Abstract

Optical isolators and circulators are fundamental building block in photonic integrated circuits to block undesired reflections and routing light according to a prescribed direction. In silicon photonics, heterogeneous integration of magneto-optic garnet bonded on a pre-patterned silicon layer has been demonstrated to be an effective solution for manufacturing optical isolators and circulators for TM polarized light. However, most integrated semiconductor lasers emit TE polarized light, which indicates the need to find a reliable solution for this polarization. In this paper, we demonstrated broadband optical isolators and circulators for TE polarized light based on heterogeneous bonding on the silicon photonics platform. To achieve this goal, an integrated adiabatic coupler and a broadband polarization rotator are designed and optimized. The nonreciprocal behavior is induced through an energy-efficient integrated electromagnet with a minimum power consumption of 3 mW. Two isolators/circulators are fabricated with small and large free spectral range, respectively. In the former case, an optical isolation ratio as large as 30 dB is measured at 1555 nm with an insertion loss of 18 dB, while for the broadband circulator, an optical isolation larger than 15 dB is guaranteed over more than 14 nm (1.75 THz) for all port combinations with an insertion loss between 14 and 18 dB at 1560 nm. Finally, it has been theoretically shown that the insertion loss can be reduced below 6 dB with design and fabrication improvements. To the best of the authors’ knowledge, the proposed integrated TE optical circulator is the first experimental demonstration of this device in silicon photonics.

© 2019 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Vivien and L. Pavesi, Handbook of Silicon Photonics. New York, NY, USA: Taylor & Francis, 2016.
  2. D. Jalaset al., “What is-and what is not-an optical isolator,” Nature Photon., vol. 7, no. 8, pp. 579–582, 2013.
  3. S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wüst, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 2, pp. 417–421,  2005.
  4. C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett., vol. 36, no. 21, pp. 4293–4295, 2011.
  5. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. .
  6. C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Express, vol. 22, no. 4, pp. 4493–4498, 2014.
  7. J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B, vol. 59, no. 3, pp. 1551–1554, 1999.
  8. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nature Photon., vol. 3, no. 2, pp. 91–94, 2009.
  9. Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nature Photon., vol. 9, no. 6, pp. 388–392, 2015.
  10. C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, pp. 1–6, 2015.
  11. S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, pp. 1–6, 2016.
  12. E. Krause, M. Renner, and H. Brinkmeyer, “Optical isolation in silicon waveguides based on nonreciprocal Raman amplification,” Electron. Lett., vol. 44, no. 11, pp. 691–693, 2008.
  13. H. Dötschet al., “Applications of magneto-optical waveguides in integrated optics: Review,” J. Opt. Soc. Amer. B, vol. 22, no. 1, pp. 240–253, 2005.
  14. B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photon. J., vol. 6, no. 1, pp. 1–15,  2014.
  15. T. Shoji and Y. Mizumoto, “Waveguide magneto-optical devices for photonics integrated circuits [Invited],” Opt. Mater. Express, vol. 8, no. 8, pp. 2387–2394, 2018.
  16. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett., vol. 30, no. 15, pp. 1989–1991, 2005.
  17. W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett., vol. 35, no. 4, pp. 568–570, 2010.
  18. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett., vol. 76, no. 16, pp. 2158–2160, 2000.
  19. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, 2008, Art. no. .
  20. D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, “Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range,” Opt. Lett., vol. 42, no. 23, pp. 4901–4904, 2017.
  21. E. Ishidaet al., “Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift,” Opt. Express, vol. 25, no. 1, pp. 452–462, 2017.
  22. N. Sugimotoet al., “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett., vol. 11, no. 3, pp. 355–357, 1999.
  23. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express, vol. 15, no. 12, pp. 7737–7751, 2007.
  24. D. Jalas, A. Petrov, M. Krause, J. Hampe, and M. Eich, “Resonance splitting in gyrotropic ring resonators,” Opt. Lett., vol. 35, no. 20, pp. 3438–3440, 2010.
  25. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express, vol. 19, no. 12, pp. 11740–11745, 2011.
  26. D. Jalas, A. Y. Petrov, and M. Eich, “Optical three-port circulators made with ring resonators,” Opt. Lett., vol. 39, no. 6, pp. 1425–1428, 2014.
  27. D. Huanget al., “Dynamically reconfigurable integrated optical circulators,” Optica, vol. 4, no. 1, pp. 23–30, 2017.
  28. P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightw. Technol., vol. 35, no. 8, pp. 1429–1437,  2017.
  29. L. Biet al., “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature Photon., vol. 5, no. 12, pp. 758–762, 2011.
  30. A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high faraday rotations,” IEEE Photon. J., vol. 6, no. 1, pp. 1–8,  2014.
  31. P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express, vol. 21, no. 4, pp. 5041–5052, 2013.
  32. P. Pintus, M. C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite-element method,” IEEE Photon. Technol. Lett., vol. 23, no. 22, pp. 1670–1672,  2011.
  33. P. Pintus, F. Di Pasquale, and J. E. Bowers, “Design of transverse electric ring isolators for ultra-low-loss Si3N4waveguides based on the finite element method,” Opt. Lett., vol. 36, no. 23, pp. 4599–4601, 2011.
  34. Y. Shojiet al., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, 2017, Art. no. .
  35. T. Goto, M. C. Onbaşlò, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express, vol. 20, no. 27, pp. 28507–28517, 2012.
  36. D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .
  37. S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J., vol. 5, no. 3,  2013, Art. no. .
  38. Y. Shoji, A. Fujie, T. Mizumoto, and I. Paper, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .
  39. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett., vol. 36, no. 7, pp. 1059–1061, 2011.
  40. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express, vol. 19, no. 11, pp. 10940–10949, 2011.
  41. R. Yamaguchi, Y. Shoji, and T. Mizumoto, “Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input,” Opt. Express, vol. 26, no. 16, pp. 21271–21278, 2018.
  42. P. Pintus, “Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides,” Opt. Express, vol. 22, no. 13, pp. 15737–15756, 2014.
  43. T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys., vol. 74, no. 8, pp. 4877–4881, 1993.
  44. M. A. Tran, C. Zhang, and J. E. Bowers, “A broadband optical switch based on adiabatic couplers,” in Proc. IEEE Photon. Conf., 2016, pp. 755–756.
  45. L. Chrostowski and M. Hochberg, Silicon Photonics Design. Cambridge, U.K.: Cambridge Univ. Press, 2015.
  46. Y. Wanget al., “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photon. J., vol. 10, no. 3, Jun. 2018, Art. no. .
  47. COMSOL multiphysics. [Online]. Available: www.comsol.com
  48. K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, pp. 1699–1705,  2016.
  49. D. Huang, P. Pintus, and J. E. Bowers, “Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [Invited],” Opt. Mater. Express, vol. 8, no. 9, pp. 2471–2483, 2018.
  50. M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photon. Technol. Lett., vol. 28, no. 14, pp. 1517–1520,  2016.
  51. T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257,  2018.
  52. W. Bogaertset al., “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012.

2018 (5)

2017 (5)

D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, “Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range,” Opt. Lett., vol. 42, no. 23, pp. 4901–4904, 2017.

E. Ishidaet al., “Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift,” Opt. Express, vol. 25, no. 1, pp. 452–462, 2017.

D. Huanget al., “Dynamically reconfigurable integrated optical circulators,” Optica, vol. 4, no. 1, pp. 23–30, 2017.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightw. Technol., vol. 35, no. 8, pp. 1429–1437,  2017.

Y. Shojiet al., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, 2017, Art. no. .

2016 (5)

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, pp. 1–6, 2016.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photon. Technol. Lett., vol. 28, no. 14, pp. 1517–1520,  2016.

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, pp. 1699–1705,  2016.

Y. Shoji, A. Fujie, T. Mizumoto, and I. Paper, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

2015 (2)

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nature Photon., vol. 9, no. 6, pp. 388–392, 2015.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, pp. 1–6, 2015.

2014 (5)

C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Express, vol. 22, no. 4, pp. 4493–4498, 2014.

B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photon. J., vol. 6, no. 1, pp. 1–15,  2014.

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high faraday rotations,” IEEE Photon. J., vol. 6, no. 1, pp. 1–8,  2014.

P. Pintus, “Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides,” Opt. Express, vol. 22, no. 13, pp. 15737–15756, 2014.

D. Jalas, A. Y. Petrov, and M. Eich, “Optical three-port circulators made with ring resonators,” Opt. Lett., vol. 39, no. 6, pp. 1425–1428, 2014.

2013 (3)

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express, vol. 21, no. 4, pp. 5041–5052, 2013.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J., vol. 5, no. 3,  2013, Art. no. .

D. Jalaset al., “What is-and what is not-an optical isolator,” Nature Photon., vol. 7, no. 8, pp. 579–582, 2013.

2012 (3)

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. .

T. Goto, M. C. Onbaşlò, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express, vol. 20, no. 27, pp. 28507–28517, 2012.

W. Bogaertset al., “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012.

2011 (7)

2010 (2)

2009 (1)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nature Photon., vol. 3, no. 2, pp. 91–94, 2009.

2008 (2)

E. Krause, M. Renner, and H. Brinkmeyer, “Optical isolation in silicon waveguides based on nonreciprocal Raman amplification,” Electron. Lett., vol. 44, no. 11, pp. 691–693, 2008.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, 2008, Art. no. .

2007 (1)

2005 (3)

H. Dötschet al., “Applications of magneto-optical waveguides in integrated optics: Review,” J. Opt. Soc. Amer. B, vol. 22, no. 1, pp. 240–253, 2005.

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett., vol. 30, no. 15, pp. 1989–1991, 2005.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wüst, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 2, pp. 417–421,  2005.

2000 (1)

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett., vol. 76, no. 16, pp. 2158–2160, 2000.

1999 (2)

J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B, vol. 59, no. 3, pp. 1551–1554, 1999.

N. Sugimotoet al., “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett., vol. 11, no. 3, pp. 355–357, 1999.

1993 (1)

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys., vol. 74, no. 8, pp. 4877–4881, 1993.

Baets, R.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J., vol. 5, no. 3,  2013, Art. no. .

Bhandare, S.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wüst, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 2, pp. 417–421,  2005.

Bi, L.

L. Biet al., “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature Photon., vol. 5, no. 12, pp. 758–762, 2011.

Block, A. D.

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high faraday rotations,” IEEE Photon. J., vol. 6, no. 1, pp. 1–8,  2014.

Bogaerts, W.

W. Bogaertset al., “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012.

Bowers, J. E.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257,  2018.

D. Huang, P. Pintus, and J. E. Bowers, “Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [Invited],” Opt. Mater. Express, vol. 8, no. 9, pp. 2471–2483, 2018.

D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, “Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range,” Opt. Lett., vol. 42, no. 23, pp. 4901–4904, 2017.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightw. Technol., vol. 35, no. 8, pp. 1429–1437,  2017.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photon. Technol. Lett., vol. 28, no. 14, pp. 1517–1520,  2016.

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express, vol. 21, no. 4, pp. 5041–5052, 2013.

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Design of transverse electric ring isolators for ultra-low-loss Si3N4waveguides based on the finite element method,” Opt. Lett., vol. 36, no. 23, pp. 4599–4601, 2011.

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express, vol. 19, no. 11, pp. 10940–10949, 2011.

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express, vol. 19, no. 12, pp. 11740–11745, 2011.

P. Pintus, M. C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite-element method,” IEEE Photon. Technol. Lett., vol. 23, no. 22, pp. 1670–1672,  2011.

M. A. Tran, C. Zhang, and J. E. Bowers, “A broadband optical switch based on adiabatic couplers,” in Proc. IEEE Photon. Conf., 2016, pp. 755–756.

Brinkmeyer, H.

E. Krause, M. Renner, and H. Brinkmeyer, “Optical isolation in silicon waveguides based on nonreciprocal Raman amplification,” Electron. Lett., vol. 44, no. 11, pp. 691–693, 2008.

Chen, L.

Chrostowski, L.

L. Chrostowski and M. Hochberg, Silicon Photonics Design. Cambridge, U.K.: Cambridge Univ. Press, 2015.

Dagens, B.

Dai, D.

Davenport, M. L.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257,  2018.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photon. Technol. Lett., vol. 28, no. 14, pp. 1517–1520,  2016.

Di Pasquale, F.

Ding, Y.

Doerr, C. R.

Dong, C. H.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, pp. 1–6, 2015.

Dötsch, H.

H. Dötschet al., “Applications of magneto-optical waveguides in integrated optics: Review,” J. Opt. Soc. Amer. B, vol. 22, no. 1, pp. 240–253, 2005.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett., vol. 76, no. 16, pp. 2158–2160, 2000.

Dulal, P.

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high faraday rotations,” IEEE Photon. J., vol. 6, no. 1, pp. 1–8,  2014.

Dupuis, N.

Eich, M.

Fan, S.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nature Photon., vol. 9, no. 6, pp. 388–392, 2015.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. .

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nature Photon., vol. 3, no. 2, pp. 91–94, 2009.

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett., vol. 30, no. 15, pp. 1989–1991, 2005.

J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B, vol. 59, no. 3, pp. 1551–1554, 1999.

Fu, W.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, pp. 1–6, 2015.

Fujie, A.

Y. Shoji, A. Fujie, T. Mizumoto, and I. Paper, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

Fujita, J.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett., vol. 76, no. 16, pp. 2158–2160, 2000.

Furuya, K.

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, pp. 1699–1705,  2016.

Ghosh, S.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J., vol. 5, no. 3,  2013, Art. no. .

Goto, T.

Gralak, B.

Guo, G. C.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, pp. 1–6, 2015.

Hampe, J.

Hochberg, M.

L. Chrostowski and M. Hochberg, Silicon Photonics Design. Cambridge, U.K.: Cambridge Univ. Press, 2015.

Hsieh, I. W.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, 2008, Art. no. .

Hua, Q.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, pp. 1–6, 2016.

Hua, S.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, pp. 1–6, 2016.

Huang, D.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257,  2018.

D. Huang, P. Pintus, and J. E. Bowers, “Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [Invited],” Opt. Mater. Express, vol. 8, no. 9, pp. 2471–2483, 2018.

D. Huanget al., “Dynamically reconfigurable integrated optical circulators,” Optica, vol. 4, no. 1, pp. 23–30, 2017.

D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, “Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range,” Opt. Lett., vol. 42, no. 23, pp. 4901–4904, 2017.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightw. Technol., vol. 35, no. 8, pp. 1429–1437,  2017.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

Hulme, J. C.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photon. Technol. Lett., vol. 28, no. 14, pp. 1517–1520,  2016.

Hvam, J. M.

Ibrahim, S. K.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wüst, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 2, pp. 417–421,  2005.

Ippen, E. P.

J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B, vol. 59, no. 3, pp. 1551–1554, 1999.

Ishida, E.

Jalas, D.

Jiang, L.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, pp. 1–6, 2016.

Jiang, X.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, pp. 1–6, 2016.

Joannopoulos, J. D.

J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B, vol. 59, no. 3, pp. 1551–1554, 1999.

Kakihara, K.

Kato, K.

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, pp. 1699–1705,  2016.

Keyvaninia, S.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J., vol. 5, no. 3,  2013, Art. no. .

Kobayashi, M.

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys., vol. 74, no. 8, pp. 4877–4881, 1993.

Komljenovic, T.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257,  2018.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photon. Technol. Lett., vol. 28, no. 14, pp. 1517–1520,  2016.

Kono, N.

Koshiba, M.

Krause, E.

E. Krause, M. Renner, and H. Brinkmeyer, “Optical isolation in silicon waveguides based on nonreciprocal Raman amplification,” Electron. Lett., vol. 44, no. 11, pp. 691–693, 2008.

Krause, M.

Kromer, H.

Levy, M.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett., vol. 76, no. 16, pp. 2158–2160, 2000.

Lipson, M.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. .

Lira, H.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. .

Liu, L.

Magdenko, L.

Mizumoto, T.

R. Yamaguchi, Y. Shoji, and T. Mizumoto, “Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input,” Opt. Express, vol. 26, no. 16, pp. 21271–21278, 2018.

D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, “Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range,” Opt. Lett., vol. 42, no. 23, pp. 4901–4904, 2017.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightw. Technol., vol. 35, no. 8, pp. 1429–1437,  2017.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, pp. 1699–1705,  2016.

Y. Shoji, A. Fujie, T. Mizumoto, and I. Paper, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photon. J., vol. 6, no. 1, pp. 1–15,  2014.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J., vol. 5, no. 3,  2013, Art. no. .

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express, vol. 19, no. 12, pp. 11740–11745, 2011.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, 2008, Art. no. .

Mizumoto, Y.

Morton, P.

Nemoto, T.

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, pp. 1699–1705,  2016.

Noé, R.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wüst, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 2, pp. 417–421,  2005.

Onbaslò, M. C.

Osgood, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, 2008, Art. no. .

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett., vol. 76, no. 16, pp. 2158–2160, 2000.

Paper, I.

Y. Shoji, A. Fujie, T. Mizumoto, and I. Paper, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

Pavesi, L.

L. Vivien and L. Pavesi, Handbook of Silicon Photonics. New York, NY, USA: Taylor & Francis, 2016.

Petrov, A.

Petrov, A. Y.

Pintus, P.

D. Huang, P. Pintus, and J. E. Bowers, “Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [Invited],” Opt. Mater. Express, vol. 8, no. 9, pp. 2471–2483, 2018.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257,  2018.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightw. Technol., vol. 35, no. 8, pp. 1429–1437,  2017.

D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, “Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range,” Opt. Lett., vol. 42, no. 23, pp. 4901–4904, 2017.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

P. Pintus, “Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides,” Opt. Express, vol. 22, no. 13, pp. 15737–15756, 2014.

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express, vol. 21, no. 4, pp. 5041–5052, 2013.

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Design of transverse electric ring isolators for ultra-low-loss Si3N4waveguides based on the finite element method,” Opt. Lett., vol. 36, no. 23, pp. 4599–4601, 2011.

P. Pintus, M. C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite-element method,” IEEE Photon. Technol. Lett., vol. 23, no. 22, pp. 1670–1672,  2011.

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express, vol. 19, no. 12, pp. 11740–11745, 2011.

Renner, M.

E. Krause, M. Renner, and H. Brinkmeyer, “Optical isolation in silicon waveguides based on nonreciprocal Raman amplification,” Electron. Lett., vol. 44, no. 11, pp. 691–693, 2008.

Roelkens, G.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J., vol. 5, no. 3,  2013, Art. no. .

Romero-Vivas, J.

Ross, C. A.

Saitoh, K.

Sandel, D.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wüst, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 2, pp. 417–421,  2005.

Seaton, N. C. A.

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high faraday rotations,” IEEE Photon. J., vol. 6, no. 1, pp. 1–8,  2014.

Shen, Z.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, pp. 1–6, 2015.

Shi, Y.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nature Photon., vol. 9, no. 6, pp. 388–392, 2015.

Shintaku, T.

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys., vol. 74, no. 8, pp. 4877–4881, 1993.

Shirato, Y.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J., vol. 5, no. 3,  2013, Art. no. .

Shoji, T.

Shoji, Y.

R. Yamaguchi, Y. Shoji, and T. Mizumoto, “Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input,” Opt. Express, vol. 26, no. 16, pp. 21271–21278, 2018.

D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, “Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range,” Opt. Lett., vol. 42, no. 23, pp. 4901–4904, 2017.

Y. Shojiet al., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, 2017, Art. no. .

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightw. Technol., vol. 35, no. 8, pp. 1429–1437,  2017.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

Y. Shoji, A. Fujie, T. Mizumoto, and I. Paper, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, pp. 1699–1705,  2016.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, 2008, Art. no. .

