Abstract

Microring modulators (MRMs) with CMOS electronics enable compact low power transmitter solutions for 400G Ethernet and future on-package optical transceivers. In this paper, we present a 112 Gb/s PAM4 transmitter using silicon photonic MRM, on-chip laser and co-packaged 28 nm CMOS driver. We describe the impact of static and dynamic MRM nonlinearity on PAM4 signaling and present a dual path nonlinear pre-distortion technique to compensate both effects. PAM4 measurement results of our transmitter at 112 Gb/s show that TDECQ <0.7 dB is achieved from 30 °C to 60 °C while dissipating 6 pJ/bit. We also present link level measurements at 112 Gb/s PAM4 obtained by coupling this transmitter with our previously published CMOS TIA-based receiver, to demonstrate the feasibility of low cost optical transceivers through CMOS integration of optical interface circuits.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription