Abstract

We present a long-reach wavelength-routed time-wavelength division multiplexing (TWDM) passive optical network (PON) architecture (LRWR-PON) and its commercial implementation, which supports up to 768 users per fiber strand and up to 50-km transmission distance. The increased reach allows central offices to become more flexible and fewer in quantity, while the increased aggregation reduces the size and number of optical cables needed, enabling smaller trenches to be used. LRWR-PON also contains eight additional point-to-point wavelengths on each fiber to support wireless sites and/or high-speed dedicated bandwidth applications, greatly simplifying converged network designs. Multiple new optical components and modules have been developed to implement our novel architecture. These include a cyclic arrayed waveguide grating to passively aggregate and distribute access wavelengths in the field, an integrated optical amplifier and multiplexer combination device to aggregate optical line terminal (OLT) channels and extend the system reach, several dense wavelength division multiplexing OLT optics, and a colorless TWDM optical network terminal employing low-cost tunable burst-mode lasers. Our analysis shows the simplification of the civil construction enabled by LRWR-PON greatly outweighs the increased optical component complexity. To date, we have conducted a successful field trial with 606 real-life customers for more than 15 months and we have been rolling out LRWR-PON in Google Fiber markets for production services.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G.984.2 amendment 2: Gigabit-capable passive optical networks (G-PON): Physical media dependent (PMD) layer specification, New Appendix V, 2008.
  2. G.9807.1: 10-gigabit-capable symmetric passive optical network (XGS-PON), 2016.
  3. IEEE Standard for Information Technology–-Local and Metropolitan Area Networks–-Specific Requirements–-Part 3: CSMA/CD Access Method and Physical Layer Specifications Amendment 1: Physical Layer Specifications and Management Parameters for 10 Gb/s Passive Optical Networks, IEEE Std. 802.3av, 2009.
  4. IEEE Standard for Ethernet - Amendment 1: Physical Layer Specifications and Management Parameters for Extended Ethernet Passive Optical Networks, IEEE Std. 802.3bk, 2013.
  5. J. Sugawa and H. Ikeda, “Development of OLT using semiconductor optical amplifiers as booster and preamplifier for loss-budget extension in 10.3-Gb/s PON system,” in Proc. OFC/NFOEC, Los Angeles, CA, USA, 2012, Paper OTh4G.4.
  6. A. M. Hillet al., “39.5 million-way WDM broadcast network employing two stages of erbium-doped fibre amplifiers,” Electron. Lett., vol. 26, no. 22, pp. 1882–1884, 1990.
  7. M. Ruffiniet al., “DISCUS: An end-to-end solution for ubiquitous broadband optical access,” IEEE Commun. Mag., vol. 52, no. 2, pp. S24–S32, 2014.
  8. K. Taguchiet al., “Field trial of long-reach and high-splitting wavelength-tunable TWDM-PON,” J. Lightw. Technol., vol. 34, no. 1, pp. 213–221, 2016.
  9. I. V. de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: An exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag., vol. 38, no. 2, pp. 74–82, 2000.
  10. D. P. Shea and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Netw., vol. 21, no. 5, pp. 5–11, 2007.
  11. G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightw. Technol., vol. 24, no. 7, pp. 2827–2834, 2006.
  12. C. Antonyet al., “Upstream burst-mode operation of a 100km reach, 16x512 split hybrid DWDM-TDM PON using tuneable external cavity lasers at the ONU-side,” in Proc. 35th Eur. Conf. Opt. Commun., 2009, pp. 1–2.
  13. S. Smolorzet al., “Next generation access networks: PIEMAN and beyond,” in Proc. Int. Conf. Photon. Switching, 2009, pp. 1–4.
  14. P. P. Iannoneet al., “Bi-directionally amplified extended reach 40Gb/s CWDM-TDM PON with burst-mode upstream transmission,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf., 2011, pp. 1–3.
  15. E. Wong, M. Muller, and M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Electron. Lett., vol. 49, no. 4, pp. 282–284, 2013.
  16. Z. Liet al., “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightw. Technol., vol. 32, no. 21, pp. 3389–3396, 2014.
  17. D. B. Payne and R. P. Davey, “The future of fibre access systems?” BT Technol. J., vol. 20, no. 4, pp. 104–114, 2002.
  18. F. Effenbergeret al., “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag., vol. 45, no. 3, pp. S17–S25, 2007.
  19. P. P. Iannone and K. C. Reichmann, “Optical access beyond 10 Gb/s PON,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–5.
  20. G.989.1: 40-Gigabit-capable passive optical networks (NG-PON2): General requirements, 2013.
  21. R. Bonket al., “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol., vol. 26, pp. 59–70, 2015.
  22. X. Zhaoet al., “Long-reach TWDM PON for fixed-line wireless convergence,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper W.3.D.2.
  23. N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in Proc. 9th Int. Conf. Transparent Opt. Netw., Rome, Italy, 2007, pp. 317–320.
  24. E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped traveling-wave fiber amplifier,” Opt. Lett., vol. 12, no. 11, pp. 888–890, 1987.
  25. G.984.5: Gigabit-capable passive optical networks (G-PON): Enhancement band, 2014.
  26. G.984.3: Gigabit-capable passive optical networks (G-PON): Transmission convergence layer specification, 2014.
  27. A. J. Tae and K. K. Hon, “All-optical gain-clamped erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 84–86, 2004.
  28. A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron., vol. 5, no. 5, pp. 1227–1236, 1999.
  29. Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett., vol. 33, no. 23, pp. 1945–1947, 1997.
  30. X. Zhao, C. F. Lam, and S. Fong, “Wavelength tunable laser,” U.S. Patent 14 293 133, 2, 2014. [Online]. Available: https://patents.google.com/patent/US9240672B1/en?inventor=xiangjun+zhao
  31. D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, 2014, Paper W1D.6.

2016 (2)

G.9807.1: 10-gigabit-capable symmetric passive optical network (XGS-PON), 2016.

K. Taguchiet al., “Field trial of long-reach and high-splitting wavelength-tunable TWDM-PON,” J. Lightw. Technol., vol. 34, no. 1, pp. 213–221, 2016.

2015 (1)

R. Bonket al., “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol., vol. 26, pp. 59–70, 2015.

2014 (4)

G.984.5: Gigabit-capable passive optical networks (G-PON): Enhancement band, 2014.

G.984.3: Gigabit-capable passive optical networks (G-PON): Transmission convergence layer specification, 2014.

Z. Liet al., “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightw. Technol., vol. 32, no. 21, pp. 3389–3396, 2014.

M. Ruffiniet al., “DISCUS: An end-to-end solution for ubiquitous broadband optical access,” IEEE Commun. Mag., vol. 52, no. 2, pp. S24–S32, 2014.

2013 (2)

E. Wong, M. Muller, and M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Electron. Lett., vol. 49, no. 4, pp. 282–284, 2013.

G.989.1: 40-Gigabit-capable passive optical networks (NG-PON2): General requirements, 2013.

2008 (1)

G.984.2 amendment 2: Gigabit-capable passive optical networks (G-PON): Physical media dependent (PMD) layer specification, New Appendix V, 2008.

2007 (2)

D. P. Shea and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Netw., vol. 21, no. 5, pp. 5–11, 2007.

F. Effenbergeret al., “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag., vol. 45, no. 3, pp. S17–S25, 2007.

2006 (1)

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightw. Technol., vol. 24, no. 7, pp. 2827–2834, 2006.

2004 (1)

A. J. Tae and K. K. Hon, “All-optical gain-clamped erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 84–86, 2004.

2002 (1)

D. B. Payne and R. P. Davey, “The future of fibre access systems?” BT Technol. J., vol. 20, no. 4, pp. 104–114, 2002.

2000 (1)

I. V. de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: An exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag., vol. 38, no. 2, pp. 74–82, 2000.

1999 (1)

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron., vol. 5, no. 5, pp. 1227–1236, 1999.

1997 (1)

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett., vol. 33, no. 23, pp. 1945–1947, 1997.

1990 (1)

A. M. Hillet al., “39.5 million-way WDM broadcast network employing two stages of erbium-doped fibre amplifiers,” Electron. Lett., vol. 26, no. 22, pp. 1882–1884, 1990.

1987 (1)

Amann, M. C.

E. Wong, M. Muller, and M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Electron. Lett., vol. 49, no. 4, pp. 282–284, 2013.

Antony, C.

C. Antonyet al., “Upstream burst-mode operation of a 100km reach, 16x512 split hybrid DWDM-TDM PON using tuneable external cavity lasers at the ONU-side,” in Proc. 35th Eur. Conf. Opt. Commun., 2009, pp. 1–2.

Becker, P. C.

Bonk, R.

R. Bonket al., “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol., vol. 26, pp. 59–70, 2015.

Chanclou, P.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in Proc. 9th Int. Conf. Transparent Opt. Netw., Rome, Italy, 2007, pp. 317–320.

Davey, R. P.

D. B. Payne and R. P. Davey, “The future of fibre access systems?” BT Technol. J., vol. 20, no. 4, pp. 104–114, 2002.

de Voorde, I. V.

I. V. de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: An exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag., vol. 38, no. 2, pp. 74–82, 2000.

Desurvire, E.

Effenberger, F.

F. Effenbergeret al., “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag., vol. 45, no. 3, pp. S17–S25, 2007.

Farah, B.

D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, 2014, Paper W1D.6.

Fong, S.

X. Zhao, C. F. Lam, and S. Fong, “Wavelength tunable laser,” U.S. Patent 14 293 133, 2, 2014. [Online]. Available: https://patents.google.com/patent/US9240672B1/en?inventor=xiangjun+zhao

Genay, N.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in Proc. 9th Int. Conf. Transparent Opt. Netw., Rome, Italy, 2007, pp. 317–320.

Goh, T.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron., vol. 5, no. 5, pp. 1227–1236, 1999.

Guillo, L.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in Proc. 9th Int. Conf. Transparent Opt. Netw., Rome, Italy, 2007, pp. 317–320.

Hanawa, F.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett., vol. 33, no. 23, pp. 1945–1947, 1997.

Hattori, K.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett., vol. 33, no. 23, pp. 1945–1947, 1997.

Hill, A. M.

A. M. Hillet al., “39.5 million-way WDM broadcast network employing two stages of erbium-doped fibre amplifiers,” Electron. Lett., vol. 26, no. 22, pp. 1882–1884, 1990.

Hon,

A. J. Tae and K. K. Hon, “All-optical gain-clamped erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 84–86, 2004.

Iannone, P. P.

P. P. Iannone and K. C. Reichmann, “Optical access beyond 10 Gb/s PON,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–5.

P. P. Iannoneet al., “Bi-directionally amplified extended reach 40Gb/s CWDM-TDM PON with burst-mode upstream transmission,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf., 2011, pp. 1–3.

Ikeda, H.

J. Sugawa and H. Ikeda, “Development of OLT using semiconductor optical amplifiers as booster and preamplifier for loss-budget extension in 10.3-Gb/s PON system,” in Proc. OFC/NFOEC, Los Angeles, CA, USA, 2012, Paper OTh4G.4.

Inoue, Y.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett., vol. 33, no. 23, pp. 1945–1947, 1997.

Kaneko, A.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron., vol. 5, no. 5, pp. 1227–1236, 1999.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett., vol. 33, no. 23, pp. 1945–1947, 1997.

Lam, C. F.

X. Zhao, C. F. Lam, and S. Fong, “Wavelength tunable laser,” U.S. Patent 14 293 133, 2, 2014. [Online]. Available: https://patents.google.com/patent/US9240672B1/en?inventor=xiangjun+zhao

Li, Z.

Z. Liet al., “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightw. Technol., vol. 32, no. 21, pp. 3389–3396, 2014.

Liu, Q.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in Proc. 9th Int. Conf. Transparent Opt. Netw., Rome, Italy, 2007, pp. 317–320.

Martin, C. M.

I. V. de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: An exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag., vol. 38, no. 2, pp. 74–82, 2000.

Mitchell, J. E.

D. P. Shea and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Netw., vol. 21, no. 5, pp. 5–11, 2007.

Muller, M.

E. Wong, M. Muller, and M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Electron. Lett., vol. 49, no. 4, pp. 282–284, 2013.

Ogawa, L.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron., vol. 5, no. 5, pp. 1227–1236, 1999.

Oiu, X. Z.

I. V. de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: An exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag., vol. 38, no. 2, pp. 74–82, 2000.

Payne, D. B.

D. B. Payne and R. P. Davey, “The future of fibre access systems?” BT Technol. J., vol. 20, no. 4, pp. 104–114, 2002.

Pfeiffer, T.

D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, 2014, Paper W1D.6.

Poehlmann, W.

D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, 2014, Paper W1D.6.

Reichmann, K. C.

P. P. Iannone and K. C. Reichmann, “Optical access beyond 10 Gb/s PON,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–5.

Ruffini, M.

M. Ruffiniet al., “DISCUS: An end-to-end solution for ubiquitous broadband optical access,” IEEE Commun. Mag., vol. 52, no. 2, pp. S24–S32, 2014.

Saliou, F.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in Proc. 9th Int. Conf. Transparent Opt. Netw., Rome, Italy, 2007, pp. 317–320.

Shea, D. P.

D. P. Shea and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Netw., vol. 21, no. 5, pp. 5–11, 2007.

Simpson, J. R.

Smolorz, S.

S. Smolorzet al., “Next generation access networks: PIEMAN and beyond,” in Proc. Int. Conf. Photon. Switching, 2009, pp. 1–4.

Soret, T.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in Proc. 9th Int. Conf. Transparent Opt. Netw., Rome, Italy, 2007, pp. 317–320.

Sugawa, J.

J. Sugawa and H. Ikeda, “Development of OLT using semiconductor optical amplifiers as booster and preamplifier for loss-budget extension in 10.3-Gb/s PON system,” in Proc. OFC/NFOEC, Los Angeles, CA, USA, 2012, Paper OTh4G.4.

Sumida, S.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett., vol. 33, no. 23, pp. 1945–1947, 1997.

Tae,

A. J. Tae and K. K. Hon, “All-optical gain-clamped erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 84–86, 2004.

Taguchi, K.

K. Taguchiet al., “Field trial of long-reach and high-splitting wavelength-tunable TWDM-PON,” J. Lightw. Technol., vol. 34, no. 1, pp. 213–221, 2016.

Takahashi, H.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett., vol. 33, no. 23, pp. 1945–1947, 1997.

Talli, G.

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightw. Technol., vol. 24, no. 7, pp. 2827–2834, 2006.

Tanaka, T.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron., vol. 5, no. 5, pp. 1227–1236, 1999.

Townsend, P. D.

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightw. Technol., vol. 24, no. 7, pp. 2827–2834, 2006.

van Veen, D.

D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, 2014, Paper W1D.6.

Vandewege, I.

I. V. de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: An exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag., vol. 38, no. 2, pp. 74–82, 2000.

Vetter, P.

D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, 2014, Paper W1D.6.

Wong, E.

E. Wong, M. Muller, and M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Electron. Lett., vol. 49, no. 4, pp. 282–284, 2013.

Yamada, H.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron., vol. 5, no. 5, pp. 1227–1236, 1999.

Zhao, X.

X. Zhao, C. F. Lam, and S. Fong, “Wavelength tunable laser,” U.S. Patent 14 293 133, 2, 2014. [Online]. Available: https://patents.google.com/patent/US9240672B1/en?inventor=xiangjun+zhao

X. Zhaoet al., “Long-reach TWDM PON for fixed-line wireless convergence,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper W.3.D.2.

BT Technol. J. (1)

D. B. Payne and R. P. Davey, “The future of fibre access systems?” BT Technol. J., vol. 20, no. 4, pp. 104–114, 2002.

Electron. Lett. (3)

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett., vol. 33, no. 23, pp. 1945–1947, 1997.

A. M. Hillet al., “39.5 million-way WDM broadcast network employing two stages of erbium-doped fibre amplifiers,” Electron. Lett., vol. 26, no. 22, pp. 1882–1884, 1990.

E. Wong, M. Muller, and M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Electron. Lett., vol. 49, no. 4, pp. 282–284, 2013.

G.9807.1: 10-gigabit-capable symmetric passive optical network (XGS-PON) (1)

G.9807.1: 10-gigabit-capable symmetric passive optical network (XGS-PON), 2016.

G.984.2 amendment 2: Gigabit-capable passive optical networks (G-PON): Physical media dependent (PMD) layer specification (1)

G.984.2 amendment 2: Gigabit-capable passive optical networks (G-PON): Physical media dependent (PMD) layer specification, New Appendix V, 2008.

G.984.3: Gigabit-capable passive optical networks (G-PON): Transmission convergence layer specification (1)

G.984.3: Gigabit-capable passive optical networks (G-PON): Transmission convergence layer specification, 2014.

G.984.5: Gigabit-capable passive optical networks (G-PON): Enhancement band (1)

G.984.5: Gigabit-capable passive optical networks (G-PON): Enhancement band, 2014.

G.989.1: 40-Gigabit-capable passive optical networks (NG-PON2): General requirements (1)

G.989.1: 40-Gigabit-capable passive optical networks (NG-PON2): General requirements, 2013.

IEEE Commun. Mag. (3)

M. Ruffiniet al., “DISCUS: An end-to-end solution for ubiquitous broadband optical access,” IEEE Commun. Mag., vol. 52, no. 2, pp. S24–S32, 2014.

I. V. de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: An exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag., vol. 38, no. 2, pp. 74–82, 2000.

F. Effenbergeret al., “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag., vol. 45, no. 3, pp. S17–S25, 2007.

IEEE J. Sel. Top. Quantum Electron. (1)

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron., vol. 5, no. 5, pp. 1227–1236, 1999.

IEEE Netw. (1)

D. P. Shea and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Netw., vol. 21, no. 5, pp. 5–11, 2007.

IEEE Photon. Technol. Lett. (1)

A. J. Tae and K. K. Hon, “All-optical gain-clamped erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 84–86, 2004.

J. Lightw. Technol. (3)

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightw. Technol., vol. 24, no. 7, pp. 2827–2834, 2006.

K. Taguchiet al., “Field trial of long-reach and high-splitting wavelength-tunable TWDM-PON,” J. Lightw. Technol., vol. 34, no. 1, pp. 213–221, 2016.

Z. Liet al., “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightw. Technol., vol. 32, no. 21, pp. 3389–3396, 2014.

Opt. Fiber Technol. (1)

R. Bonket al., “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol., vol. 26, pp. 59–70, 2015.

Opt. Lett. (1)

Other (11)

X. Zhao, C. F. Lam, and S. Fong, “Wavelength tunable laser,” U.S. Patent 14 293 133, 2, 2014. [Online]. Available: https://patents.google.com/patent/US9240672B1/en?inventor=xiangjun+zhao

D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, 2014, Paper W1D.6.

P. P. Iannone and K. C. Reichmann, “Optical access beyond 10 Gb/s PON,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–5.

X. Zhaoet al., “Long-reach TWDM PON for fixed-line wireless convergence,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper W.3.D.2.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in Proc. 9th Int. Conf. Transparent Opt. Netw., Rome, Italy, 2007, pp. 317–320.

C. Antonyet al., “Upstream burst-mode operation of a 100km reach, 16x512 split hybrid DWDM-TDM PON using tuneable external cavity lasers at the ONU-side,” in Proc. 35th Eur. Conf. Opt. Commun., 2009, pp. 1–2.

S. Smolorzet al., “Next generation access networks: PIEMAN and beyond,” in Proc. Int. Conf. Photon. Switching, 2009, pp. 1–4.

P. P. Iannoneet al., “Bi-directionally amplified extended reach 40Gb/s CWDM-TDM PON with burst-mode upstream transmission,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf., 2011, pp. 1–3.

IEEE Standard for Information Technology–-Local and Metropolitan Area Networks–-Specific Requirements–-Part 3: CSMA/CD Access Method and Physical Layer Specifications Amendment 1: Physical Layer Specifications and Management Parameters for 10 Gb/s Passive Optical Networks, IEEE Std. 802.3av, 2009.

IEEE Standard for Ethernet - Amendment 1: Physical Layer Specifications and Management Parameters for Extended Ethernet Passive Optical Networks, IEEE Std. 802.3bk, 2013.

J. Sugawa and H. Ikeda, “Development of OLT using semiconductor optical amplifiers as booster and preamplifier for loss-budget extension in 10.3-Gb/s PON system,” in Proc. OFC/NFOEC, Los Angeles, CA, USA, 2012, Paper OTh4G.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.