Abstract

Commonly, the frequency shift of back-reflection spectra is the key parameter to measure quantitatively local temperature or strain changes in frequency-scanned Rayleigh-based distributed fiber sensors. Cross correlation is the most common method to estimate the frequency shift; however, large errors may take place, particularly when the frequency shift introduced by the temperature or strain change applied to the fiber is beyond the spectral width of the main correlation peak. This fact substantially limits the reliability of the system, and therefore requires careful analysis and possible solutions. In this paper, an analytical model is proposed to thoroughly describe the probability of large errors. This model shows that the cross correlation intrinsically and inevitably leads to large errors when the sampled signal distribution is finite, even under perfect signal-to-noise ratio. As an alternative solution to overcome such a problem, least mean squares is employed to estimate the frequency shift. In addition to reducing the probability of large errors, the proposed method only requires to measure a narrow spectrum, significantly reducing the measurement time compared to state-of-the-art implementations. Both the model and the solution are experimentally verified using a frequency-scanned phase-sensitive optical time-domain reflectometry system, achieving a spatial resolution of 5 cm, with a sensing range of 860 m and an acquisition time below 15 s, over a measurable temperature range of more than 100 K with a repeatability of 20 mK, corresponding to a temperature dynamic range of 5000 resolved points.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: State of the art and perspectives,” Front. Optoelectron. China, vol. 3, no. 1, pp. 13–21, 2010.
  2. K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Optical frequency domain reflectometry: A review,” in Proc. 11th Int. Conf. Transp. Opt. Netw., 2009, pp. 1–5.
  3. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors, vol. 12, no. 7, pp. 8601–8639, 2012.
  4. A. Masoudi and T. P. Newson, “Contributed review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum., vol. 87, no. 1, 2016, Paper no. .
  5. Y. Muanenda, “Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry,” J. Sens., vol. 2018, pp. 1–16, 2018.
  6. X. Bao, D. P. Zhou, C. Baker, and L. Chen, “Recent development in the distributed fiber optic acoustic and ultrasonic detection,” J. Lightw. Technol., vol. 35, no. 16, pp. 3256–3267, 2017.
  7. M. K. Barnoski and S. M. Jensen, “Fiber waveguides: A novel technique for investigating attenuation characteristics,” Appl. Opt., vol. 15, no. 9, pp. 2112–2115, 1976.
  8. H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. Patent 5 194 847, 1993.
  9. Z. N. Wanget al., “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett., vol. 39, no. 20, pp. 5866–5869, 2014.
  10. H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed vibration sensing over 125 km with enhanced SNR using Phi-OTDR over a URFL cavity,” J. Lightw. Technol., vol. 33, no. 12, pp. 2628–2632, Jun. 2015.
  11. F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2055–2057, 2014.
  12. G. Yang, X. Fan, Q. Liu, and Z. He, “Frequency response enhancement of direct-detection phase-sensitive OTDR by using frequency division multiplexing,” J. Lightw. Technol., vol. 36, no. 4, pp. 1197–1203, 2018.
  13. C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun., vol. 346, pp. 172–177, 2015.
  14. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol., vol. 24, no. 8, 2013, Paper no. .
  15. Z. Wanget al., “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express, vol. 24, no. 2, pp. 853–858, 2016.
  16. Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE, vol. 590, no. 8, 2011, Paper no. .
  17. G. S. Fang, T. W. Xu, S. W. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol., vol. 33, no. 13, pp. 2811–2816, 2015.
  18. S. Liehr, Y. S. Muanenda, S. Münzenberger, and K. Krebber, “Relative change measurement of physical quantities using dual-wavelength coherent OTDR,” Opt. Express, vol. 25, no. 2, pp. 720–729, 2017.
  19. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express, vol. 24, no. 12, pp. 13121–13133, 2016.
  20. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.
  21. M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express, vol. 23, no. 19, pp. 24923–24936, 2015.
  22. X. Lu, M. A. Soto, and L. Thévenaz, “Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry,” Opt. Express, vol. 25, no. 14, pp. 16059–16071, 2017.
  23. A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J., vol. 8, no. 7, pp. 1375–1380, 2008.
  24. L. Zhang, Z. Yang, F. Gyger, M. A. Soto, and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” in Proc. 26th Int. Conf. Opt. Fiber Sens., Lausanne, Switzerland, 2018, Paper no. .
  25. K. P. Fenget al., “Improvement of the strain measurable range of an OFDR based on local similar characteristics of a Rayleigh scattering spectrum,” Opt. Lett. vol. 43, no. 14, pp. 3293–3296, 2018.
  26. S. Liehr, S. Münzenberger, and K. Krebber, “Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing,” Opt. Express, vol. 26, no. 8, pp. 10573–10588, 2018.
  27. S. Liehr, L. A. Jäger, C. Karapanagiotis, S. Münzenberger, and S. Kowarik, “Real-time dynamic strain sensing in optical fibers using artificial neural networks,” Opt. Express, vol. 27, no. 5, pp. 7405–7425, 2019.
  28. M. D. Mermelstein, R. Posey, G. A. Johnson, and S. T. Vohra, “Rayleigh scattering optical frequency correlation in a single-mode optical fiber,” Opt. Lett., vol. 26, no. 2, pp. 58–60, 2007.
  29. X. Lu, “Coherent Rayleigh time domain reflectometry: Novel applications for optical fiber sensing,” Ph.D. dissertation, School of Eng., EPFL, Lausanne, Switzerland, 2016, doi: .
    [Crossref]
  30. J. Chen, J. Benesty, and Y. Huang, “Time delay estimation in room acoustic environments: An overview,” EURASIP J. Appl. Signal Process., vol. 2006, no. 1, pp. 1–19, 2006.
  31. G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 525–533, 1993.
  32. J. P. Ianniello, “Large and small error performance limits for multipath time delay estimation,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34, no. 2, pp. 245–251, 1986.
  33. J. Ianniello, “Time delay estimation via cross-correlation in the presence of large estimation errors,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-30, no. 6, pp. 998–1003, 1982.

2019 (1)

2018 (4)

K. P. Fenget al., “Improvement of the strain measurable range of an OFDR based on local similar characteristics of a Rayleigh scattering spectrum,” Opt. Lett. vol. 43, no. 14, pp. 3293–3296, 2018.

S. Liehr, S. Münzenberger, and K. Krebber, “Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing,” Opt. Express, vol. 26, no. 8, pp. 10573–10588, 2018.

Y. Muanenda, “Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry,” J. Sens., vol. 2018, pp. 1–16, 2018.

G. Yang, X. Fan, Q. Liu, and Z. He, “Frequency response enhancement of direct-detection phase-sensitive OTDR by using frequency division multiplexing,” J. Lightw. Technol., vol. 36, no. 4, pp. 1197–1203, 2018.

2017 (3)

2016 (4)

X. Lu, “Coherent Rayleigh time domain reflectometry: Novel applications for optical fiber sensing,” Ph.D. dissertation, School of Eng., EPFL, Lausanne, Switzerland, 2016, doi: .
[Crossref]

A. Masoudi and T. P. Newson, “Contributed review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum., vol. 87, no. 1, 2016, Paper no. .

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express, vol. 24, no. 12, pp. 13121–13133, 2016.

Z. Wanget al., “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express, vol. 24, no. 2, pp. 853–858, 2016.

2015 (4)

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun., vol. 346, pp. 172–177, 2015.

G. S. Fang, T. W. Xu, S. W. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol., vol. 33, no. 13, pp. 2811–2816, 2015.

H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed vibration sensing over 125 km with enhanced SNR using Phi-OTDR over a URFL cavity,” J. Lightw. Technol., vol. 33, no. 12, pp. 2628–2632, Jun. 2015.

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express, vol. 23, no. 19, pp. 24923–24936, 2015.

2014 (2)

F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2055–2057, 2014.

Z. N. Wanget al., “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett., vol. 39, no. 20, pp. 5866–5869, 2014.

2013 (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol., vol. 24, no. 8, 2013, Paper no. .

2012 (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors, vol. 12, no. 7, pp. 8601–8639, 2012.

