Abstract

Imaging through optical fibres has recently emerged as a promising method of micro-scale optical imaging within a hair-thin form factor. This has significant applications in endoscopy and may enable minimally invasive imaging deep within live tissue for improved diagnosis of disease. Multi-mode fibres (MMF) are the most common choice because of their high resolution but multicore fibres (MCF) offer a number of advantages such as widespread clinical use, ability to form approximate images without correction and an inherently sparse transmission matrix (TM) enabling simple and fast characterisation. We present a novel experimental investigation into properties of MCF important for imaging, specifically: a new method to upsample and downsample measured TMs with minimal information loss, the first experimental measurement of MCF spatial eigenmodes, a novel statistical treatment of behaviour under bending based on a wireless fading model, and an experimental observation of TM drift due to self-heating effects and discussion of how to compensate this. We next present practical techniques for imaging through MCFs, including alignment, how to parallelise TM characterisation measurements to improve speed and how to use non-interferometric phase and polarisation recovery for improved stability. Finally, we present two recent applications of MCF imaging: polarimetric imaging using a robust Bayesian inference approach, and entropic imaging for imaging early-stage tumours.

© 2019 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ohayonet al., “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express, vol. 9, no. 4, 2018, Art. no. .
  2. S. Turtaevet al., “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light. Sci. Appl., vol. 7, no. 1, 2018, Art. no. .
  3. S. A. Vasquez-Lopezet al., “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl., vol. 7, no. 1, 2018, Art. no. .
  4. D. Loterieet al., “Digital confocal microscopy through a multimode fiber,” Opt. Express, vol. 23, no. 18, pp. 23845–23858, 2015.
  5. E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express, vol. 23, no. 25, 2015, Art. no. .
  6. D. B. Conkeyet al., “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt., vol. 21, no. 4, 2016. Art. no. .
  7. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun., vol. 3, 2012. Art. no. .
  8. G. S. D. Gordonet al., “Quantitative phase and polarisation endoscopy applied to detection of early oesophageal tumourigenesis,” 2018, arXiv:1811.03977v1.
  9. M. Gataricet al., “Reconstruction of optical vector-fields with applications in endoscopic imaging,” IEEE Trans. Med. Imag., vol. 38, no. 4, pp. 955–967,  2019.
  10. A. Poratet al., “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express, vol. 24, no. 15, 2016, Art. no. .
  11. P. Keaheyet al., “Differential structured illumination microendoscopy for in vivo imaging of molecular contrast agents,” Proc. Nat. Acad. Sci. USA, vol. 113, no. 39, pp. 10 769–10773, 2016.
  12. S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Modern Phys., vol. 89, no. 1, 2017, Art. no. .
  13. I. Papadopouloset al., “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express, vol. 20, no. 10, pp. 10 583–10 590, 2012.
  14. Y. Choiet al., “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett., vol. 109, no. 20, 2012, Art. no. .
  15. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: Complex transformation analysis and applications in biophotonics,” Opt. Express, vol. 19, no. 20, pp. 18871–18884, 2011.
  16. R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express, vol. 19, no. 1, pp. 247–254,  2011.
  17. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express, vol. 15, no. 5, pp. 2151–2165, 2007.
  18. E. R. Andresenet al., “Ultrathin endoscopes based on multicore fibers and adaptive optics: A status review and perspectives,” J. Biomed. Opt., vol. 21, no. 12, 2016, Art. no. .
  19. Z. A. Steelmanet al., “Comparison of imaging fiber bundles for coherence-domain imaging,” Appl. Opt., vol. 57, no. 6, pp. 1455–1462, 2018.
  20. A. Orthet al., “Extended depth of field imaging through multicore optical fibers,” Opt. Express, vol. 26, no. 5, pp. 6407–6419, 2018.
  21. S. Heyvaertet al., “Numerical characterization of an ultra-high NA coherent fiber bundle part I: Modal analysis,” Opt. Express, vol. 21, no. 19, pp. 21991–22011,  2013.
  22. D. J. Waterhouseet al., “Design and validation of a near-infrared fluorescence endoscope for detection of early esophageal malignancy,” J. Biomed. Opt., vol. 21, no. 8, 2016, Art. no. .
  23. A. J. Thompsonet al., “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett., vol. 36, no. 9, pp. 1707–1709, 2011.
  24. J. M. Stone, F. Yu, and J. C. Knight, “Highly birefringent 98-core fiber,” Opt. Lett., vol. 39, no. 15, pp. 4568–4570, 2014.
  25. V. Tsvirkunet al., “Widefield lensless endoscopy with a multicore fiber,” Opt. Lett., vol. 41, no. 20, pp. 4771–4774, 2016.
  26. J. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Degenerate mode-group division multiplexing,” J. Lightw. Technol., vol. 30, no. 24, pp. 3946–3952, Dec. 2012.
  27. D. Preeceet al., “Independent polarisation control of multiple optical traps,” Opt. Express, vol. 16, no. 20, pp. 15897–15902, 2008.
  28. S. L. Jacqueset al., “Optical properties of biological tissues: A review,” Phys. Med. Biol., vol. 58, no. 11, pp. R37–R61, 2013.
  29. S. M. Popoffet al., “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett., vol. 104, no. 10, 2010, Art. no. .
  30. P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Express, vol. 19, no. 17, pp. 16680–16696, 2011.
  31. J. Carpenter, B. Eggleton, and J. Schröder, “110 × 110 optical mode transfer matrix inversion,” Opt. Express, vol. 22, no. 1, pp. 96–101, 2014.
  32. C. Yoonet al., “Experimental measurement of the number of modes for a multimode optical fiber,” Opt. Lett., vol. 37, no. 21, pp. 4558–4560, 2012.
  33. H. Yuet al., “Measuring large optical transmission matrices of disordered media,” Phys. Rev. Lett., vol. 111, no. 15, 2013, Art. no. .
  34. J. Carpenter and T. D. Wilkinson, “All optical mode-multiplexing using holography and multimode fiber couplers,” J. Lightw. Technol., vol. 30, no. 12, pp. 1978–1984, Jun. 2012.
  35. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photon., vol. 9, no. 8, pp. 529–535, 2015.
  36. A. Levi and H. Stark, “Image restoration by the method of generalized projections with application to restoration from magnitude,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 1984, pp. 88–91.
  37. M. Kimet al., “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photon., vol. 6, no. 9, pp. 581–585, 2012.
  38. G. Gordonet al., “Feasibility demonstration of a mode-division multiplexed MIMO-enabled radio-over-fiber distributed antenna system,” J. Lightw. Technol., vol. 32, no. 20, pp. 3521–3528, Oct. 2014.
  39. D. E. Boonzajer Flaeset al., “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett., vol. 120, no. 23, 2018, Art. no. .
  40. N. Stasioet al., “Light control in a multicore fiber using the memory effect,” Opt. Express, vol. 23, no. 23, pp. 30532–30544, 2015.
  41. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express, vol. 16, no. 26, pp. 21 598–21607, 2008.
  42. J.-H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Appl. Phys. B, vol. 106, no. 3, pp. 635–643, 2012.
  43. D. Kimet al., “Toward a miniature endomicroscope: Pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett., vol. 39, no. 7, pp. 1921–1924, 2014.
  44. D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.
  45. D. Loterieet al., “Complex pattern projection through a multimode fiber,” in Proc. Adaptive Opt. Wavefront Control Biol. Syst., T. G. Bifano, J. Kubby, and S. Gigan, Eds., 2015, vol. 9335, Paper 93350I.
  46. K. J. Mitchellet al., “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express, vol. 24, no. 25, pp. 29270–29283, 2016.
  47. J. A. Carpenter, B. J. Eggleton, and J. Schroeder, “Maximally efficient imaging through multimode fiber,” in Proc. Conf. Lasers Electro-Opt., 2014, Paper STh1H.3.
  48. C. Falldorfet al., “Phase retrieval by means of a spatial light modulator in the Fourier domain of an imaging system,” Appl. Opt., vol. 49, no. 10, pp. 1826–30, 2010.
  49. L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun., vol. 199, no. Nov., pp. 65–75, 2001.
  50. G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: An in vivo study,” J. Diabetes Sci. Technol., vol. 5, no. 2, pp. 380–387, 2011.
  51. S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: Emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed Opt., vol. 20, no. 6, 2015, Art. no. .
  52. R. Simon, “The connection between Mueller and Jones matrices of polarization optics,” Opt. Commun., vol. 42, no. 5, pp. 293–297, 1982.
  53. Y. Kimet al., “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 3, 2016, Art. no. .
  54. C. Yoonet al., “Removal of back-reflection noise at ultrathin imaging probes by the single-core illumination and wide-field detection,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017.
  55. Stan Development Team, “CmdStan: The command-line interface to Stan,” 2016.
  56. D. Kasaragodet al., “Bayesian maximum likelihood estimator of phase retardation for quantitative polarization-sensitive optical coherence tomography,” Opt. Express, vol. 22, no. 13, pp. 16472–16492,  2014.
  57. S. Manhaset al., “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton., vol. 2, no. 10, pp. 581–587, 2009.
  58. K. Yogesanet al., “Entropy-based texture analysis of chromatin structure in advanced prostate cancer,” Cytometry, vol. 24, no. 3, pp. 268–276, 1996.
  59. P. F. F. de Arrudaet al., “Quantification of fractal dimension and Shannon's entropy in histological diagnosis of prostate cancer,” BMC Clin. Pathology, vol. 13, 2013, Art. no. .
  60. B. Ganeshanet al., “Hepatic enhancement in colorectal cancer. Texture analysis correlates with hepatic hemodynamics and patient survival,” Acad. Radiol., vol. 14, no. 12, pp. 1520–1530, 2007.
  61. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2006.
  62. R. Kuschmierzet al., “Self-calibration of lensless holographic endoscope using programmable guide stars,” Opt. Lett., vol. 43, no. 12, pp. 2997–3000, 2018.
  63. S. Farahiet al., “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express, vol. 21, no. 19, pp. 22504–22514, 2013.
  64. G. S. D. Gordonet al., “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” 2019, arXiv:1904.02644v2.

2019 (2)

M. Gataricet al., “Reconstruction of optical vector-fields with applications in endoscopic imaging,” IEEE Trans. Med. Imag., vol. 38, no. 4, pp. 955–967,  2019.

G. S. D. Gordonet al., “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” 2019, arXiv:1904.02644v2.

2018 (8)

R. Kuschmierzet al., “Self-calibration of lensless holographic endoscope using programmable guide stars,” Opt. Lett., vol. 43, no. 12, pp. 2997–3000, 2018.

S. Ohayonet al., “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express, vol. 9, no. 4, 2018, Art. no. .

S. Turtaevet al., “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light. Sci. Appl., vol. 7, no. 1, 2018, Art. no. .

S. A. Vasquez-Lopezet al., “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl., vol. 7, no. 1, 2018, Art. no. .

G. S. D. Gordonet al., “Quantitative phase and polarisation endoscopy applied to detection of early oesophageal tumourigenesis,” 2018, arXiv:1811.03977v1.

Z. A. Steelmanet al., “Comparison of imaging fiber bundles for coherence-domain imaging,” Appl. Opt., vol. 57, no. 6, pp. 1455–1462, 2018.

A. Orthet al., “Extended depth of field imaging through multicore optical fibers,” Opt. Express, vol. 26, no. 5, pp. 6407–6419, 2018.

D. E. Boonzajer Flaeset al., “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett., vol. 120, no. 23, 2018, Art. no. .

2017 (2)

S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Modern Phys., vol. 89, no. 1, 2017, Art. no. .

C. Yoonet al., “Removal of back-reflection noise at ultrathin imaging probes by the single-core illumination and wide-field detection,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017.

2016 (8)

Stan Development Team, “CmdStan: The command-line interface to Stan,” 2016.

K. J. Mitchellet al., “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express, vol. 24, no. 25, pp. 29270–29283, 2016.

Y. Kimet al., “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 3, 2016, Art. no. .

E. R. Andresenet al., “Ultrathin endoscopes based on multicore fibers and adaptive optics: A status review and perspectives,” J. Biomed. Opt., vol. 21, no. 12, 2016, Art. no. .

A. Poratet al., “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express, vol. 24, no. 15, 2016, Art. no. .

D. B. Conkeyet al., “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt., vol. 21, no. 4, 2016. Art. no. .

D. J. Waterhouseet al., “Design and validation of a near-infrared fluorescence endoscope for detection of early esophageal malignancy,” J. Biomed. Opt., vol. 21, no. 8, 2016, Art. no. .

V. Tsvirkunet al., “Widefield lensless endoscopy with a multicore fiber,” Opt. Lett., vol. 41, no. 20, pp. 4771–4774, 2016.

2015 (5)

N. Stasioet al., “Light control in a multicore fiber using the memory effect,” Opt. Express, vol. 23, no. 23, pp. 30532–30544, 2015.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photon., vol. 9, no. 8, pp. 529–535, 2015.

D. Loterieet al., “Digital confocal microscopy through a multimode fiber,” Opt. Express, vol. 23, no. 18, pp. 23845–23858, 2015.

E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express, vol. 23, no. 25, 2015, Art. no. .

S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: Emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed Opt., vol. 20, no. 6, 2015, Art. no. .

2014 (5)

2013 (5)

S. L. Jacqueset al., “Optical properties of biological tissues: A review,” Phys. Med. Biol., vol. 58, no. 11, pp. R37–R61, 2013.

H. Yuet al., “Measuring large optical transmission matrices of disordered media,” Phys. Rev. Lett., vol. 111, no. 15, 2013, Art. no. .

S. Heyvaertet al., “Numerical characterization of an ultra-high NA coherent fiber bundle part I: Modal analysis,” Opt. Express, vol. 21, no. 19, pp. 21991–22011,  2013.

S. Farahiet al., “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express, vol. 21, no. 19, pp. 22504–22514, 2013.

P. F. F. de Arrudaet al., “Quantification of fractal dimension and Shannon's entropy in histological diagnosis of prostate cancer,” BMC Clin. Pathology, vol. 13, 2013, Art. no. .

2012 (8)

J.-H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Appl. Phys. B, vol. 106, no. 3, pp. 635–643, 2012.

I. Papadopouloset al., “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express, vol. 20, no. 10, pp. 10 583–10 590, 2012.

Y. Choiet al., “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett., vol. 109, no. 20, 2012, Art. no. .

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun., vol. 3, 2012. Art. no. .

J. Carpenter and T. D. Wilkinson, “All optical mode-multiplexing using holography and multimode fiber couplers,” J. Lightw. Technol., vol. 30, no. 12, pp. 1978–1984, Jun. 2012.

C. Yoonet al., “Experimental measurement of the number of modes for a multimode optical fiber,” Opt. Lett., vol. 37, no. 21, pp. 4558–4560, 2012.

M. Kimet al., “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photon., vol. 6, no. 9, pp. 581–585, 2012.

J. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Degenerate mode-group division multiplexing,” J. Lightw. Technol., vol. 30, no. 24, pp. 3946–3952, Dec. 2012.

2011 (5)

2010 (2)

C. Falldorfet al., “Phase retrieval by means of a spatial light modulator in the Fourier domain of an imaging system,” Appl. Opt., vol. 49, no. 10, pp. 1826–30, 2010.

S. M. Popoffet al., “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett., vol. 104, no. 10, 2010, Art. no. .

2009 (1)

S. Manhaset al., “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton., vol. 2, no. 10, pp. 581–587, 2009.

2008 (2)

D. Preeceet al., “Independent polarisation control of multiple optical traps,” Opt. Express, vol. 16, no. 20, pp. 15897–15902, 2008.

X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express, vol. 16, no. 26, pp. 21 598–21607, 2008.

2007 (2)

K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express, vol. 15, no. 5, pp. 2151–2165, 2007.

B. Ganeshanet al., “Hepatic enhancement in colorectal cancer. Texture analysis correlates with hepatic hemodynamics and patient survival,” Acad. Radiol., vol. 14, no. 12, pp. 1520–1530, 2007.

2001 (1)

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun., vol. 199, no. Nov., pp. 65–75, 2001.

1996 (1)

K. Yogesanet al., “Entropy-based texture analysis of chromatin structure in advanced prostate cancer,” Cytometry, vol. 24, no. 3, pp. 268–276, 1996.

1982 (1)

R. Simon, “The connection between Mueller and Jones matrices of polarization optics,” Opt. Commun., vol. 42, no. 5, pp. 293–297, 1982.

Alali, S.

S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: Emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed Opt., vol. 20, no. 6, 2015, Art. no. .

Allen, L.

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun., vol. 199, no. Nov., pp. 65–75, 2001.

Altrogge, D. M.

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: An in vivo study,” J. Diabetes Sci. Technol., vol. 5, no. 2, pp. 380–387, 2011.

Andresen, E. R.

E. R. Andresenet al., “Ultrathin endoscopes based on multicore fibers and adaptive optics: A status review and perspectives,” J. Biomed. Opt., vol. 21, no. 12, 2016, Art. no. .

Bianchi, S.

Cameron, B. D.

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: An in vivo study,” J. Diabetes Sci. Technol., vol. 5, no. 2, pp. 380–387, 2011.

Carpenter, J.

J. Carpenter, B. Eggleton, and J. Schröder, “110 × 110 optical mode transfer matrix inversion,” Opt. Express, vol. 22, no. 1, pp. 96–101, 2014.

J. Carpenter and T. D. Wilkinson, “All optical mode-multiplexing using holography and multimode fiber couplers,” J. Lightw. Technol., vol. 30, no. 12, pp. 1978–1984, Jun. 2012.

J. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Degenerate mode-group division multiplexing,” J. Lightw. Technol., vol. 30, no. 24, pp. 3946–3952, Dec. 2012.

Carpenter, J. A.

J. A. Carpenter, B. J. Eggleton, and J. Schroeder, “Maximally efficient imaging through multimode fiber,” in Proc. Conf. Lasers Electro-Opt., 2014, Paper STh1H.3.

Chen, X.

X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express, vol. 16, no. 26, pp. 21 598–21607, 2008.

Choi, Y.

Y. Choiet al., “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett., vol. 109, no. 20, 2012, Art. no. .

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photon., vol. 9, no. 8, pp. 529–535, 2015.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun., vol. 3, 2012. Art. no. .

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: Complex transformation analysis and applications in biophotonics,” Opt. Express, vol. 19, no. 20, pp. 18871–18884, 2011.

Conkey, D. B.

D. B. Conkeyet al., “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt., vol. 21, no. 4, 2016. Art. no. .

de Arruda, P. F. F.

P. F. F. de Arrudaet al., “Quantification of fractal dimension and Shannon's entropy in histological diagnosis of prostate cancer,” BMC Clin. Pathology, vol. 13, 2013, Art. no. .

Dholakia, K.

Di Leonardo, R.

Eggleton, B.

Eggleton, B. J.

J. A. Carpenter, B. J. Eggleton, and J. Schroeder, “Maximally efficient imaging through multimode fiber,” in Proc. Conf. Lasers Electro-Opt., 2014, Paper STh1H.3.

Falldorf, C.

Farahi, S.

Flaes, D. E. Boonzajer

D. E. Boonzajer Flaeset al., “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett., vol. 120, no. 23, 2018, Art. no. .

Foschini, G. J.

Ganeshan, B.

B. Ganeshanet al., “Hepatic enhancement in colorectal cancer. Texture analysis correlates with hepatic hemodynamics and patient survival,” Acad. Radiol., vol. 14, no. 12, pp. 1520–1530, 2007.

Gataric, M.

M. Gataricet al., “Reconstruction of optical vector-fields with applications in endoscopic imaging,” IEEE Trans. Med. Imag., vol. 38, no. 4, pp. 955–967,  2019.

Gigan, S.

S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Modern Phys., vol. 89, no. 1, 2017, Art. no. .

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2006.

Gordon, G.

G. Gordonet al., “Feasibility demonstration of a mode-division multiplexed MIMO-enabled radio-over-fiber distributed antenna system,” J. Lightw. Technol., vol. 32, no. 20, pp. 3521–3528, Oct. 2014.

Gordon, G. S. D.

G. S. D. Gordonet al., “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” 2019, arXiv:1904.02644v2.

G. S. D. Gordonet al., “Quantitative phase and polarisation endoscopy applied to detection of early oesophageal tumourigenesis,” 2018, arXiv:1811.03977v1.

Han, J.-H.

J.-H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Appl. Phys. B, vol. 106, no. 3, pp. 635–643, 2012.

Heyvaert, S.

Jacques, S. L.

S. L. Jacqueset al., “Optical properties of biological tissues: A review,” Phys. Med. Biol., vol. 58, no. 11, pp. R37–R61, 2013.

Kang, J. U.

J.-H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Appl. Phys. B, vol. 106, no. 3, pp. 635–643, 2012.

Kasaragod, D.

Keahey, P.

P. Keaheyet al., “Differential structured illumination microendoscopy for in vivo imaging of molecular contrast agents,” Proc. Nat. Acad. Sci. USA, vol. 113, no. 39, pp. 10 769–10773, 2016.

Kim, D.

Kim, M.

M. Kimet al., “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photon., vol. 6, no. 9, pp. 581–585, 2012.

Kim, Y.

Y. Kimet al., “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 3, 2016, Art. no. .

Knight, J. C.

Kuschmierz, R.

Levi, A.

A. Levi and H. Stark, “Image restoration by the method of generalized projections with application to restoration from magnitude,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 1984, pp. 88–91.

Loterie, D.

D. Loterieet al., “Digital confocal microscopy through a multimode fiber,” Opt. Express, vol. 23, no. 18, pp. 23845–23858, 2015.

D. Loterieet al., “Complex pattern projection through a multimode fiber,” in Proc. Adaptive Opt. Wavefront Control Biol. Syst., T. G. Bifano, J. Kubby, and S. Gigan, Eds., 2015, vol. 9335, Paper 93350I.

Manhas, S.

S. Manhaset al., “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton., vol. 2, no. 10, pp. 581–587, 2009.

Mitchell, K. J.

K. J. Mitchellet al., “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express, vol. 24, no. 25, pp. 29270–29283, 2016.

Morales-Delgado, E. E.

E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express, vol. 23, no. 25, 2015, Art. no. .

Moser, C.

E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express, vol. 23, no. 25, 2015, Art. no. .

Ohayon, S.

S. Ohayonet al., “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express, vol. 9, no. 4, 2018, Art. no. .

Orth, A.

Oxley, M.

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun., vol. 199, no. Nov., pp. 65–75, 2001.

Papadopoulos, I.

I. Papadopouloset al., “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express, vol. 20, no. 10, pp. 10 583–10 590, 2012.

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photon., vol. 9, no. 8, pp. 529–535, 2015.

Popoff, S. M.

S. M. Popoffet al., “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett., vol. 104, no. 10, 2010, Art. no. .

Porat, A.

A. Poratet al., “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express, vol. 24, no. 15, 2016, Art. no. .

Preece, D.

Psaltis, D.

E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express, vol. 23, no. 25, 2015, Art. no. .

Purvinis, G.

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: An in vivo study,” J. Diabetes Sci. Technol., vol. 5, no. 2, pp. 380–387, 2011.

Reichenbach, K. L.

X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express, vol. 16, no. 26, pp. 21 598–21607, 2008.

K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express, vol. 15, no. 5, pp. 2151–2165, 2007.

Rotter, S.

S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Modern Phys., vol. 89, no. 1, 2017, Art. no. .

Schröder, J.

Schroeder, J.

J. A. Carpenter, B. J. Eggleton, and J. Schroeder, “Maximally efficient imaging through multimode fiber,” in Proc. Conf. Lasers Electro-Opt., 2014, Paper STh1H.3.

Simon, R.

R. Simon, “The connection between Mueller and Jones matrices of polarization optics,” Opt. Commun., vol. 42, no. 5, pp. 293–297, 1982.

Stark, H.

A. Levi and H. Stark, “Image restoration by the method of generalized projections with application to restoration from magnitude,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 1984, pp. 88–91.

Stasio, N.

Steelman, Z. A.

Stone, J. M.

Thompson, A. J.

Thomsen, B. C.

J. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Degenerate mode-group division multiplexing,” J. Lightw. Technol., vol. 30, no. 24, pp. 3946–3952, Dec. 2012.

Tse, D.

D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.

Tsvirkun, V.

Turtaev, S.

S. Turtaevet al., “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light. Sci. Appl., vol. 7, no. 1, 2018, Art. no. .

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photon., vol. 9, no. 8, pp. 529–535, 2015.

Vasquez-Lopez, S. A.

S. A. Vasquez-Lopezet al., “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl., vol. 7, no. 1, 2018, Art. no. .

Viswanath, P.

D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.

Vitkin, A.

S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: Emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed Opt., vol. 20, no. 6, 2015, Art. no. .

Waterhouse, D. J.

D. J. Waterhouseet al., “Design and validation of a near-infrared fluorescence endoscope for detection of early esophageal malignancy,” J. Biomed. Opt., vol. 21, no. 8, 2016, Art. no. .

Wilkinson, T. D.

J. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Degenerate mode-group division multiplexing,” J. Lightw. Technol., vol. 30, no. 24, pp. 3946–3952, Dec. 2012.

J. Carpenter and T. D. Wilkinson, “All optical mode-multiplexing using holography and multimode fiber couplers,” J. Lightw. Technol., vol. 30, no. 12, pp. 1978–1984, Jun. 2012.

Winzer, P. J.

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2006.

Xu, C.

X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express, vol. 16, no. 26, pp. 21 598–21607, 2008.

K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express, vol. 15, no. 5, pp. 2151–2165, 2007.

Yogesan, K.

K. Yogesanet al., “Entropy-based texture analysis of chromatin structure in advanced prostate cancer,” Cytometry, vol. 24, no. 3, pp. 268–276, 1996.

Yoon, C.

C. Yoonet al., “Removal of back-reflection noise at ultrathin imaging probes by the single-core illumination and wide-field detection,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017.

C. Yoonet al., “Experimental measurement of the number of modes for a multimode optical fiber,” Opt. Lett., vol. 37, no. 21, pp. 4558–4560, 2012.

Yu, F.

Yu, H.

H. Yuet al., “Measuring large optical transmission matrices of disordered media,” Phys. Rev. Lett., vol. 111, no. 15, 2013, Art. no. .

Acad. Radiol. (1)

B. Ganeshanet al., “Hepatic enhancement in colorectal cancer. Texture analysis correlates with hepatic hemodynamics and patient survival,” Acad. Radiol., vol. 14, no. 12, pp. 1520–1530, 2007.

Appl. Opt. (2)

Appl. Phys. B (1)

J.-H. Han and J. U. Kang, “Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography,” Appl. Phys. B, vol. 106, no. 3, pp. 635–643, 2012.

arXiv:1811.03977v1 (1)

G. S. D. Gordonet al., “Quantitative phase and polarisation endoscopy applied to detection of early oesophageal tumourigenesis,” 2018, arXiv:1811.03977v1.

Biomed. Opt. Express (1)

S. Ohayonet al., “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express, vol. 9, no. 4, 2018, Art. no. .

BMC Clin. Pathology (1)

P. F. F. de Arrudaet al., “Quantification of fractal dimension and Shannon's entropy in histological diagnosis of prostate cancer,” BMC Clin. Pathology, vol. 13, 2013, Art. no. .

Cytometry (1)

K. Yogesanet al., “Entropy-based texture analysis of chromatin structure in advanced prostate cancer,” Cytometry, vol. 24, no. 3, pp. 268–276, 1996.

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Kimet al., “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 3, 2016, Art. no. .

IEEE Trans. Med. Imag. (1)

M. Gataricet al., “Reconstruction of optical vector-fields with applications in endoscopic imaging,” IEEE Trans. Med. Imag., vol. 38, no. 4, pp. 955–967,  2019.

J. Biomed Opt. (1)

S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: Emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed Opt., vol. 20, no. 6, 2015, Art. no. .

J. Biomed. Opt. (3)

D. B. Conkeyet al., “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt., vol. 21, no. 4, 2016. Art. no. .

E. R. Andresenet al., “Ultrathin endoscopes based on multicore fibers and adaptive optics: A status review and perspectives,” J. Biomed. Opt., vol. 21, no. 12, 2016, Art. no. .

D. J. Waterhouseet al., “Design and validation of a near-infrared fluorescence endoscope for detection of early esophageal malignancy,” J. Biomed. Opt., vol. 21, no. 8, 2016, Art. no. .

J. Biophoton. (1)

S. Manhaset al., “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton., vol. 2, no. 10, pp. 581–587, 2009.

J. Diabetes Sci. Technol. (1)

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: An in vivo study,” J. Diabetes Sci. Technol., vol. 5, no. 2, pp. 380–387, 2011.

J. Lightw. Technol. (3)

G. Gordonet al., “Feasibility demonstration of a mode-division multiplexed MIMO-enabled radio-over-fiber distributed antenna system,” J. Lightw. Technol., vol. 32, no. 20, pp. 3521–3528, Oct. 2014.

J. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Degenerate mode-group division multiplexing,” J. Lightw. Technol., vol. 30, no. 24, pp. 3946–3952, Dec. 2012.

J. Carpenter and T. D. Wilkinson, “All optical mode-multiplexing using holography and multimode fiber couplers,” J. Lightw. Technol., vol. 30, no. 12, pp. 1978–1984, Jun. 2012.

Light Sci. Appl. (1)

S. A. Vasquez-Lopezet al., “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl., vol. 7, no. 1, 2018, Art. no. .

Light. Sci. Appl. (1)

S. Turtaevet al., “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light. Sci. Appl., vol. 7, no. 1, 2018, Art. no. .

Nat. Commun. (1)

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun., vol. 3, 2012. Art. no. .

Nat. Photon. (2)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photon., vol. 9, no. 8, pp. 529–535, 2015.

M. Kimet al., “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photon., vol. 6, no. 9, pp. 581–585, 2012.

Opt. Commun. (2)

R. Simon, “The connection between Mueller and Jones matrices of polarization optics,” Opt. Commun., vol. 42, no. 5, pp. 293–297, 1982.

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun., vol. 199, no. Nov., pp. 65–75, 2001.

Opt. Express (17)

K. J. Mitchellet al., “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express, vol. 24, no. 25, pp. 29270–29283, 2016.

N. Stasioet al., “Light control in a multicore fiber using the memory effect,” Opt. Express, vol. 23, no. 23, pp. 30532–30544, 2015.

X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express, vol. 16, no. 26, pp. 21 598–21607, 2008.

D. Kasaragodet al., “Bayesian maximum likelihood estimator of phase retardation for quantitative polarization-sensitive optical coherence tomography,” Opt. Express, vol. 22, no. 13, pp. 16472–16492,  2014.

S. Farahiet al., “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express, vol. 21, no. 19, pp. 22504–22514, 2013.

A. Orthet al., “Extended depth of field imaging through multicore optical fibers,” Opt. Express, vol. 26, no. 5, pp. 6407–6419, 2018.

S. Heyvaertet al., “Numerical characterization of an ultra-high NA coherent fiber bundle part I: Modal analysis,” Opt. Express, vol. 21, no. 19, pp. 21991–22011,  2013.

P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Express, vol. 19, no. 17, pp. 16680–16696, 2011.

J. Carpenter, B. Eggleton, and J. Schröder, “110 × 110 optical mode transfer matrix inversion,” Opt. Express, vol. 22, no. 1, pp. 96–101, 2014.

D. Preeceet al., “Independent polarisation control of multiple optical traps,” Opt. Express, vol. 16, no. 20, pp. 15897–15902, 2008.

I. Papadopouloset al., “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express, vol. 20, no. 10, pp. 10 583–10 590, 2012.

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: Complex transformation analysis and applications in biophotonics,” Opt. Express, vol. 19, no. 20, pp. 18871–18884, 2011.

R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express, vol. 19, no. 1, pp. 247–254,  2011.

K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express, vol. 15, no. 5, pp. 2151–2165, 2007.

D. Loterieet al., “Digital confocal microscopy through a multimode fiber,” Opt. Express, vol. 23, no. 18, pp. 23845–23858, 2015.

E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express, vol. 23, no. 25, 2015, Art. no. .

A. Poratet al., “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express, vol. 24, no. 15, 2016, Art. no. .

Opt. Lett. (6)

Phys. Med. Biol. (1)

S. L. Jacqueset al., “Optical properties of biological tissues: A review,” Phys. Med. Biol., vol. 58, no. 11, pp. R37–R61, 2013.

Phys. Rev. Lett. (4)

S. M. Popoffet al., “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett., vol. 104, no. 10, 2010, Art. no. .

H. Yuet al., “Measuring large optical transmission matrices of disordered media,” Phys. Rev. Lett., vol. 111, no. 15, 2013, Art. no. .

Y. Choiet al., “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett., vol. 109, no. 20, 2012, Art. no. .

D. E. Boonzajer Flaeset al., “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett., vol. 120, no. 23, 2018, Art. no. .

Rev. Modern Phys. (1)

S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Modern Phys., vol. 89, no. 1, 2017, Art. no. .

Sci. Rep. (1)

C. Yoonet al., “Removal of back-reflection noise at ultrathin imaging probes by the single-core illumination and wide-field detection,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017.

Other (8)

Stan Development Team, “CmdStan: The command-line interface to Stan,” 2016.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2006.

G. S. D. Gordonet al., “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” 2019, arXiv:1904.02644v2.

D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.

D. Loterieet al., “Complex pattern projection through a multimode fiber,” in Proc. Adaptive Opt. Wavefront Control Biol. Syst., T. G. Bifano, J. Kubby, and S. Gigan, Eds., 2015, vol. 9335, Paper 93350I.

J. A. Carpenter, B. J. Eggleton, and J. Schroeder, “Maximally efficient imaging through multimode fiber,” in Proc. Conf. Lasers Electro-Opt., 2014, Paper STh1H.3.

P. Keaheyet al., “Differential structured illumination microendoscopy for in vivo imaging of molecular contrast agents,” Proc. Nat. Acad. Sci. USA, vol. 113, no. 39, pp. 10 769–10773, 2016.

A. Levi and H. Stark, “Image restoration by the method of generalized projections with application to restoration from magnitude,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 1984, pp. 88–91.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.