Smigaj, W.

Stadler, B. J. H.

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high faraday rotations,” IEEE Photon. J., vol. 6, no. 1, pp. 1–8,  2014.

B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photon. J., vol. 6, no. 1, pp. 1–15,  2014.

Sugimoto, N.

N. Sugimotoet al., “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett., vol. 11, no. 3, pp. 355–357, 1999.

Tien, M. C.

P. Pintus, M. C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite-element method,” IEEE Photon. Technol. Lett., vol. 23, no. 22, pp. 1670–1672,  2011.

Tien, M.-C.

Tran, M. A.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257,  2018.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photon. Technol. Lett., vol. 28, no. 14, pp. 1517–1520,  2016.

M. A. Tran, C. Zhang, and J. E. Bowers, “A broadband optical switch based on adiabatic couplers,” in Proc. IEEE Photon. Conf., 2016, pp. 755–756.

Uno, T.

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys., vol. 74, no. 8, pp. 4877–4881, 1993.

Vanwolleghem, M.

Vermeulen, D.

Vivien, L.

L. Vivien and L. Pavesi, Handbook of Silicon Photonics. New York, NY, USA: Taylor & Francis, 2016.

Wang, Y.

Y. Wanget al., “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photon. J., vol. 10, no. 3, Jun. 2018, Art. no. .

Wang, Z.

Wen, J.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, pp. 1–6, 2016.

Wilkens, L.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett., vol. 76, no. 16, pp. 2158–2160, 2000.

Winn, J. N.

J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B, vol. 59, no. 3, pp. 1551–1554, 1999.

Wüst, F.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wüst, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 2, pp. 417–421,  2005.

Xiao, M.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, pp. 1–6, 2016.

Yamaguchi, R.

Yokoi, H.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, 2008, Art. no. .

Yu, Z.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nature Photon., vol. 9, no. 6, pp. 388–392, 2015.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. .

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nature Photon., vol. 3, no. 2, pp. 91–94, 2009.

Yvind, K.

Zhang, C.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightw. Technol., vol. 35, no. 8, pp. 1429–1437,  2017.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

M. A. Tran, C. Zhang, and J. E. Bowers, “A broadband optical switch based on adiabatic couplers,” in Proc. IEEE Photon. Conf., 2016, pp. 755–756.

Zhang, H.

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wüst, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 2, pp. 417–421,  2005.

Zhang, L.

Zhang, Y. L.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, pp. 1–6, 2015.

Zou, C. L.

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, pp. 1–6, 2015.

Appl. Phys. Lett. (3)

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett., vol. 76, no. 16, pp. 2158–2160, 2000.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, 2008, Art. no. .

Y. Shojiet al., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, 2017, Art. no. .

Electron. Lett. (1)

E. Krause, M. Renner, and H. Brinkmeyer, “Optical isolation in silicon waveguides based on nonreciprocal Raman amplification,” Electron. Lett., vol. 44, no. 11, pp. 691–693, 2008.

IEEE J. Sel. Topics Quantum Electron. (3)

S. Bhandare, S. K. Ibrahim, D. Sandel, H. Zhang, F. Wüst, and R. Noé, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 2, pp. 417–421,  2005.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

Y. Shoji, A. Fujie, T. Mizumoto, and I. Paper, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6,  2016, Art. no. .

IEEE Photon. J (4)

Y. Wanget al., “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photon. J., vol. 10, no. 3, Jun. 2018, Art. no. .

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J., vol. 5, no. 3,  2013, Art. no. .

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high faraday rotations,” IEEE Photon. J., vol. 6, no. 1, pp. 1–8,  2014.

B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photon. J., vol. 6, no. 1, pp. 1–15,  2014.

IEEE Photon. Technol. Lett. (3)

P. Pintus, M. C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite-element method,” IEEE Photon. Technol. Lett., vol. 23, no. 22, pp. 1670–1672,  2011.

N. Sugimotoet al., “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett., vol. 11, no. 3, pp. 355–357, 1999.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photon. Technol. Lett., vol. 28, no. 14, pp. 1517–1520,  2016.

J. Appl. Phys. (1)

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys., vol. 74, no. 8, pp. 4877–4881, 1993.

J. Lightw. Technol. (2)

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, pp. 1699–1705,  2016.

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightw. Technol., vol. 35, no. 8, pp. 1429–1437,  2017.

J. Opt. Soc. Amer. B (1)

H. Dötschet al., “Applications of magneto-optical waveguides in integrated optics: Review,” J. Opt. Soc. Amer. B, vol. 22, no. 1, pp. 240–253, 2005.

Laser Photon. Rev. (1)

W. Bogaertset al., “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012.

Nature Commun. (2)

C. H. Dong, Z. Shen, C. L. Zou, Y. L. Zhang, W. Fu, and G. C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature Commun., vol. 6, pp. 1–6, 2015.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nature Commun., vol. 7, pp. 1–6, 2016.

Nature Photon. (4)

D. Jalaset al., “What is-and what is not-an optical isolator,” Nature Photon., vol. 7, no. 8, pp. 579–582, 2013.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nature Photon., vol. 3, no. 2, pp. 91–94, 2009.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nature Photon., vol. 9, no. 6, pp. 388–392, 2015.

L. Biet al., “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nature Photon., vol. 5, no. 12, pp. 758–762, 2011.

Opt. Express (9)

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express, vol. 19, no. 12, pp. 11740–11745, 2011.

N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express, vol. 15, no. 12, pp. 7737–7751, 2007.

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express, vol. 21, no. 4, pp. 5041–5052, 2013.

T. Goto, M. C. Onbaşlò, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express, vol. 20, no. 27, pp. 28507–28517, 2012.

C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Express, vol. 22, no. 4, pp. 4493–4498, 2014.

E. Ishidaet al., “Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift,” Opt. Express, vol. 25, no. 1, pp. 452–462, 2017.

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express, vol. 19, no. 11, pp. 10940–10949, 2011.

R. Yamaguchi, Y. Shoji, and T. Mizumoto, “Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input,” Opt. Express, vol. 26, no. 16, pp. 21271–21278, 2018.

P. Pintus, “Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides,” Opt. Express, vol. 22, no. 13, pp. 15737–15756, 2014.

Opt. Lett. (8)

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett., vol. 36, no. 7, pp. 1059–1061, 2011.

C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett., vol. 36, no. 21, pp. 4293–4295, 2011.

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett., vol. 30, no. 15, pp. 1989–1991, 2005.

W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett., vol. 35, no. 4, pp. 568–570, 2010.

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Design of transverse electric ring isolators for ultra-low-loss Si3N4waveguides based on the finite element method,” Opt. Lett., vol. 36, no. 23, pp. 4599–4601, 2011.

D. Jalas, A. Petrov, M. Krause, J. Hampe, and M. Eich, “Resonance splitting in gyrotropic ring resonators,” Opt. Lett., vol. 35, no. 20, pp. 3438–3440, 2010.

D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, “Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range,” Opt. Lett., vol. 42, no. 23, pp. 4901–4904, 2017.

D. Jalas, A. Y. Petrov, and M. Eich, “Optical three-port circulators made with ring resonators,” Opt. Lett., vol. 39, no. 6, pp. 1425–1428, 2014.

Opt. Mater. Express (2)

Optica (1)

Phys. Rev. B (1)

J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B, vol. 59, no. 3, pp. 1551–1554, 1999.

Phys. Rev. Lett. (1)

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. .

Proc. IEEE (1)

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257,  2018.

Other (4)

M. A. Tran, C. Zhang, and J. E. Bowers, “A broadband optical switch based on adiabatic couplers,” in Proc. IEEE Photon. Conf., 2016, pp. 755–756.

L. Chrostowski and M. Hochberg, Silicon Photonics Design. Cambridge, U.K.: Cambridge Univ. Press, 2015.

COMSOL multiphysics. [Online]. Available: www.comsol.com

L. Vivien and L. Pavesi, Handbook of Silicon Photonics. New York, NY, USA: Taylor & Francis, 2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.