Abstract

In this work, based on a conventional silicon photonic travelling-wave Mach-Zehnder modulator (MZM) with a 3-dB bandwidth of 22.5 GHz, we experimentally demonstrate ultra-high speed optical interconnects with Nyquist shaped pulse amplitude modulation (PAM) signals. For bandwidth-limited systems, a two-tap digital post filter is employed to suppress the equalization-enhanced high frequency noise. The post filter induced inter-symbol interference (ISI) is subsequently eliminated by maximum likelihood sequence detection (MLSD). Enabled by the post filter and MLSD, we achieve 200 Gb/s (80 Gbaud) PAM-6 signal direct detection (DD) transmission over 1 km standard single-mode fiber (SSMF) with a bit-error rate (BER) below the 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10−2. For PAM-4 format, we successfully transmit 192 Gb/s (96 Gbaud) and 176 Gb/s (88 Gbaud) signals over 1 km and 2 km SSMF, respectively, with BERs lower than the 20% HD-FEC threshold. For PAM-8 format, 192 Gb/s (64 Gbaud) and 168 Gb/s (56 Gbaud) signals are generated at back-to-back (BTB) and transmitted over 1 km SSMF, respectively. To our best knowledge, we achieve the highest single lane bitrates ever reported for single polarization PAM-4/6/8 signal generation and DD transmission with all-silicon MZM. The flexible receiver-side digital signal processing (DSP) can significantly enhance the performance of silicon MZM, which provides a promising solution for future single lane 200 G data-center interconnects.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription