Abstract

A unified data communication and radar sensing system towards millimeter-wave (mm-wave) applications with extended coverage is proposed and experimentally demonstrated. In the unified system, the transmission and reception of mm-wave signals are implemented by microwave photonics technologies, and the orthogonal frequency division multiplexing (OFDM) signal is employed for communications and radar sensing simultaneously. The superheterodyne optical carrier suppression (HeteroOCS) is used to up-convert the intermediate frequency (IF) OFDM signal to the mm-wave band in the central office (CO). The optical mm-wave signal is transmitted to the remote antenna units (RAUs) via optical fibers. The echo signal is received by the RAU which is remotely connected to the CO by an analog photonic link based on a polarization modulator (PolM). In the transmitter and receiver links, the chromatic dispersion of optical fibers is overcome by the HeteroOCS and the PolM, respectively. The baseband units (BBU) centralized in the CO is used to process the radar sensing signal. A pre-delayed trigger signal is proposed to overcome the fiber length limitation. A proof-of-concept experiment is performed. Two targets with distances of 1.64 m and 3.40 m are successfully detected separately. The communication function of the system is also verified. 1 m wireless transmission of 1.56 Gb/s data rate is achieved below the forward error correction limit.

© 2019 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription