Abstract

A new plasmonic transmitter solution offering 0.8 Tbit/s on an ultra-compact 90 µm × 5.5 µm footprint is introduced. It comprises a densely arranged four-channel plasmonic phase modulator array that directly interconnects an optical fiber array. Each plasmonic modulator features high-index grating couplers—for direct and efficient conversion from a fiber mode to a plasmonic slot mode and vice versa—and a plasmonic waveguide—for efficient high-speed modulation. The individual devices achieve data rates of 200 Gbit/s with a symbol rate of 100 GBd. Electrical and optical crosstalk between neighboring modulators were found to have no significant influence on the data modulation experiment. The modulator array has been tested in a 100 GBd experiment with signals at a single wavelength (mimicking a space division multiplexing scheme) and at different wavelengths (mimicking a wavelength division multiplexing experiment).

© 2019 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, 1997.
  2. Z. H. Li, I. Shubin, and X. Zhou, “Optical interconnects: Recent advances and future challenges,” Opt. Express, vol. 23, no. 3, pp. 3717–3720, 2015.
  3. D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightw. Technol., vol. 35, no. 3, pp. 346–396, 2017.
  4. P. J. Winzer and D. T. Neilson, “From scaling disparities to integrated parallelism: A decathlon for a decade,” J. Lightw. Technol., vol. 35, no. 5, pp. 1099–1115, 2017.
  5. X. Zhou, H. Liu, and R. Urata, “Datacenter optics: Requirements, technologies, and trends,” Chin. Opt. Lett., vol. 15, no. 5, pp. 120008-1–120008-4, 2017.
  6. C. A. Thraskiaset al., “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surv. Tut., vol. 20, no. 4, pp. 2758–2783, 2018.
  7. A. V. Krishnamoorthyet al., “Computer systems based on silicon photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361, 2009.
  8. A. V. Krishnamoorthyet al., “From chip to cloud: Optical interconnects in engineered systems,” J. Lightw. Technol., vol. 35, no. 15, pp. 3103–3115, 2016.
  9. C. Minkenberget al., “Reimagining datacenter topologies with integrated silicon photonics,” J. Opt. Commun. Netw., vol. 10, no. 7, pp. B126–B139, 2018.
  10. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, 2004.
  11. L. Vivienet al., “Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon,” Opt. Express, vol. 20, no. 2, pp. 1096–1101, 2012.
  12. H. T. Chenet al., “100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors,” J. Lightw. Technol., vol. 35, no. 4, pp. 722–726, 2016.
  13. Y. Salaminet al., “100 GHz plasmonic photodetector,” ACS Photon., vol. 5, no. 8, pp. 3291–3297, 2018.
  14. P. Rungeet al., “Waveguide integrated balanced photodetectors for coherent receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 2, 2018, Art. no. .
  15. Y. Dinget al., “Ultra-compact graphene plasmonic photodetector with the bandwidth over 110 GHz,” 2018. arXiv: 1808.04815v2.
  16. P. Maet al., “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high-responsivity and compact size,” ACS Photon., vol. 6, no. 1, pp. 154–161, , 2018.
  17. L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.
  18. T. J. Seok, V. Kopp, D. Neugroschl, J. Henriksson, J. H. Luo, and M. C. Wu, “High density optical packaging of high radix silicon photonic switches,” in Proc. Opt. Fiber Commun. Conf. Exhib., Mar. 2017, pp. 1–3.
  19. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.
  20. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2015.
  21. R. S. Luíset al., “1.2 Pb/s transmission over a 160 µm cladding, 4-core, 3-mode fiber, using 368 C+L band PDM-256-QAM channels,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.
  22. S. Berdague and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt., vol. 21, no. 11, pp. 1950–1955, 1982.
  23. C. R. Doerr, N. K. Fontaine, M. Hirano, T. Sasaki, L. L. Buhl, and P. J. Winzer, “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in Proc. Eur. Conf. Opt. Commun., 2011, pp. 1–3.
  24. N. Bozinovicet al., “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science, vol. 340, no. 6140, pp. 1545–1548, 2013.
  25. R. Ryfet al., “High-spectral-efficiency mode-multiplexed transmission over graded-index multimode fiber,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.
  26. F. E. Doanyet al., “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 345–359, 2009.
  27. Y. Wanget al., “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber–IVLLC integration,” IEEE Photon. J., vol. 10, no. 5, pp. 1–8, 2018.
  28. P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gb/s,” IEEE Phot. Technol. Lett., vol. 27, no. 3, pp. 296–299, 2014.
  29. A. Larsson, P. Westbergh, J. S. Gustavsson, E. Haglund, and E. P. Haglund, “High speed VCSELs and VCSEL arrays for single and multicore fiber interconnects,” Proc. SPIE, vol. 9381, 2015, Art. no. .
  30. J. Van Kerrebroucket al., “High-speed PAM4-based optical SDM interconnects with directly modulated long-wavelength VCSEL,” J. Lightw. Technol., p. 1, , 2018.
  31. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express, vol. 26, no. 2, pp. 1547–1555, 2018.
  32. X. Chenet al., “Generation and intradyne detection of single-wavelength 1.61-Tb/s using an all-electronic digital band interleaved transmitter,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, pp. 1–3.
  33. C. Wanget al., “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature, vol. 562, no. 7725, pp. 101–104, 2018.
  34. R. Nagarajanet al., “InP photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1113–1125, 2010.
  35. V. Katopodiset al., “Serial 100 Gb/s connectivity based on polymer photonics and InP-DHBT electronics,” Opt. Express, vol. 20, no. 27, pp. 28538–28543, 2012.
  36. Y. Ogisoet al., “Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure,” J. Lightw. Technol., vol. 35, no. 8, pp. 1450–1455, 2016.
  37. O. Ozolinset al., “100 GHz externally modulated laser for optical interconnects,” J. Lightw. Technol., vol. 35, no. 6, pp. 1174–1179, 2017.
  38. S. Langeet al., “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” J. Lightw. Technol., vol. 36, no. 1, pp. 97–102, 2017.
  39. H. Mardoyanet al., “204-GBaud on-off keying transmitter for inter-data center communications,” in Proc. Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, Mar. 2018, Paper Th4A.4.
  40. S. Arafin and L. A. Coldren, “Advanced InP photonic integrated circuits for communication and sensing,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 1, pp. 1–12, 2018.
  41. R. Goinget al., “4 × 600 Gb/s photonic IC transmitter and receiver modules,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.
  42. H. Yamazakiet al., “Transmission of 400-gbps discrete multi-tone signal using >100-GHz-bandwidth analog multiplexer and InP Mach-Zehnder modulator,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.
  43. J. Leutholdet al., “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, 2013, Art. no. .
  44. J. Verbistet al., “Real-time 100 Gb/s NRZ and EDB transmission with a GeSi electroabsorption modulator for short-reach optical interconnects,” J. Lightw. Technol., vol. 36, no. 1, pp. 90–96, 2017.
  45. S. Wolfet al., “Coherent modulation up to 100 GBd 16QAM using silicon-organic hybrid (SOH) devices,” Opt. Express, vol. 26, no. 1, pp. 220–232, 2018.
  46. J. C. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 gbaud 16QAM and 70 Gbaud 32QAM,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, pp. 1–3.
  47. J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.
  48. A. Emboraset al., “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, 2014, Art. no. .
  49. C. Haffneret al., “Plasmonic organic hybrid modulators-scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379, 2016.
  50. C. Hoessbacheret al., “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express, vol. 25, no. 3, pp. 1762–1768, 2017.
  51. A. Messneret al., “Plasmonic ferroelectric modulators,” J. Lightw. Technol., p. 1, , 2018.
  52. W. Heniet al., “Plasmonic IQ-modulators with attojoule per bit electrical energy consumption,” to be published.
  53. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. .
  54. C. Haffneret al., “Low-loss plasmon-assisted electro-optic modulator,” Nature, vol. 556, no. 7702, pp. 483–486, 2018.
  55. B. Baeuerleet al., “Reduced equalization needs of 100 GHz bandwidth plasmonic modulators,” to be published.
  56. M. Burlaet al., “500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” to be published.
  57. I. C. Benea-Chelmuset al., “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photon., vol. 5, no. 4, pp. 1398–1403, 2018.
  58. W. Heniet al., “High speed plasmonic modulator array enabling dense optical interconnect solutions,” Opt. Express, vol. 23, no. 23, pp. 29746–29757, 2015.
  59. M. Ayataet al., “High-speed plasmonic modulator in a single metal layer,” Science, vol. 358, no. 6363, pp. 630–632, 2017.
  60. M. Ayataet al., “All-plasmonic IQ modulator with 36 um fiber-to-fiber pitch,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.
  61. U. Kochet al., “Ultra-compact 0.8 Tbit/s plasmonic modulator array,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.
  62. D. L. Elderet al., “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater., vol. 29, no. 15, pp. 6457–6471, 2017.
  63. E. El-Fikyet al., “First demonstration of a 400 Gb/s 4 lambda CWDM TOSA for datacenter optical interconnects,” Opt. Express, vol. 26, no. 16, pp. 19742–19749, 2018.
  64. K. Schuhet al., “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Opt. Fiber Commun. Conf. Expo., Mar. 2017, pp. 1–3.

2019 (1)

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

2018 (16)

S. Wolfet al., “Coherent modulation up to 100 GBd 16QAM using silicon-organic hybrid (SOH) devices,” Opt. Express, vol. 26, no. 1, pp. 220–232, 2018.

A. Messneret al., “Plasmonic ferroelectric modulators,” J. Lightw. Technol., p. 1, , 2018.

C. Haffneret al., “Low-loss plasmon-assisted electro-optic modulator,” Nature, vol. 556, no. 7702, pp. 483–486, 2018.

I. C. Benea-Chelmuset al., “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photon., vol. 5, no. 4, pp. 1398–1403, 2018.

E. El-Fikyet al., “First demonstration of a 400 Gb/s 4 lambda CWDM TOSA for datacenter optical interconnects,” Opt. Express, vol. 26, no. 16, pp. 19742–19749, 2018.

C. A. Thraskiaset al., “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surv. Tut., vol. 20, no. 4, pp. 2758–2783, 2018.

C. Minkenberget al., “Reimagining datacenter topologies with integrated silicon photonics,” J. Opt. Commun. Netw., vol. 10, no. 7, pp. B126–B139, 2018.

Y. Salaminet al., “100 GHz plasmonic photodetector,” ACS Photon., vol. 5, no. 8, pp. 3291–3297, 2018.

P. Rungeet al., “Waveguide integrated balanced photodetectors for coherent receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 2, 2018, Art. no. .

Y. Dinget al., “Ultra-compact graphene plasmonic photodetector with the bandwidth over 110 GHz,” 2018. arXiv: 1808.04815v2.

P. Maet al., “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high-responsivity and compact size,” ACS Photon., vol. 6, no. 1, pp. 154–161, , 2018.

J. Van Kerrebroucket al., “High-speed PAM4-based optical SDM interconnects with directly modulated long-wavelength VCSEL,” J. Lightw. Technol., p. 1, , 2018.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express, vol. 26, no. 2, pp. 1547–1555, 2018.

C. Wanget al., “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature, vol. 562, no. 7725, pp. 101–104, 2018.

Y. Wanget al., “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber–IVLLC integration,” IEEE Photon. J., vol. 10, no. 5, pp. 1–8, 2018.

S. Arafin and L. A. Coldren, “Advanced InP photonic integrated circuits for communication and sensing,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 1, pp. 1–12, 2018.

2017 (9)

O. Ozolinset al., “100 GHz externally modulated laser for optical interconnects,” J. Lightw. Technol., vol. 35, no. 6, pp. 1174–1179, 2017.

S. Langeet al., “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” J. Lightw. Technol., vol. 36, no. 1, pp. 97–102, 2017.

D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightw. Technol., vol. 35, no. 3, pp. 346–396, 2017.

P. J. Winzer and D. T. Neilson, “From scaling disparities to integrated parallelism: A decathlon for a decade,” J. Lightw. Technol., vol. 35, no. 5, pp. 1099–1115, 2017.

X. Zhou, H. Liu, and R. Urata, “Datacenter optics: Requirements, technologies, and trends,” Chin. Opt. Lett., vol. 15, no. 5, pp. 120008-1–120008-4, 2017.

C. Hoessbacheret al., “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express, vol. 25, no. 3, pp. 1762–1768, 2017.

M. Ayataet al., “High-speed plasmonic modulator in a single metal layer,” Science, vol. 358, no. 6363, pp. 630–632, 2017.

D. L. Elderet al., “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater., vol. 29, no. 15, pp. 6457–6471, 2017.

J. Verbistet al., “Real-time 100 Gb/s NRZ and EDB transmission with a GeSi electroabsorption modulator for short-reach optical interconnects,” J. Lightw. Technol., vol. 36, no. 1, pp. 90–96, 2017.

2016 (4)

Y. Ogisoet al., “Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure,” J. Lightw. Technol., vol. 35, no. 8, pp. 1450–1455, 2016.

C. Haffneret al., “Plasmonic organic hybrid modulators-scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379, 2016.

A. V. Krishnamoorthyet al., “From chip to cloud: Optical interconnects in engineered systems,” J. Lightw. Technol., vol. 35, no. 15, pp. 3103–3115, 2016.

H. T. Chenet al., “100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors,” J. Lightw. Technol., vol. 35, no. 4, pp. 722–726, 2016.

2015 (4)

Z. H. Li, I. Shubin, and X. Zhou, “Optical interconnects: Recent advances and future challenges,” Opt. Express, vol. 23, no. 3, pp. 3717–3720, 2015.

A. Larsson, P. Westbergh, J. S. Gustavsson, E. Haglund, and E. P. Haglund, “High speed VCSELs and VCSEL arrays for single and multicore fiber interconnects,” Proc. SPIE, vol. 9381, 2015, Art. no. .

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2015.

W. Heniet al., “High speed plasmonic modulator array enabling dense optical interconnect solutions,” Opt. Express, vol. 23, no. 23, pp. 29746–29757, 2015.

2014 (3)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. .

A. Emboraset al., “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, 2014, Art. no. .

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gb/s,” IEEE Phot. Technol. Lett., vol. 27, no. 3, pp. 296–299, 2014.

2013 (3)

J. Leutholdet al., “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, 2013, Art. no. .

N. Bozinovicet al., “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science, vol. 340, no. 6140, pp. 1545–1548, 2013.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

2012 (2)

2011 (1)

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

2010 (1)

R. Nagarajanet al., “InP photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1113–1125, 2010.

2009 (2)

F. E. Doanyet al., “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 345–359, 2009.

A. V. Krishnamoorthyet al., “Computer systems based on silicon photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361, 2009.

2004 (1)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, 2004.

1997 (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, 1997.

1982 (1)

Arafin, S.

S. Arafin and L. A. Coldren, “Advanced InP photonic integrated circuits for communication and sensing,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 1, pp. 1–12, 2018.

Aroca, R. A.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

Ayata, M.

M. Ayataet al., “High-speed plasmonic modulator in a single metal layer,” Science, vol. 358, no. 6363, pp. 630–632, 2017.

M. Ayataet al., “All-plasmonic IQ modulator with 36 um fiber-to-fiber pitch,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.

Baeuerle, B.

B. Baeuerleet al., “Reduced equalization needs of 100 GHz bandwidth plasmonic modulators,” to be published.

Baeyens, Y.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

Benea-Chelmus, I. C.

I. C. Benea-Chelmuset al., “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photon., vol. 5, no. 4, pp. 1398–1403, 2018.

Berdague, S.

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. .

Bozinovic, N.

N. Bozinovicet al., “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science, vol. 340, no. 6140, pp. 1545–1548, 2013.

Buhl, L.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

Buhl, L. L.

C. R. Doerr, N. K. Fontaine, M. Hirano, T. Sasaki, L. L. Buhl, and P. J. Winzer, “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in Proc. Eur. Conf. Opt. Commun., 2011, pp. 1–3.

Burla, M.

M. Burlaet al., “500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” to be published.

Chen, H. T.

H. T. Chenet al., “100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors,” J. Lightw. Technol., vol. 35, no. 4, pp. 722–726, 2016.

Chen, L.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

Chen, X.

X. Chenet al., “Generation and intradyne detection of single-wavelength 1.61-Tb/s using an all-electronic digital band interleaved transmitter,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, pp. 1–3.

Coldren, L. A.

S. Arafin and L. A. Coldren, “Advanced InP photonic integrated circuits for communication and sensing,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 1, pp. 1–12, 2018.

Ding, Y.

Y. Dinget al., “Ultra-compact graphene plasmonic photodetector with the bandwidth over 110 GHz,” 2018. arXiv: 1808.04815v2.

Doany, F. E.

F. E. Doanyet al., “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 345–359, 2009.

Doerr, C. R.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

C. R. Doerr, N. K. Fontaine, M. Hirano, T. Sasaki, L. L. Buhl, and P. J. Winzer, “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in Proc. Eur. Conf. Opt. Commun., 2011, pp. 1–3.

Driscoll, J.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

Elder, D. L.

D. L. Elderet al., “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater., vol. 29, no. 15, pp. 6457–6471, 2017.

El-Fiky, E.

Emboras, A.

A. Emboraset al., “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, 2014, Art. no. .

Facq, P.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

Fontaine, N. K.

C. R. Doerr, N. K. Fontaine, M. Hirano, T. Sasaki, L. L. Buhl, and P. J. Winzer, “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in Proc. Eur. Conf. Opt. Commun., 2011, pp. 1–3.

Furuta, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, 2004.

Going, R.

R. Goinget al., “4 × 600 Gb/s photonic IC transmitter and receiver modules,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.

Gustavsson, J. S.

A. Larsson, P. Westbergh, J. S. Gustavsson, E. Haglund, and E. P. Haglund, “High speed VCSELs and VCSEL arrays for single and multicore fiber interconnects,” Proc. SPIE, vol. 9381, 2015, Art. no. .

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gb/s,” IEEE Phot. Technol. Lett., vol. 27, no. 3, pp. 296–299, 2014.

Haffner, C.

C. Haffneret al., “Low-loss plasmon-assisted electro-optic modulator,” Nature, vol. 556, no. 7702, pp. 483–486, 2018.

C. Haffneret al., “Plasmonic organic hybrid modulators-scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379, 2016.

Haglund, E.

A. Larsson, P. Westbergh, J. S. Gustavsson, E. Haglund, and E. P. Haglund, “High speed VCSELs and VCSEL arrays for single and multicore fiber interconnects,” Proc. SPIE, vol. 9381, 2015, Art. no. .

Haglund, E. P.

A. Larsson, P. Westbergh, J. S. Gustavsson, E. Haglund, and E. P. Haglund, “High speed VCSELs and VCSEL arrays for single and multicore fiber interconnects,” Proc. SPIE, vol. 9381, 2015, Art. no. .

Heni, W.

W. Heniet al., “High speed plasmonic modulator array enabling dense optical interconnect solutions,” Opt. Express, vol. 23, no. 23, pp. 29746–29757, 2015.

W. Heniet al., “Plasmonic IQ-modulators with attojoule per bit electrical energy consumption,” to be published.

Henriksson, J.

T. J. Seok, V. Kopp, D. Neugroschl, J. Henriksson, J. H. Luo, and M. C. Wu, “High density optical packaging of high radix silicon photonic switches,” in Proc. Opt. Fiber Commun. Conf. Exhib., Mar. 2017, pp. 1–3.

Hirano, M.

C. R. Doerr, N. K. Fontaine, M. Hirano, T. Sasaki, L. L. Buhl, and P. J. Winzer, “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in Proc. Eur. Conf. Opt. Commun., 2011, pp. 1–3.

Hoessbacher, C.

Hosseini, E. S.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. .

Ishibashi, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, 2004.

Ito, H.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, 2004.

Jayatilleka, H.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

Katopodis, V.

Koch, U.

U. Kochet al., “Ultra-compact 0.8 Tbit/s plasmonic modulator array,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.

Kodama, S.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, 2004.

Kopp, V.

T. J. Seok, V. Kopp, D. Neugroschl, J. Henriksson, J. H. Luo, and M. C. Wu, “High density optical packaging of high radix silicon photonic switches,” in Proc. Opt. Fiber Commun. Conf. Exhib., Mar. 2017, pp. 1–3.

Krishnamoorthy, A. V.

A. V. Krishnamoorthyet al., “From chip to cloud: Optical interconnects in engineered systems,” J. Lightw. Technol., vol. 35, no. 15, pp. 3103–3115, 2016.

A. V. Krishnamoorthyet al., “Computer systems based on silicon photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361, 2009.

Kumar, R.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

Lange, S.

S. Langeet al., “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” J. Lightw. Technol., vol. 36, no. 1, pp. 97–102, 2017.

Larsson, A.

A. Larsson, P. Westbergh, J. S. Gustavsson, E. Haglund, and E. P. Haglund, “High speed VCSELs and VCSEL arrays for single and multicore fiber interconnects,” Proc. SPIE, vol. 9381, 2015, Art. no. .

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gb/s,” IEEE Phot. Technol. Lett., vol. 27, no. 3, pp. 296–299, 2014.

Leuthold, J.

J. Leutholdet al., “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, 2013, Art. no. .

Li, Z. H.

Lin, J. C.

J. C. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 gbaud 16QAM and 70 Gbaud 32QAM,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, pp. 1–3.

Lipson, M.

Liu, H.

X. Zhou, H. Liu, and R. Urata, “Datacenter optics: Requirements, technologies, and trends,” Chin. Opt. Lett., vol. 15, no. 5, pp. 120008-1–120008-4, 2017.

Loncar, M.

Luís, R. S.

R. S. Luíset al., “1.2 Pb/s transmission over a 160 µm cladding, 4-core, 3-mode fiber, using 368 C+L band PDM-256-QAM channels,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.

Luo, J. H.

T. J. Seok, V. Kopp, D. Neugroschl, J. Henriksson, J. H. Luo, and M. C. Wu, “High density optical packaging of high radix silicon photonic switches,” in Proc. Opt. Fiber Commun. Conf. Exhib., Mar. 2017, pp. 1–3.

Ma, P.

P. Maet al., “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high-responsivity and compact size,” ACS Photon., vol. 6, no. 1, pp. 154–161, , 2018.

Mardoyan, H.

H. Mardoyanet al., “204-GBaud on-off keying transmitter for inter-data center communications,” in Proc. Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, Mar. 2018, Paper Th4A.4.

Matsuo, S.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2015.

Messner, A.

A. Messneret al., “Plasmonic ferroelectric modulators,” J. Lightw. Technol., p. 1, , 2018.

Miller, D. A. B.

D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightw. Technol., vol. 35, no. 3, pp. 346–396, 2017.

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, 1997.

Minkenberg, C.

Muramoto, Y.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, 2004.

Nagarajan, R.

R. Nagarajanet al., “InP photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1113–1125, 2010.

Nagatsuma, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, 2004.

Neilson, D. T.

P. J. Winzer and D. T. Neilson, “From scaling disparities to integrated parallelism: A decathlon for a decade,” J. Lightw. Technol., vol. 35, no. 5, pp. 1099–1115, 2017.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

Neugroschl, D.

T. J. Seok, V. Kopp, D. Neugroschl, J. Henriksson, J. H. Luo, and M. C. Wu, “High density optical packaging of high radix silicon photonic switches,” in Proc. Opt. Fiber Commun. Conf. Exhib., Mar. 2017, pp. 1–3.

Ogiso, Y.

Y. Ogisoet al., “Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure,” J. Lightw. Technol., vol. 35, no. 8, pp. 1450–1455, 2016.

Ozolins, O.

O. Ozolinset al., “100 GHz externally modulated laser for optical interconnects,” J. Lightw. Technol., vol. 35, no. 6, pp. 1174–1179, 2017.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

Rong, H.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

Runge, P.

P. Rungeet al., “Waveguide integrated balanced photodetectors for coherent receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 2, 2018, Art. no. .

Rusch, L. A.

J. C. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 gbaud 16QAM and 70 Gbaud 32QAM,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, pp. 1–3.

Ryf, R.

R. Ryfet al., “High-spectral-efficiency mode-multiplexed transmission over graded-index multimode fiber,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.

Saitoh, K.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2015.

Sakib, M.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

Salamin, Y.

Y. Salaminet al., “100 GHz plasmonic photodetector,” ACS Photon., vol. 5, no. 8, pp. 3291–3297, 2018.

Sasaki, T.

C. R. Doerr, N. K. Fontaine, M. Hirano, T. Sasaki, L. L. Buhl, and P. J. Winzer, “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in Proc. Eur. Conf. Opt. Commun., 2011, pp. 1–3.

Schuh, K.

K. Schuhet al., “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Opt. Fiber Commun. Conf. Expo., Mar. 2017, pp. 1–3.

Seok, T. J.

T. J. Seok, V. Kopp, D. Neugroschl, J. Henriksson, J. H. Luo, and M. C. Wu, “High density optical packaging of high radix silicon photonic switches,” in Proc. Opt. Fiber Commun. Conf. Exhib., Mar. 2017, pp. 1–3.

Sepehrian, H.

J. C. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 gbaud 16QAM and 70 Gbaud 32QAM,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, pp. 1–3.

Shi, W.

J. C. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 gbaud 16QAM and 70 Gbaud 32QAM,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, pp. 1–3.

Shubin, I.

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. .

Stern, B.

Sun, J.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. .

Thraskias, C. A.

C. A. Thraskiaset al., “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surv. Tut., vol. 20, no. 4, pp. 2758–2783, 2018.

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. .

Urata, R.

X. Zhou, H. Liu, and R. Urata, “Datacenter optics: Requirements, technologies, and trends,” Chin. Opt. Lett., vol. 15, no. 5, pp. 120008-1–120008-4, 2017.

Van Kerrebrouck, J.

J. Van Kerrebroucket al., “High-speed PAM4-based optical SDM interconnects with directly modulated long-wavelength VCSEL,” J. Lightw. Technol., p. 1, , 2018.

Verbist, J.

J. Verbistet al., “Real-time 100 Gb/s NRZ and EDB transmission with a GeSi electroabsorption modulator for short-reach optical interconnects,” J. Lightw. Technol., vol. 36, no. 1, pp. 90–96, 2017.

Vivien, L.

Wang, C.

C. Wanget al., “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature, vol. 562, no. 7725, pp. 101–104, 2018.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express, vol. 26, no. 2, pp. 1547–1555, 2018.

Wang, Y.

Y. Wanget al., “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber–IVLLC integration,” IEEE Photon. J., vol. 10, no. 5, pp. 1–8, 2018.

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. .

Westbergh, P.

A. Larsson, P. Westbergh, J. S. Gustavsson, E. Haglund, and E. P. Haglund, “High speed VCSELs and VCSEL arrays for single and multicore fiber interconnects,” Proc. SPIE, vol. 9381, 2015, Art. no. .

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gb/s,” IEEE Phot. Technol. Lett., vol. 27, no. 3, pp. 296–299, 2014.

Winzer, P. J.

P. J. Winzer and D. T. Neilson, “From scaling disparities to integrated parallelism: A decathlon for a decade,” J. Lightw. Technol., vol. 35, no. 5, pp. 1099–1115, 2017.

C. R. Doerr, N. K. Fontaine, M. Hirano, T. Sasaki, L. L. Buhl, and P. J. Winzer, “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in Proc. Eur. Conf. Opt. Commun., 2011, pp. 1–3.

Wolf, S.

Wu, M. C.

T. J. Seok, V. Kopp, D. Neugroschl, J. Henriksson, J. H. Luo, and M. C. Wu, “High density optical packaging of high radix silicon photonic switches,” in Proc. Opt. Fiber Commun. Conf. Exhib., Mar. 2017, pp. 1–3.

Yamazaki, H.

H. Yamazakiet al., “Transmission of 400-gbps discrete multi-tone signal using >100-GHz-bandwidth analog multiplexer and InP Mach-Zehnder modulator,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.

Zhang, M.

Zhou, X.

X. Zhou, H. Liu, and R. Urata, “Datacenter optics: Requirements, technologies, and trends,” Chin. Opt. Lett., vol. 15, no. 5, pp. 120008-1–120008-4, 2017.

Z. H. Li, I. Shubin, and X. Zhou, “Optical interconnects: Recent advances and future challenges,” Opt. Express, vol. 23, no. 3, pp. 3717–3720, 2015.

ACS Photon. (3)

Y. Salaminet al., “100 GHz plasmonic photodetector,” ACS Photon., vol. 5, no. 8, pp. 3291–3297, 2018.

P. Maet al., “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high-responsivity and compact size,” ACS Photon., vol. 6, no. 1, pp. 154–161, , 2018.

I. C. Benea-Chelmuset al., “Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz,” ACS Photon., vol. 5, no. 4, pp. 1398–1403, 2018.

Appl. Opt. (1)

Chem. Mater. (1)

D. L. Elderet al., “Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores,” Chem. Mater., vol. 29, no. 15, pp. 6457–6471, 2017.

Chin. Opt. Lett. (1)

X. Zhou, H. Liu, and R. Urata, “Datacenter optics: Requirements, technologies, and trends,” Chin. Opt. Lett., vol. 15, no. 5, pp. 120008-1–120008-4, 2017.

IEEE Commun. Surv. Tut. (1)

C. A. Thraskiaset al., “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surv. Tut., vol. 20, no. 4, pp. 2758–2783, 2018.

IEEE J. Sel. Topics Quantum Electron. (6)

P. Rungeet al., “Waveguide integrated balanced photodetectors for coherent receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 2, 2018, Art. no. .

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, 2004.

R. Nagarajanet al., “InP photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1113–1125, 2010.

S. Arafin and L. A. Coldren, “Advanced InP photonic integrated circuits for communication and sensing,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 1, pp. 1–12, 2018.

J. Leutholdet al., “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, 2013, Art. no. .

A. Emboraset al., “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, 2014, Art. no. .

IEEE Phot. Technol. Lett. (1)

P. Westbergh, J. S. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gb/s,” IEEE Phot. Technol. Lett., vol. 27, no. 3, pp. 296–299, 2014.

IEEE Photon. J. (1)

Y. Wanget al., “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber–IVLLC integration,” IEEE Photon. J., vol. 10, no. 5, pp. 1–8, 2018.

IEEE Photon. Technol. Lett. (1)

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett., vol. 23, no. 13, pp. 869–871, 2011.

IEEE Trans. Adv. Packag. (1)

F. E. Doanyet al., “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 345–359, 2009.

Int. J. Optoelectron. (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, 1997.

J. Lightw. Technol. (12)

D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightw. Technol., vol. 35, no. 3, pp. 346–396, 2017.

P. J. Winzer and D. T. Neilson, “From scaling disparities to integrated parallelism: A decathlon for a decade,” J. Lightw. Technol., vol. 35, no. 5, pp. 1099–1115, 2017.

A. V. Krishnamoorthyet al., “From chip to cloud: Optical interconnects in engineered systems,” J. Lightw. Technol., vol. 35, no. 15, pp. 3103–3115, 2016.

H. T. Chenet al., “100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors,” J. Lightw. Technol., vol. 35, no. 4, pp. 722–726, 2016.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2015.

J. Van Kerrebroucket al., “High-speed PAM4-based optical SDM interconnects with directly modulated long-wavelength VCSEL,” J. Lightw. Technol., p. 1, , 2018.

Y. Ogisoet al., “Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure,” J. Lightw. Technol., vol. 35, no. 8, pp. 1450–1455, 2016.

O. Ozolinset al., “100 GHz externally modulated laser for optical interconnects,” J. Lightw. Technol., vol. 35, no. 6, pp. 1174–1179, 2017.

S. Langeet al., “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” J. Lightw. Technol., vol. 36, no. 1, pp. 97–102, 2017.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

A. Messneret al., “Plasmonic ferroelectric modulators,” J. Lightw. Technol., p. 1, , 2018.

J. Verbistet al., “Real-time 100 Gb/s NRZ and EDB transmission with a GeSi electroabsorption modulator for short-reach optical interconnects,” J. Lightw. Technol., vol. 36, no. 1, pp. 90–96, 2017.

J. Opt. Commun. Netw. (1)

Nature (2)

C. Wanget al., “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature, vol. 562, no. 7725, pp. 101–104, 2018.

C. Haffneret al., “Low-loss plasmon-assisted electro-optic modulator,” Nature, vol. 556, no. 7702, pp. 483–486, 2018.

Nature Commun. (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. .

Nature Photon. (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, no. 5, pp. 354–362, 2013.

Opt. Express (8)

Proc. IEEE (2)

C. Haffneret al., “Plasmonic organic hybrid modulators-scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379, 2016.

A. V. Krishnamoorthyet al., “Computer systems based on silicon photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361, 2009.

Proc. SPIE (1)

A. Larsson, P. Westbergh, J. S. Gustavsson, E. Haglund, and E. P. Haglund, “High speed VCSELs and VCSEL arrays for single and multicore fiber interconnects,” Proc. SPIE, vol. 9381, 2015, Art. no. .

Science (2)

N. Bozinovicet al., “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science, vol. 340, no. 6140, pp. 1545–1548, 2013.

M. Ayataet al., “High-speed plasmonic modulator in a single metal layer,” Science, vol. 358, no. 6363, pp. 630–632, 2017.

Other (16)

M. Ayataet al., “All-plasmonic IQ modulator with 36 um fiber-to-fiber pitch,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.

U. Kochet al., “Ultra-compact 0.8 Tbit/s plasmonic modulator array,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.

K. Schuhet al., “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Opt. Fiber Commun. Conf. Expo., Mar. 2017, pp. 1–3.

B. Baeuerleet al., “Reduced equalization needs of 100 GHz bandwidth plasmonic modulators,” to be published.

M. Burlaet al., “500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” to be published.

W. Heniet al., “Plasmonic IQ-modulators with attojoule per bit electrical energy consumption,” to be published.

R. Goinget al., “4 × 600 Gb/s photonic IC transmitter and receiver modules,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.

H. Yamazakiet al., “Transmission of 400-gbps discrete multi-tone signal using >100-GHz-bandwidth analog multiplexer and InP Mach-Zehnder modulator,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.

J. C. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 gbaud 16QAM and 70 Gbaud 32QAM,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, pp. 1–3.

R. Ryfet al., “High-spectral-efficiency mode-multiplexed transmission over graded-index multimode fiber,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.

R. S. Luíset al., “1.2 Pb/s transmission over a 160 µm cladding, 4-core, 3-mode fiber, using 368 C+L band PDM-256-QAM channels,” in Proc. Eur. Conf. Opt. Commun., Sep. 2018, pp. 1–3.

C. R. Doerr, N. K. Fontaine, M. Hirano, T. Sasaki, L. L. Buhl, and P. J. Winzer, “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in Proc. Eur. Conf. Opt. Commun., 2011, pp. 1–3.

X. Chenet al., “Generation and intradyne detection of single-wavelength 1.61-Tb/s using an all-electronic digital band interleaved transmitter,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, pp. 1–3.

H. Mardoyanet al., “204-GBaud on-off keying transmitter for inter-data center communications,” in Proc. Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, Mar. 2018, Paper Th4A.4.

Y. Dinget al., “Ultra-compact graphene plasmonic photodetector with the bandwidth over 110 GHz,” 2018. arXiv: 1808.04815v2.

T. J. Seok, V. Kopp, D. Neugroschl, J. Henriksson, J. H. Luo, and M. C. Wu, “High density optical packaging of high radix silicon photonic switches,” in Proc. Opt. Fiber Commun. Conf. Exhib., Mar. 2017, pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.