Abstract

In order to accomplish cost-efficient management of complex optical communication networks, operators are seeking automation of network diagnosis and management by means of Machine Learning (ML). To support these objectives, new functions are needed to enable cognitive, autonomous management of optical network security. This article focuses on the challenges related to the performance of ML-based approaches for detection and localization of optical-layer attacks, and to their integration with standard Network Management Systems (NMSs). We propose a framework for cognitive security diagnostics that comprises an attack detection module with Supervised Learning (SL), Semi-Supervised Learning (SSL), and Unsupervised Learning (UL) approaches, and an attack localization module that deduces the location of a harmful connection and/or a breached link. The influence of false positives and false negatives is addressed by a newly proposed Window-based Attack Detection (WAD) approach. We provide practical implementation guidelines for the integration of the framework into the NMS and evaluate its performance in an experimental network testbed subjected to attacks, resulting with the largest optical-layer security experimental dataset reported to date.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription