim, and S.-I. Park, “Non-uniform constellations for ATSC 3.0,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 197–203,  2016.
  39. P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434,  2016.
  40. C. Pan and F. R. Kschischang, “Probabilistic 16-QAM shaping in WDM systems,” J. Lightw. Technol., vol. 34, no. 18, pp. 4285–4292,  2016.
  41. T. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory, vol. 19, no. 1, pp. 73–77,  1973.
  42. B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1180–1192,  2010.
  43. A. Alvarado, E. Agrell, D. Lavery, and P. Bayvel, “LDPC codes for optical channels: Is the “FEC limit” a good predictor of post-FEC BER?” in Proc. Opt. Fiber Commun. Conf., 2015, Paper Th3E–5.
  44. L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.
  45. L. Schmalen, D. Suikat, D. Rösener, and A. Leven, “Evaluation of left-terminated spatially coupled LDPC codes for optical communications,” in Proc. IEEE Eur. Conf. Opt. Commun., 2014, pp. 1–3, doi: .
  46. D. Chang, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Proc. IEEE Opt. Fiber Commun. Conf. Exhib./Nat. Fiber Optic Engineers Conf., 2012, pp. 1–3.
  47. I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightw. Technol., vol. 27, no. 16, pp. 3518–3530,  2009.
  48. T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618,  2001.
  49. E. Abbess, “Capacity improvement using dual-carrier FEC gain sharing in submarine optical communications,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Th2A–51.
  50. J. Rahn, “Transmission improvement through dual-carrier FEC gain sharing,” in Proc. IEEE Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Engineers Conf., 2013, pp. 1–3, doi: .
  51. M. N. Tehrani, M. Torbatian, H. Sun, P. Mertz, and K.-T. Wu, “A novel nonlinearity tolerant super-gaussian distribution for probabilistically shaped modulation,” in Proc. IEEE Eur. Conf. Opt. Commun., 2018, pp. 1–3, doi: .
  52. J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171–178,  2003.
  53. V. Lal, “1.6 Tbps coherent 2-channel transceiver using a monolithic Tx/Rx InP PIC and single SiGe ASIC,” in Proc. IEEE Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Engineers Conf., 2020, p. M3A-2.
  54. D. J. Elson, “Investigation of bandwidth loading in optical fibre transmission using amplified spontaneous emission noise,” Opt. Express, vol. 25, no. 16, pp. 19 529–19 537, 2017.

2019 (2)

J. Slovak, “Aware optical networks: Leaving the lab,” IEEE/OSA J. Opt. Commun. Netw., vol. 11, no. 2, pp. A134–A143, Feb. 2019.

Y. Yoffe, “Low-resolution digital pre-compensation enabled by digital resolution enhancer,” J. Lightw. Technol., vol. 37, no. 6, pp. 1543–1551,  2019.

2018 (2)

D. Pilori, L. Bertignono, A. Nespola, F. Forghieri, and G. Bosco, “Comparison of probabilistically shaped 64QAM with lower cardinality uniform constellations in long-haul optical systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 501–509,  2018.

J. C. M. Diniz, F. Da Ros, E. P. da Silva, R. T. Jones, and D. Zibar, “Optimization of DP-M-QAM transmitter using cooperative coevolutionary genetic algorithm,” J. Lightw. Technol., vol. 36, no. 12, pp. 2450–2462, Jun. 2018.

2017 (4)

Y. Pointurier, “Design of low-margin optical networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 1, pp. A9–A17,  2017.

A. Napoli, M. M. Mezghanni, S. Calabro, R. Palmer, G. Saathoff, and B. Spinnler, “Digital predistortion techniques for finite extinction ratio IQ Mach–Zehnder modulators,” J. Lightw. Technol., vol. 35, no. 19, pp. 4289–4296,  2017.

X. Chen, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190 gbaud,” J. Lightw. Technol., vol. 35, no. 3, pp. 411–417,  2017.

D. J. Elson, “Investigation of bandwidth loading in optical fibre transmission using amplified spontaneous emission noise,” Opt. Express, vol. 25, no. 16, pp. 19 529–19 537, 2017.

2016 (5)

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

N. S. Loghin, J. Zöllner, B. Mouhouche, D. Ansorregui, J. Kim, and S.-I. Park, “Non-uniform constellations for ATSC 3.0,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 197–203,  2016.

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434,  2016.

C. Pan and F. R. Kschischang, “Probabilistic 16-QAM shaping in WDM systems,” J. Lightw. Technol., vol. 34, no. 18, pp. 4285–4292,  2016.

