Abstract

We demonstrate the first multiterabit/s wavelength division multiplexing data transmission through hollow-core antiresonant fiber (HC-ARF). In total, 16 channels of 32-GBd dual-polarization Nyquist-shaped 256QAM signal channels were transmitted through a 270-m-long fiber without observing any power penalty. In a single-channel high power transmission experiment, no nonlinearity penalty was observed for up to 1 W of received power, despite the very low chromatic dispersion of the fiber (<2 ps/nm/km). Our simulations show that such a low level of nonlinearity should enable transmission at 6.4 Tb/s over 1200 km of HC-ARF, even when the fiber attenuation is significantly greater than that of SMF-28. As signals propagate through hollow-core fibers at close to the speed of light in vacuum such a link would be of interest in latency-sensitive data transmission applications.

© 2018 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambreet al., “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.
  2. M. M. Filer, S. Searcy, Y. Fu, R. Nagarajan, and S. Tibuleac, “Demonstration and performance analysis of 4 Tb/s DWDM Metro-DCI system with 100G PAM4 QSFP28 Modules,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.
  3. M. Simsek, A. Aijaz, J. Sachs, G. Fettweis, and M. Dohler, “5G-Enabled tactile internet,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 460–473, 2016.
  4. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightw. Technol., vol. 28, no. 6, pp. 939–951, 2010.
  5. S. K. Turitsynet al., “Nonlinear Fourier transform for optical data processing and transmission: Advances and perspectives,” Optica, vol. 4, no.  3, pp. 307–322, 2017.
  6. S. Yoshimaet al., “Mitigation of nonlinear effects on WDM QAM signals enabled by optical phase conjugation with efficient bandwidth utilization,” J. Light. Technol., vol. 35, no. 4, pp. 971–978, 2017.
  7. R. Slavíket al., “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nature Photon., vol. 4, pp. 690–695, 2010.
  8. S. L. I. Olssonet al., “Long-haul optical transmission link using low-noise phase-sensitive amplifiers,” Nature Commun., vol. 9, 2018, Art. no. .
  9. S. Kametani, T. Sugihara, K. koguchi, T. Mizuochi, and T. Kobayashi, “Low latency transmission at 40 Gbps by employing electronic pre-equalization techonlogy,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2011, pp. 1–3.
  10. GTT Network. [Online]. Available: https://www.gtt.net/services/transport-services/low-latency/
  11. Y. Sagae, T. Matsui, K. Tsujikawa, and K. Nakajima, “Solid type low-latency single-mode fiber with large effective area and low loss,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2018, pp. 1–3.
  12. F. Polettiet al., “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nature Photon., vol. 7, pp. 279–284, 2013.
  13. S. A. Mousaviet al., “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt. Express, vol. 26, no. 7, pp. 8866–8882, 2018.
  14. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: Technology and applications,” Nanophotonics, vol. 2, nos. 5/6, pp. 315–340, 2013.
  15. J. R. Hayeset al., “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightw. Technol, vol. 35, no. 3, pp. 437–442, 2017.
  16. P. Uebelet al., “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett., vol. 41, no. 9, pp.  1961–1964, 2016.
  17. F. Yuet al., “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express, vol. 24, no. 12, pp.  12969–12975, 2016.
  18. B. Debordet al., “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica, vol. 4, no. 2, pp. 209–217, 2017.
  19. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express, vol. 22, no. 20, pp. 23807–23828, 2014.
  20. V. A. J. M. Sleifferet al., “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightw. Technol., vol. 32, no. 4, pp. 854–863, 2014.
  21. M. Kuschnerovet al., “Data transmission through up to 74.8 km of hollow-core fiber with coherent and direct-detect transceivers,” in Proc. Eur. Conf. Optical Commun., 2015, pp. 1–3.
  22. T. D. Bradleyet al., “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in Proc. Eur. Conf. Optical Commun, 2018, pp.  1–3.
  23. B. J. Manganet al., “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2004, pp. 1–3.
  24. Z. Liuet al., “Record high capacity (6.8 Tbit/s) WDM coherent transmission in hollow-core antiresonant fiber,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.
  25. T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1334–1336, 2001.
  26. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt., vol. 23, no. 23, pp. 4477–4485, 1984.
  27. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express, vol. 16, no. 2, pp. 804–817, 2008.
  28. Y. Chen, Z. Liu, and S. R. Sandoghchi, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightw. Technol., vol. 34, no. 1, pp.  104–113, 2016.
  29. R. Maheret al., “Increasing the information rates of optical communications via coded modulation: A study of transceiver performance,” Sci. Rep., vol. 6, 2016, Art. no. .
  30. L. Galdino, D. Lavery, and Z. Liu, “The trade-off between transceiver capacity and symbol rate,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2018, pp. 1–3.
  31. S. Makovejset al., “Record-low (0.1460 dB/km) attenuation ultra-large aeff optical fiber for submarine applications,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.
  32. Corning LEAF optical fiber product specification. [Online]. Available: https://www.corning.com/media/worldwide/coc/documents/Fiber/LEAF%20optical%20fiber.pdf
  33. A. Mousaviet al., “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt. Express, vol. 26, no. 7, pp. 8866–8882, 2018.
  34. R. Slavíket al., “Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres,” Sci. Rep., vol. 5, 2015, Art. no. .

2018 (3)

2017 (4)

B. Debordet al., “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica, vol. 4, no. 2, pp. 209–217, 2017.

S. K. Turitsynet al., “Nonlinear Fourier transform for optical data processing and transmission: Advances and perspectives,” Optica, vol. 4, no.  3, pp. 307–322, 2017.

J. R. Hayeset al., “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightw. Technol, vol. 35, no. 3, pp. 437–442, 2017.

S. Yoshimaet al., “Mitigation of nonlinear effects on WDM QAM signals enabled by optical phase conjugation with efficient bandwidth utilization,” J. Light. Technol., vol. 35, no. 4, pp. 971–978, 2017.

2016 (5)

M. Simsek, A. Aijaz, J. Sachs, G. Fettweis, and M. Dohler, “5G-Enabled tactile internet,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 460–473, 2016.

Y. Chen, Z. Liu, and S. R. Sandoghchi, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightw. Technol., vol. 34, no. 1, pp.  104–113, 2016.

R. Maheret al., “Increasing the information rates of optical communications via coded modulation: A study of transceiver performance,” Sci. Rep., vol. 6, 2016, Art. no. .

P. Uebelet al., “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett., vol. 41, no. 9, pp.  1961–1964, 2016.

F. Yuet al., “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express, vol. 24, no. 12, pp.  12969–12975, 2016.

2015 (1)

R. Slavíket al., “Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres,” Sci. Rep., vol. 5, 2015, Art. no. .

2014 (2)

V. A. J. M. Sleifferet al., “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightw. Technol., vol. 32, no. 4, pp. 854–863, 2014.

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express, vol. 22, no. 20, pp. 23807–23828, 2014.

2013 (2)

F. Polettiet al., “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nature Photon., vol. 7, pp. 279–284, 2013.

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: Technology and applications,” Nanophotonics, vol. 2, nos. 5/6, pp. 315–340, 2013.

2010 (3)

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightw. Technol., vol. 28, no. 6, pp. 939–951, 2010.

R. Slavíket al., “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nature Photon., vol. 4, pp. 690–695, 2010.

R. J. Essiambreet al., “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.

2008 (1)

2001 (1)

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1334–1336, 2001.

1984 (1)

Aijaz, A.

M. Simsek, A. Aijaz, J. Sachs, G. Fettweis, and M. Dohler, “5G-Enabled tactile internet,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 460–473, 2016.

Bradley, T. D.

T. D. Bradleyet al., “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in Proc. Eur. Conf. Optical Commun, 2018, pp.  1–3.

Chen, Y.

Y. Chen, Z. Liu, and S. R. Sandoghchi, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightw. Technol., vol. 34, no. 1, pp.  104–113, 2016.

Debord, B.

Dohler, M.

M. Simsek, A. Aijaz, J. Sachs, G. Fettweis, and M. Dohler, “5G-Enabled tactile internet,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 460–473, 2016.

Essiambre, R. J.

R. J. Essiambreet al., “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.

Fettweis, G.

M. Simsek, A. Aijaz, J. Sachs, G. Fettweis, and M. Dohler, “5G-Enabled tactile internet,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 460–473, 2016.

Filer, M. M.

M. M. Filer, S. Searcy, Y. Fu, R. Nagarajan, and S. Tibuleac, “Demonstration and performance analysis of 4 Tb/s DWDM Metro-DCI system with 100G PAM4 QSFP28 Modules,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.

Fu, Y.

M. M. Filer, S. Searcy, Y. Fu, R. Nagarajan, and S. Tibuleac, “Demonstration and performance analysis of 4 Tb/s DWDM Metro-DCI system with 100G PAM4 QSFP28 Modules,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.

Galdino, L.

L. Galdino, D. Lavery, and Z. Liu, “The trade-off between transceiver capacity and symbol rate,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2018, pp. 1–3.

Hayes, J. R.

J. R. Hayeset al., “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightw. Technol, vol. 35, no. 3, pp. 437–442, 2017.

Ip, E.

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightw. Technol., vol. 28, no. 6, pp. 939–951, 2010.

Kametani, S.

S. Kametani, T. Sugihara, K. koguchi, T. Mizuochi, and T. Kobayashi, “Low latency transmission at 40 Gbps by employing electronic pre-equalization techonlogy,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2011, pp. 1–3.

Kobayashi, T.

S. Kametani, T. Sugihara, K. koguchi, T. Mizuochi, and T. Kobayashi, “Low latency transmission at 40 Gbps by employing electronic pre-equalization techonlogy,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2011, pp. 1–3.

koguchi, K.

S. Kametani, T. Sugihara, K. koguchi, T. Mizuochi, and T. Kobayashi, “Low latency transmission at 40 Gbps by employing electronic pre-equalization techonlogy,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2011, pp. 1–3.

Kuschnerov, M.

M. Kuschnerovet al., “Data transmission through up to 74.8 km of hollow-core fiber with coherent and direct-detect transceivers,” in Proc. Eur. Conf. Optical Commun., 2015, pp. 1–3.

Lavery, D.

L. Galdino, D. Lavery, and Z. Liu, “The trade-off between transceiver capacity and symbol rate,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2018, pp. 1–3.

Liu, Z.

Y. Chen, Z. Liu, and S. R. Sandoghchi, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightw. Technol., vol. 34, no. 1, pp.  104–113, 2016.

L. Galdino, D. Lavery, and Z. Liu, “The trade-off between transceiver capacity and symbol rate,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2018, pp. 1–3.

Z. Liuet al., “Record high capacity (6.8 Tbit/s) WDM coherent transmission in hollow-core antiresonant fiber,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.

Ludvigsen, H.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1334–1336, 2001.

Maher, R.

R. Maheret al., “Increasing the information rates of optical communications via coded modulation: A study of transceiver performance,” Sci. Rep., vol. 6, 2016, Art. no. .

Makovejs, S.

S. Makovejset al., “Record-low (0.1460 dB/km) attenuation ultra-large aeff optical fiber for submarine applications,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.

Mangan, B. J.

B. J. Manganet al., “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2004, pp. 1–3.

Matsui, T.

Y. Sagae, T. Matsui, K. Tsujikawa, and K. Nakajima, “Solid type low-latency single-mode fiber with large effective area and low loss,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2018, pp. 1–3.

Mizuochi, T.

S. Kametani, T. Sugihara, K. koguchi, T. Mizuochi, and T. Kobayashi, “Low latency transmission at 40 Gbps by employing electronic pre-equalization techonlogy,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2011, pp. 1–3.

Mousavi, A.

Mousavi, S. A.

Nagarajan, R.

M. M. Filer, S. Searcy, Y. Fu, R. Nagarajan, and S. Tibuleac, “Demonstration and performance analysis of 4 Tb/s DWDM Metro-DCI system with 100G PAM4 QSFP28 Modules,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.

Nakajima, K.

Y. Sagae, T. Matsui, K. Tsujikawa, and K. Nakajima, “Solid type low-latency single-mode fiber with large effective area and low loss,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2018, pp. 1–3.

Niemi, T.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1334–1336, 2001.

Olsson, S. L. I.

S. L. I. Olssonet al., “Long-haul optical transmission link using low-noise phase-sensitive amplifiers,” Nature Commun., vol. 9, 2018, Art. no. .

Petrovich,

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: Technology and applications,” Nanophotonics, vol. 2, nos. 5/6, pp. 315–340, 2013.

Poletti, F.

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express, vol. 22, no. 20, pp. 23807–23828, 2014.

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: Technology and applications,” Nanophotonics, vol. 2, nos. 5/6, pp. 315–340, 2013.

F. Polettiet al., “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nature Photon., vol. 7, pp. 279–284, 2013.

Richardson, D. J.

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: Technology and applications,” Nanophotonics, vol. 2, nos. 5/6, pp. 315–340, 2013.

Sachs, J.

M. Simsek, A. Aijaz, J. Sachs, G. Fettweis, and M. Dohler, “5G-Enabled tactile internet,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 460–473, 2016.

Sagae, Y.

Y. Sagae, T. Matsui, K. Tsujikawa, and K. Nakajima, “Solid type low-latency single-mode fiber with large effective area and low loss,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2018, pp. 1–3.

Sandoghchi, S. R.

Y. Chen, Z. Liu, and S. R. Sandoghchi, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightw. Technol., vol. 34, no. 1, pp.  104–113, 2016.

Savory, S. J.

Searcy, S.

M. M. Filer, S. Searcy, Y. Fu, R. Nagarajan, and S. Tibuleac, “Demonstration and performance analysis of 4 Tb/s DWDM Metro-DCI system with 100G PAM4 QSFP28 Modules,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.

Simsek, M.

M. Simsek, A. Aijaz, J. Sachs, G. Fettweis, and M. Dohler, “5G-Enabled tactile internet,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 460–473, 2016.

Slavík, R.

R. Slavíket al., “Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres,” Sci. Rep., vol. 5, 2015, Art. no. .

R. Slavíket al., “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nature Photon., vol. 4, pp. 690–695, 2010.

Sleiffer, V. A. J. M.

V. A. J. M. Sleifferet al., “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightw. Technol., vol. 32, no. 4, pp. 854–863, 2014.

Sugihara, T.

S. Kametani, T. Sugihara, K. koguchi, T. Mizuochi, and T. Kobayashi, “Low latency transmission at 40 Gbps by employing electronic pre-equalization techonlogy,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2011, pp. 1–3.

Tatian, B.

Tibuleac, S.

M. M. Filer, S. Searcy, Y. Fu, R. Nagarajan, and S. Tibuleac, “Demonstration and performance analysis of 4 Tb/s DWDM Metro-DCI system with 100G PAM4 QSFP28 Modules,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.

Tsujikawa, K.

Y. Sagae, T. Matsui, K. Tsujikawa, and K. Nakajima, “Solid type low-latency single-mode fiber with large effective area and low loss,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2018, pp. 1–3.

Turitsyn, S. K.

Uebel, P.

Uusimaa, M.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1334–1336, 2001.

Yoshima, S.

S. Yoshimaet al., “Mitigation of nonlinear effects on WDM QAM signals enabled by optical phase conjugation with efficient bandwidth utilization,” J. Light. Technol., vol. 35, no. 4, pp. 971–978, 2017.

Yu, F.

Appl. Opt. (1)

IEEE J. Sel. Areas Commun. (1)

M. Simsek, A. Aijaz, J. Sachs, G. Fettweis, and M. Dohler, “5G-Enabled tactile internet,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 460–473, 2016.

IEEE Photon. Technol. Lett. (1)

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1334–1336, 2001.

J. Light. Technol. (1)

S. Yoshimaet al., “Mitigation of nonlinear effects on WDM QAM signals enabled by optical phase conjugation with efficient bandwidth utilization,” J. Light. Technol., vol. 35, no. 4, pp. 971–978, 2017.

J. Lightw. Technol (1)

J. R. Hayeset al., “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightw. Technol, vol. 35, no. 3, pp. 437–442, 2017.

J. Lightw. Technol. (4)

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightw. Technol., vol. 28, no. 6, pp. 939–951, 2010.

R. J. Essiambreet al., “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.

Y. Chen, Z. Liu, and S. R. Sandoghchi, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightw. Technol., vol. 34, no. 1, pp.  104–113, 2016.

V. A. J. M. Sleifferet al., “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightw. Technol., vol. 32, no. 4, pp. 854–863, 2014.

Nanophotonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: Technology and applications,” Nanophotonics, vol. 2, nos. 5/6, pp. 315–340, 2013.

Nature Commun. (1)

S. L. I. Olssonet al., “Long-haul optical transmission link using low-noise phase-sensitive amplifiers,” Nature Commun., vol. 9, 2018, Art. no. .

Nature Photon. (2)

R. Slavíket al., “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nature Photon., vol. 4, pp. 690–695, 2010.

F. Polettiet al., “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nature Photon., vol. 7, pp. 279–284, 2013.

Opt. Express (5)

Opt. Lett. (1)

Optica (2)

Sci. Rep. (2)

R. Slavíket al., “Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres,” Sci. Rep., vol. 5, 2015, Art. no. .

R. Maheret al., “Increasing the information rates of optical communications via coded modulation: A study of transceiver performance,” Sci. Rep., vol. 6, 2016, Art. no. .

Other (11)

L. Galdino, D. Lavery, and Z. Liu, “The trade-off between transceiver capacity and symbol rate,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2018, pp. 1–3.

S. Makovejset al., “Record-low (0.1460 dB/km) attenuation ultra-large aeff optical fiber for submarine applications,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.

Corning LEAF optical fiber product specification. [Online]. Available: https://www.corning.com/media/worldwide/coc/documents/Fiber/LEAF%20optical%20fiber.pdf

M. Kuschnerovet al., “Data transmission through up to 74.8 km of hollow-core fiber with coherent and direct-detect transceivers,” in Proc. Eur. Conf. Optical Commun., 2015, pp. 1–3.

T. D. Bradleyet al., “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” in Proc. Eur. Conf. Optical Commun, 2018, pp.  1–3.

B. J. Manganet al., “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2004, pp. 1–3.

Z. Liuet al., “Record high capacity (6.8 Tbit/s) WDM coherent transmission in hollow-core antiresonant fiber,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.

M. M. Filer, S. Searcy, Y. Fu, R. Nagarajan, and S. Tibuleac, “Demonstration and performance analysis of 4 Tb/s DWDM Metro-DCI system with 100G PAM4 QSFP28 Modules,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, pp. 1–3.

S. Kametani, T. Sugihara, K. koguchi, T. Mizuochi, and T. Kobayashi, “Low latency transmission at 40 Gbps by employing electronic pre-equalization techonlogy,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2011, pp. 1–3.

GTT Network. [Online]. Available: https://www.gtt.net/services/transport-services/low-latency/

Y. Sagae, T. Matsui, K. Tsujikawa, and K. Nakajima, “Solid type low-latency single-mode fiber with large effective area and low loss,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2018, pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.