P. W. Berenguer, “Nonlinear digital pre-distortion of transmitter components,” J. Lightw. Technol., vol. 34, no. 8, pp. 1739–1745,  2016.

2015 (2)

A. Kakkar, “Comprehensive study of equalization-enhanced phase noise in coherent optical systems,” J. Lightw. Technol., vol. 33, no. 23, pp. 4834–4841,  2015.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

2014 (2)

X. Zhou and L. Nelson, “Advanced DSP for 400 gb/s and beyond optical networks,” J. Lightw. Technol., vol. 32, no. 16, pp. 2716–2725,  2014.

R. Van Uden, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, pp. 865–870, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.243

2010 (1)

B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1180–1192,  2010.

2009 (4)

I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightw. Technol., vol. 27, no. 16, pp. 3518–3530,  2009.

M. Kuschnerov, “DSP for coherent single-carrier receivers,” J. Lightw. Technol., vol. 27, no. 16, pp. 3614–3622,  2009.

K. Roberts, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightw. Technol., vol. 27, no. 16, pp. 3546–3559,  2009.

M. S. Alfiad, “111-Gb/s transmission over 1040-km field-deployed fiber with 10G/40G neighbors,” IEEE Photon. Technol. Lett., vol. 21, no. 10, pp. 615–617,  2009.

2008 (2)

H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express, vol. 16, no. 2, pp. 873–879, 2008.

W. Shieh and K.-P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express, vol. 16, no. 20, pp. 15 718–15 727, 2008.

2005 (1)

2003 (1)

J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171–178,  2003.

2001 (1)

T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618,  2001.

1993 (1)

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929,  1993.

1990 (1)

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” IEEE J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

1973 (1)

T. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory, vol. 19, no. 1, pp. 73–77,  1973.

Abbess, E.

E. Abbess, “Capacity improvement using dual-carrier FEC gain sharing in submarine optical communications,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Th2A–51.

Agrell, E.

A. Alvarado, E. Agrell, D. Lavery, and P. Bayvel, “LDPC codes for optical channels: Is the “FEC limit” a good predictor of post-FEC BER?” in Proc. Opt. Fiber Commun. Conf., 2015, Paper Th3E–5.

Alfiad, M. S.

M. S. Alfiad, “111-Gb/s transmission over 1040-km field-deployed fiber with 10G/40G neighbors,” IEEE Photon. Technol. Lett., vol. 21, no. 10, pp. 615–617,  2009.

Alvarado, A.

A. Alvarado, E. Agrell, D. Lavery, and P. Bayvel, “LDPC codes for optical channels: Is the “FEC limit” a good predictor of post-FEC BER?” in Proc. Opt. Fiber Commun. Conf., 2015, Paper Th3E–5.

Ansorregui, D.

N. S. Loghin, J. Zöllner, B. Mouhouche, D. Ansorregui, J. Kim, and S.-I. Park, “Non-uniform constellations for ATSC 3.0,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 197–203,  2016.

Arabaci, M.

I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightw. Technol., vol. 27, no. 16, pp. 3518–3530,  2009.

Aref, V.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

Awadalla, A.

D. Krause, A. Awadalla, A. S. Karar, H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1D–1.

Bayvel, P.

A. Alvarado, E. Agrell, D. Lavery, and P. Bayvel, “LDPC codes for optical channels: Is the “FEC limit” a good predictor of post-FEC BER?” in Proc. Opt. Fiber Commun. Conf., 2015, Paper Th3E–5.

Berenguer, P. W.

P. W. Berenguer, “Nonlinear digital pre-distortion of transmitter components,” J. Lightw. Technol., vol. 34, no. 8, pp. 1739–1745,  2016.

Bertignono, L.

D. Pilori, L. Bertignono, A. Nespola, F. Forghieri, and G. Bosco, “Comparison of probabilistically shaped 64QAM with lower cardinality uniform constellations in long-haul optical systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 501–509,  2018.

Böcherer, G.

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434,  2016.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

Bosco, G.

D. Pilori, L. Bertignono, A. Nespola, F. Forghieri, and G. Bosco, “Comparison of probabilistically shaped 64QAM with lower cardinality uniform constellations in long-haul optical systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 501–509,  2018.

Buchali, F.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

Calabro, S.

A. Napoli, M. M. Mezghanni, S. Calabro, R. Palmer, G. Saathoff, and B. Spinnler, “Digital predistortion techniques for finite extinction ratio IQ Mach–Zehnder modulators,” J. Lightw. Technol., vol. 35, no. 19, pp. 4289–4296,  2017.

Calabrò, S.

G. Khanna, S. Calabrò, B. Spinnler, E. De Man, and N. Hanik, “Joint adaptive pre-compensation of transmitter I/Q skew and frequency response for high order modulation formats and high baud rates,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper M2G–4.

Chan, D.

M. Torbatian, D. Chan, H. H. Sun, S. Thomson, and K.-T. Wu, “Distribution matching for probabilistic constellation shaping with an arbitrary input/output alphabet,” U.S. Patent App. 16/152,353, 16, 2019.

Chang, D.

D. Chang, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Proc. IEEE Opt. Fiber Commun. Conf. Exhib./Nat. Fiber Optic Engineers Conf., 2012, pp. 1–3.

Chen, X.

X. Chen, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190 gbaud,” J. Lightw. Technol., vol. 35, no. 3, pp. 411–417,  2017.

Cho, J.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

Cover, T.

T. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory, vol. 19, no. 1, pp. 73–77,  1973.

Cover, T. M.

T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken, NJ, USA: Wiley, 2012.

Da Ros, F.

J. C. M. Diniz, F. Da Ros, E. P. da Silva, R. T. Jones, and D. Zibar, “Optimization of DP-M-QAM transmitter using cooperative coevolutionary genetic algorithm,” J. Lightw. Technol., vol. 36, no. 12, pp. 2450–2462, Jun. 2018.

da Silva, E. P.

J. C. M. Diniz, F. Da Ros, E. P. da Silva, R. T. Jones, and D. Zibar, “Optimization of DP-M-QAM transmitter using cooperative coevolutionary genetic algorithm,” J. Lightw. Technol., vol. 36, no. 12, pp. 2450–2462, Jun. 2018.

Diniz, J. C. M.

J. C. M. Diniz, F. Da Ros, E. P. da Silva, R. T. Jones, and D. Zibar, “Optimization of DP-M-QAM transmitter using cooperative coevolutionary genetic algorithm,” J. Lightw. Technol., vol. 36, no. 12, pp. 2450–2462, Jun. 2018.

Djordjevic, I. B.

I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightw. Technol., vol. 27, no. 16, pp. 3518–3530,  2009.

Dohi, K.

K. Sugihara, K. Ishii, K. Dohi, K. Kubo, T. Sugihara, and W. Matsumoto, “Scalable SD-FEC for efficient next-generation optical networks,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Duthel, T.

J. C. Geyer, C. R. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Efficient frequency domain chromatic dispersion compensation in a coherent polmux QPSK-receiver,” in Proc. Opt. Fiber Commun. Conf., 2010, Paper OWV5.

Edagawa, N.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” IEEE J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

Elson, D. J.

D. J. Elson, “Investigation of bandwidth loading in optical fibre transmission using amplified spontaneous emission noise,” Opt. Express, vol. 25, no. 16, pp. 19 529–19 537, 2017.

Ferrari, A.

A. Ferrari, “Assessment on the achievable throughput of multi-band ITU-T G.652.D fiber transmission systems,” J. Lightw. Technol., to be published, doi: .
[Crossref]

Fludger, C. R.

J. C. Geyer, C. R. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Efficient frequency domain chromatic dispersion compensation in a coherent polmux QPSK-receiver,” in Proc. Opt. Fiber Commun. Conf., 2010, Paper OWV5.

Forghieri, F.

D. Pilori, L. Bertignono, A. Nespola, F. Forghieri, and G. Bosco, “Comparison of probabilistically shaped 64QAM with lower cardinality uniform constellations in long-haul optical systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 501–509,  2018.

Geyer, J. C.

J. C. Geyer, C. R. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Efficient frequency domain chromatic dispersion compensation in a coherent polmux QPSK-receiver,” in Proc. Opt. Fiber Commun. Conf., 2010, Paper OWV5.

Going, R.

R. Going, “Multi-channel InP-based coherent PICs with hybrid integrated SiGe electronics operating up to 100 GBd, 32QAM,” in Proc. IEEE Eur. Conf. Opt. Commun., 2017, pp. 1–3, doi: .

Goldfarb, G.

G. Goldfarb, “Apparatus for compensating optical signal impairments,” U.S. Patent 8,923,707, 30, 2014.

Han, Y.

Hanik, N.

G. Khanna, S. Calabrò, B. Spinnler, E. De Man, and N. Hanik, “Joint adaptive pre-compensation of transmitter I/Q skew and frequency response for high order modulation formats and high baud rates,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper M2G–4.

Ho, K.-P.

W. Shieh and K.-P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express, vol. 16, no. 20, pp. 15 718–15 727, 2008.

Idler, W.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

Ishii, K.

K. Sugihara, K. Ishii, K. Dohi, K. Kubo, T. Sugihara, and W. Matsumoto, “Scalable SD-FEC for efficient next-generation optical networks,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Jang, J.

J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171–178,  2003.

Jones, R. T.

J. C. M. Diniz, F. Da Ros, E. P. da Silva, R. T. Jones, and D. Zibar, “Optimization of DP-M-QAM transmitter using cooperative coevolutionary genetic algorithm,” J. Lightw. Technol., vol. 36, no. 12, pp. 2450–2462, Jun. 2018.

Kakkar, A.

A. Kakkar, “Comprehensive study of equalization-enhanced phase noise in coherent optical systems,” J. Lightw. Technol., vol. 33, no. 23, pp. 4834–4841,  2015.

A. Kakkar, “Overcoming EEPN in coherent transmission systems,” in Proc. IEEE Conf. Lasers Electro-Opt., 2016, pp. 1–2.

Karar, A. S.

D. Krause, A. Awadalla, A. S. Karar, H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1D–1.

Khanna, G.

G. Khanna, S. Calabrò, B. Spinnler, E. De Man, and N. Hanik, “Joint adaptive pre-compensation of transmitter I/Q skew and frequency response for high order modulation formats and high baud rates,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper M2G–4.

Kim, J.

N. S. Loghin, J. Zöllner, B. Mouhouche, D. Ansorregui, J. Kim, and S.-I. Park, “Non-uniform constellations for ATSC 3.0,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 197–203,  2016.

Kobayashi, T.

T. Kobayashi, “1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5B–1.

Krause, D.

D. Krause, A. Awadalla, A. S. Karar, H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1D–1.

Kschischang, F. R.

C. Pan and F. R. Kschischang, “Probabilistic 16-QAM shaping in WDM systems,” J. Lightw. Technol., vol. 34, no. 18, pp. 4285–4292,  2016.

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929,  1993.

Kubo, K.

K. Sugihara, K. Ishii, K. Dohi, K. Kubo, T. Sugihara, and W. Matsumoto, “Scalable SD-FEC for efficient next-generation optical networks,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Kuschnerov, M.

M. Kuschnerov, “DSP for coherent single-carrier receivers,” J. Lightw. Technol., vol. 27, no. 16, pp. 3614–3622,  2009.

Lal, V.

V. Lal, “1.6 Tbps coherent 2-channel transceiver using a monolithic Tx/Rx InP PIC and single SiGe ASIC,” in Proc. IEEE Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Engineers Conf., 2020, p. M3A-2.

Lavery, D.

A. Alvarado, E. Agrell, D. Lavery, and P. Bayvel, “LDPC codes for optical channels: Is the “FEC limit” a good predictor of post-FEC BER?” in Proc. Opt. Fiber Commun. Conf., 2015, Paper Th3E–5.

Lee, K. B.

J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171–178,  2003.

Leven, A.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

L. Schmalen, D. Suikat, D. Rösener, and A. Leven, “Evaluation of left-terminated spatially coupled LDPC codes for optical communications,” in Proc. IEEE Eur. Conf. Opt. Commun., 2014, pp. 1–3, doi: .

Li, G.

Loghin, N. S.

N. S. Loghin, J. Zöllner, B. Mouhouche, D. Ansorregui, J. Kim, and S.-I. Park, “Non-uniform constellations for ATSC 3.0,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 197–203,  2016.

Man, E. De

G. Khanna, S. Calabrò, B. Spinnler, E. De Man, and N. Hanik, “Joint adaptive pre-compensation of transmitter I/Q skew and frequency response for high order modulation formats and high baud rates,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper M2G–4.

Matsumoto, W.

K. Sugihara, K. Ishii, K. Dohi, K. Kubo, T. Sugihara, and W. Matsumoto, “Scalable SD-FEC for efficient next-generation optical networks,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Mertz, P.

M. N. Tehrani, M. Torbatian, H. Sun, P. Mertz, and K.-T. Wu, “A novel nonlinearity tolerant super-gaussian distribution for probabilistically shaped modulation,” in Proc. IEEE Eur. Conf. Opt. Commun., 2018, pp. 1–3, doi: .

Mezghanni, M. M.

A. Napoli, M. M. Mezghanni, S. Calabro, R. Palmer, G. Saathoff, and B. Spinnler, “Digital predistortion techniques for finite extinction ratio IQ Mach–Zehnder modulators,” J. Lightw. Technol., vol. 35, no. 19, pp. 4289–4296,  2017.

Minkov, L. L.

I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightw. Technol., vol. 27, no. 16, pp. 3518–3530,  2009.

Mouhouche, B.

N. S. Loghin, J. Zöllner, B. Mouhouche, D. Ansorregui, J. Kim, and S.-I. Park, “Non-uniform constellations for ATSC 3.0,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 197–203,  2016.

Napoli, A.

A. Napoli, M. M. Mezghanni, S. Calabro, R. Palmer, G. Saathoff, and B. Spinnler, “Digital predistortion techniques for finite extinction ratio IQ Mach–Zehnder modulators,” J. Lightw. Technol., vol. 35, no. 19, pp. 4289–4296,  2017.

A. Napoli, “Novel DAC digital pre-emphasis algorithm for next-generation flexible optical transponders,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper Th3G–6.

Nelson, L.

X. Zhou and L. Nelson, “Advanced DSP for 400 gb/s and beyond optical networks,” J. Lightw. Technol., vol. 32, no. 16, pp. 2716–2725,  2014.

Nespola, A.

D. Pilori, L. Bertignono, A. Nespola, F. Forghieri, and G. Bosco, “Comparison of probabilistically shaped 64QAM with lower cardinality uniform constellations in long-haul optical systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 501–509,  2018.

Palmer, R.

A. Napoli, M. M. Mezghanni, S. Calabro, R. Palmer, G. Saathoff, and B. Spinnler, “Digital predistortion techniques for finite extinction ratio IQ Mach–Zehnder modulators,” J. Lightw. Technol., vol. 35, no. 19, pp. 4289–4296,  2017.

Pan, C.

C. Pan and F. R. Kschischang, “Probabilistic 16-QAM shaping in WDM systems,” J. Lightw. Technol., vol. 34, no. 18, pp. 4285–4292,  2016.

Park, S.-I.

N. S. Loghin, J. Zöllner, B. Mouhouche, D. Ansorregui, J. Kim, and S.-I. Park, “Non-uniform constellations for ATSC 3.0,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 197–203,  2016.

Pasupathy, S.

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929,  1993.

Pilori, D.

D. Pilori, L. Bertignono, A. Nespola, F. Forghieri, and G. Bosco, “Comparison of probabilistically shaped 64QAM with lower cardinality uniform constellations in long-haul optical systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 501–509,  2018.

Pointurier, Y.

Y. Pointurier, “Design of low-margin optical networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 1, pp. A9–A17,  2017.

Rahn, J.

J. Rahn, “Transmission improvement through dual-carrier FEC gain sharing,” in Proc. IEEE Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Engineers Conf., 2013, pp. 1–3, doi: .

Richardson, T.

T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618,  2001.

Roberts, K.

K. Roberts, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightw. Technol., vol. 27, no. 16, pp. 3546–3559,  2009.

H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express, vol. 16, no. 2, pp. 873–879, 2008.

Rösener, D.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

L. Schmalen, D. Suikat, D. Rösener, and A. Leven, “Evaluation of left-terminated spatially coupled LDPC codes for optical communications,” in Proc. IEEE Eur. Conf. Opt. Commun., 2014, pp. 1–3, doi: .

Saathoff, G.

A. Napoli, M. M. Mezghanni, S. Calabro, R. Palmer, G. Saathoff, and B. Spinnler, “Digital predistortion techniques for finite extinction ratio IQ Mach–Zehnder modulators,” J. Lightw. Technol., vol. 35, no. 19, pp. 4289–4296,  2017.

Savory, S.

S. Savory, “Digital equalisation of 40Gbit/s per wavelength transmission over 2480 km of standard fibre without optical dispersion compensation,” in Proc. IEEE Eur. Conf. Opt. Commun., 2006, pp. 1–2, doi: .

Schmalen, L.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

L. Schmalen, D. Suikat, D. Rösener, and A. Leven, “Evaluation of left-terminated spatially coupled LDPC codes for optical communications,” in Proc. IEEE Eur. Conf. Opt. Commun., 2014, pp. 1–3, doi: .

Schmauss, B.

J. C. Geyer, C. R. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Efficient frequency domain chromatic dispersion compensation in a coherent polmux QPSK-receiver,” in Proc. Opt. Fiber Commun. Conf., 2010, Paper OWV5.

Schulien, C.

J. C. Geyer, C. R. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Efficient frequency domain chromatic dispersion compensation in a coherent polmux QPSK-receiver,” in Proc. Opt. Fiber Commun. Conf., 2010, Paper OWV5.

Schulte, P.

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434,  2016.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

Shieh, W.

W. Shieh and K.-P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express, vol. 16, no. 20, pp. 15 718–15 727, 2008.

Slovak, J.

J. Slovak, “Aware optical networks: Leaving the lab,” IEEE/OSA J. Opt. Commun. Netw., vol. 11, no. 2, pp. A134–A143, Feb. 2019.

Spinnler, B.

A. Napoli, M. M. Mezghanni, S. Calabro, R. Palmer, G. Saathoff, and B. Spinnler, “Digital predistortion techniques for finite extinction ratio IQ Mach–Zehnder modulators,” J. Lightw. Technol., vol. 35, no. 19, pp. 4289–4296,  2017.

B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1180–1192,  2010.

G. Khanna, S. Calabrò, B. Spinnler, E. De Man, and N. Hanik, “Joint adaptive pre-compensation of transmitter I/Q skew and frequency response for high order modulation formats and high baud rates,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper M2G–4.

Steiner, F.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

Sugihara, K.

K. Sugihara, K. Ishii, K. Dohi, K. Kubo, T. Sugihara, and W. Matsumoto, “Scalable SD-FEC for efficient next-generation optical networks,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Sugihara, T.

K. Sugihara, K. Ishii, K. Dohi, K. Kubo, T. Sugihara, and W. Matsumoto, “Scalable SD-FEC for efficient next-generation optical networks,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Suikat, D.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

L. Schmalen, D. Suikat, D. Rösener, and A. Leven, “Evaluation of left-terminated spatially coupled LDPC codes for optical communications,” in Proc. IEEE Eur. Conf. Opt. Commun., 2014, pp. 1–3, doi: .

Sun, H.

H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express, vol. 16, no. 2, pp. 873–879, 2008.

M. N. Tehrani, M. Torbatian, H. Sun, P. Mertz, and K.-T. Wu, “A novel nonlinearity tolerant super-gaussian distribution for probabilistically shaped modulation,” in Proc. IEEE Eur. Conf. Opt. Commun., 2018, pp. 1–3, doi: .

D. Krause, A. Awadalla, A. S. Karar, H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1D–1.

Sun, H. H.

M. Torbatian, D. Chan, H. H. Sun, S. Thomson, and K.-T. Wu, “Distribution matching for probabilistic constellation shaping with an arbitrary input/output alphabet,” U.S. Patent App. 16/152,353, 16, 2019.

Taga, H.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” IEEE J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

Tehrani, M. N.

M. N. Tehrani, M. Torbatian, H. Sun, P. Mertz, and K.-T. Wu, “A novel nonlinearity tolerant super-gaussian distribution for probabilistically shaped modulation,” in Proc. IEEE Eur. Conf. Opt. Commun., 2018, pp. 1–3, doi: .

Thomas, J. A.

T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken, NJ, USA: Wiley, 2012.

Thomson, S.

M. Torbatian, D. Chan, H. H. Sun, S. Thomson, and K.-T. Wu, “Distribution matching for probabilistic constellation shaping with an arbitrary input/output alphabet,” U.S. Patent App. 16/152,353, 16, 2019.

Torbatian, M.

M. Torbatian, D. Chan, H. H. Sun, S. Thomson, and K.-T. Wu, “Distribution matching for probabilistic constellation shaping with an arbitrary input/output alphabet,” U.S. Patent App. 16/152,353, 16, 2019.

M. N. Tehrani, M. Torbatian, H. Sun, P. Mertz, and K.-T. Wu, “A novel nonlinearity tolerant super-gaussian distribution for probabilistically shaped modulation,” in Proc. IEEE Eur. Conf. Opt. Commun., 2018, pp. 1–3, doi: .

Uden, R. Van

R. Van Uden, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, pp. 865–870, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.243

Urbanke, R.

T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618,  2001.

Wakabayashi, H.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” IEEE J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

Wu, K.-T.

H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express, vol. 16, no. 2, pp. 873–879, 2008.

M. Torbatian, D. Chan, H. H. Sun, S. Thomson, and K.-T. Wu, “Distribution matching for probabilistic constellation shaping with an arbitrary input/output alphabet,” U.S. Patent App. 16/152,353, 16, 2019.

M. N. Tehrani, M. Torbatian, H. Sun, P. Mertz, and K.-T. Wu, “A novel nonlinearity tolerant super-gaussian distribution for probabilistically shaped modulation,” in Proc. IEEE Eur. Conf. Opt. Commun., 2018, pp. 1–3, doi: .

D. Krause, A. Awadalla, A. S. Karar, H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1D–1.

Yamamoto, S.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” IEEE J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

Yoffe, Y.

Y. Yoffe, “Low-resolution digital pre-compensation enabled by digital resolution enhancer,” J. Lightw. Technol., vol. 37, no. 6, pp. 1543–1551,  2019.

Yoshida, Y.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” IEEE J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

Zhou, X.

X. Zhou and L. Nelson, “Advanced DSP for 400 gb/s and beyond optical networks,” J. Lightw. Technol., vol. 32, no. 16, pp. 2716–2725,  2014.

Zibar, D.

J. C. M. Diniz, F. Da Ros, E. P. da Silva, R. T. Jones, and D. Zibar, “Optimization of DP-M-QAM transmitter using cooperative coevolutionary genetic algorithm,” J. Lightw. Technol., vol. 36, no. 12, pp. 2450–2462, Jun. 2018.

Zöllner, J.

N. S. Loghin, J. Zöllner, B. Mouhouche, D. Ansorregui, J. Kim, and S.-I. Park, “Non-uniform constellations for ATSC 3.0,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 197–203,  2016.

IEEE J. Lightw. Technol. (1)

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” IEEE J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

IEEE J. Sel. Areas Commun. (1)

J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171–178,  2003.

IEEE J. Sel. Topics Quantum Electron. (1)

B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1180–1192,  2010.

IEEE Photon. Technol. Lett. (1)

M. S. Alfiad, “111-Gb/s transmission over 1040-km field-deployed fiber with 10G/40G neighbors,” IEEE Photon. Technol. Lett., vol. 21, no. 10, pp. 615–617,  2009.

IEEE Trans. Broadcast. (1)

N. S. Loghin, J. Zöllner, B. Mouhouche, D. Ansorregui, J. Kim, and S.-I. Park, “Non-uniform constellations for ATSC 3.0,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 197–203,  2016.

IEEE Trans. Inf. Theory (4)

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434,  2016.

T. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory, vol. 19, no. 1, pp. 73–77,  1973.

T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618,  2001.

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929,  1993.

IEEE/OSA J. Opt. Commun. Netw. (2)

J. Slovak, “Aware optical networks: Leaving the lab,” IEEE/OSA J. Opt. Commun. Netw., vol. 11, no. 2, pp. A134–A143, Feb. 2019.

Y. Pointurier, “Design of low-margin optical networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 1, pp. A9–A17,  2017.

J. Lightw. Technol. (15)

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

A. Kakkar, “Comprehensive study of equalization-enhanced phase noise in coherent optical systems,” J. Lightw. Technol., vol. 33, no. 23, pp. 4834–4841,  2015.

X. Zhou and L. Nelson, “Advanced DSP for 400 gb/s and beyond optical networks,” J. Lightw. Technol., vol. 32, no. 16, pp. 2716–2725,  2014.

M. Kuschnerov, “DSP for coherent single-carrier receivers,” J. Lightw. Technol., vol. 27, no. 16, pp. 3614–3622,  2009.

K. Roberts, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightw. Technol., vol. 27, no. 16, pp. 3546–3559,  2009.

D. Pilori, L. Bertignono, A. Nespola, F. Forghieri, and G. Bosco, “Comparison of probabilistically shaped 64QAM with lower cardinality uniform constellations in long-haul optical systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 501–509,  2018.

A. Ferrari, “Assessment on the achievable throughput of multi-band ITU-T G.652.D fiber transmission systems,” J. Lightw. Technol., to be published, doi: .
[Crossref]

Y. Yoffe, “Low-resolution digital pre-compensation enabled by digital resolution enhancer,” J. Lightw. Technol., vol. 37, no. 6, pp. 1543–1551,  2019.

P. W. Berenguer, “Nonlinear digital pre-distortion of transmitter components,” J. Lightw. Technol., vol. 34, no. 8, pp. 1739–1745,  2016.

A. Napoli, M. M. Mezghanni, S. Calabro, R. Palmer, G. Saathoff, and B. Spinnler, “Digital predistortion techniques for finite extinction ratio IQ Mach–Zehnder modulators,” J. Lightw. Technol., vol. 35, no. 19, pp. 4289–4296,  2017.

J. C. M. Diniz, F. Da Ros, E. P. da Silva, R. T. Jones, and D. Zibar, “Optimization of DP-M-QAM transmitter using cooperative coevolutionary genetic algorithm,” J. Lightw. Technol., vol. 36, no. 12, pp. 2450–2462, Jun. 2018.

I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightw. Technol., vol. 27, no. 16, pp. 3518–3530,  2009.

X. Chen, “All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190 gbaud,” J. Lightw. Technol., vol. 35, no. 3, pp. 411–417,  2017.

C. Pan and F. R. Kschischang, “Probabilistic 16-QAM shaping in WDM systems,” J. Lightw. Technol., vol. 34, no. 18, pp. 4285–4292,  2016.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

Nature Photon. (1)

R. Van Uden, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, pp. 865–870, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.243

Opt. Express (4)

Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express, vol. 13, no. 19, pp. 7527–7534, 2005.

H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express, vol. 16, no. 2, pp. 873–879, 2008.

W. Shieh and K.-P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express, vol. 16, no. 20, pp. 15 718–15 727, 2008.

D. J. Elson, “Investigation of bandwidth loading in optical fibre transmission using amplified spontaneous emission noise,” Opt. Express, vol. 25, no. 16, pp. 19 529–19 537, 2017.

Other (23)

V. Lal, “1.6 Tbps coherent 2-channel transceiver using a monolithic Tx/Rx InP PIC and single SiGe ASIC,” in Proc. IEEE Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Engineers Conf., 2020, p. M3A-2.

E. Abbess, “Capacity improvement using dual-carrier FEC gain sharing in submarine optical communications,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Th2A–51.

J. Rahn, “Transmission improvement through dual-carrier FEC gain sharing,” in Proc. IEEE Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Engineers Conf., 2013, pp. 1–3, doi: .

M. N. Tehrani, M. Torbatian, H. Sun, P. Mertz, and K.-T. Wu, “A novel nonlinearity tolerant super-gaussian distribution for probabilistically shaped modulation,” in Proc. IEEE Eur. Conf. Opt. Commun., 2018, pp. 1–3, doi: .

L. Schmalen, D. Suikat, D. Rösener, and A. Leven, “Evaluation of left-terminated spatially coupled LDPC codes for optical communications,” in Proc. IEEE Eur. Conf. Opt. Commun., 2014, pp. 1–3, doi: .

D. Chang, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Proc. IEEE Opt. Fiber Commun. Conf. Exhib./Nat. Fiber Optic Engineers Conf., 2012, pp. 1–3.

A. Alvarado, E. Agrell, D. Lavery, and P. Bayvel, “LDPC codes for optical channels: Is the “FEC limit” a good predictor of post-FEC BER?” in Proc. Opt. Fiber Commun. Conf., 2015, Paper Th3E–5.

A. Napoli, “Novel DAC digital pre-emphasis algorithm for next-generation flexible optical transponders,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper Th3G–6.

K. Sugihara, K. Ishii, K. Dohi, K. Kubo, T. Sugihara, and W. Matsumoto, “Scalable SD-FEC for efficient next-generation optical networks,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.

M. Torbatian, D. Chan, H. H. Sun, S. Thomson, and K.-T. Wu, “Distribution matching for probabilistic constellation shaping with an arbitrary input/output alphabet,” U.S. Patent App. 16/152,353, 16, 2019.

A. Kakkar, “Overcoming EEPN in coherent transmission systems,” in Proc. IEEE Conf. Lasers Electro-Opt., 2016, pp. 1–2.

G. Goldfarb, “Apparatus for compensating optical signal impairments,” U.S. Patent 8,923,707, 30, 2014.

R. Going, “Multi-channel InP-based coherent PICs with hybrid integrated SiGe electronics operating up to 100 GBd, 32QAM,” in Proc. IEEE Eur. Conf. Opt. Commun., 2017, pp. 1–3, doi: .

D. Krause, A. Awadalla, A. S. Karar, H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1D–1.

T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken, NJ, USA: Wiley, 2012.

“Cisco Visual Networking Index: Forecast and Methodology,” 2017. [Online]. Available: https://www.cisco.com/c/en/us/solutions/service-provider/visual-network% ing-index-vni/index.html

T. Kobayashi, “1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5B–1.

G. Khanna, S. Calabrò, B. Spinnler, E. De Man, and N. Hanik, “Joint adaptive pre-compensation of transmitter I/Q skew and frequency response for high order modulation formats and high baud rates,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper M2G–4.

“Infinera 600G,” 2019. [Online]. Available: https://www.infinera.com/press-release/infinera-sets-highest-performance-600gtransmission-record

“Ciena 800 G,” 2019. [Online]. Available: https://www.ciena.com/insights/articles/Ciena-unveils-WaveLogic-5-800G-and-somuch-more.html

“Infinera 800 G,” 2019. [Online]. Available: https://www.infinera.com/press-release/infinera-announces-ice6-the-next-generationinfinite-capacity-engine-featuring-800g-waves

S. Savory, “Digital equalisation of 40Gbit/s per wavelength transmission over 2480 km of standard fibre without optical dispersion compensation,” in Proc. IEEE Eur. Conf. Opt. Commun., 2006, pp. 1–2, doi: .

J. C. Geyer, C. R. Fludger, T. Duthel, C. Schulien, and B. Schmauss, “Efficient frequency domain chromatic dispersion compensation in a coherent polmux QPSK-receiver,” in Proc. Opt. Fiber Commun. Conf., 2010, Paper OWV5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.