2011 (1)

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE, vol. 590, no. 8, 2011, Paper no. .

2010 (1)

L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: State of the art and perspectives,” Front. Optoelectron. China, vol. 3, no. 1, pp. 13–21, 2010.

2009 (1)

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

2008 (1)

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J., vol. 8, no. 7, pp. 1375–1380, 2008.

2007 (1)

2006 (1)

J. Chen, J. Benesty, and Y. Huang, “Time delay estimation in room acoustic environments: An overview,” EURASIP J. Appl. Signal Process., vol. 2006, no. 1, pp. 1–19, 2006.

1993 (2)

G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 525–533, 1993.

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. Patent 5 194 847, 1993.

1986 (1)

J. P. Ianniello, “Large and small error performance limits for multipath time delay estimation,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34, no. 2, pp. 245–251, 1986.

1982 (1)

J. Ianniello, “Time delay estimation via cross-correlation in the presence of large estimation errors,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-30, no. 6, pp. 998–1003, 1982.

1976 (1)

Ania-Castanon, J. D.

H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed vibration sensing over 125 km with enhanced SNR using Phi-OTDR over a URFL cavity,” J. Lightw. Technol., vol. 33, no. 12, pp. 2628–2632, Jun. 2015.

Baker, C.

X. Bao, D. P. Zhou, C. Baker, and L. Chen, “Recent development in the distributed fiber optic acoustic and ultrasonic detection,” J. Lightw. Technol., vol. 35, no. 16, pp. 3256–3267, 2017.

Bao, X.

X. Bao, D. P. Zhou, C. Baker, and L. Chen, “Recent development in the distributed fiber optic acoustic and ultrasonic detection,” J. Lightw. Technol., vol. 35, no. 16, pp. 3256–3267, 2017.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors, vol. 12, no. 7, pp. 8601–8639, 2012.

Barnoski, M. K.

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol., vol. 24, no. 8, 2013, Paper no. .

Benesty, J.

J. Chen, J. Benesty, and Y. Huang, “Time delay estimation in room acoustic environments: An overview,” EURASIP J. Appl. Signal Process., vol. 2006, no. 1, pp. 1–19, 2006.

Cai, H.

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE, vol. 590, no. 8, 2011, Paper no. .

Chen, J.

J. Chen, J. Benesty, and Y. Huang, “Time delay estimation in room acoustic environments: An overview,” EURASIP J. Appl. Signal Process., vol. 2006, no. 1, pp. 1–19, 2006.

Chen, L.

X. Bao, D. P. Zhou, C. Baker, and L. Chen, “Recent development in the distributed fiber optic acoustic and ultrasonic detection,” J. Lightw. Technol., vol. 35, no. 16, pp. 3256–3267, 2017.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors, vol. 12, no. 7, pp. 8601–8639, 2012.

Corredera, P.

H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed vibration sensing over 125 km with enhanced SNR using Phi-OTDR over a URFL cavity,” J. Lightw. Technol., vol. 33, no. 12, pp. 2628–2632, Jun. 2015.

Dickerson, B. D.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J., vol. 8, no. 7, pp. 1375–1380, 2008.

Duan, N.

F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2055–2057, 2014.

Fan, X.

G. Yang, X. Fan, Q. Liu, and Z. He, “Frequency response enhancement of direct-detection phase-sensitive OTDR by using frequency division multiplexing,” J. Lightw. Technol., vol. 36, no. 4, pp. 1197–1203, 2018.

Fang, G. S.

G. S. Fang, T. W. Xu, S. W. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol., vol. 33, no. 13, pp. 2811–2816, 2015.

Fang, Z.

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE, vol. 590, no. 8, 2011, Paper no. .

Feng, K. P.

Feng, S. W.

G. S. Fang, T. W. Xu, S. W. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol., vol. 33, no. 13, pp. 2811–2816, 2015.

Frazao, O.

H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed vibration sensing over 125 km with enhanced SNR using Phi-OTDR over a URFL cavity,” J. Lightw. Technol., vol. 33, no. 12, pp. 2628–2632, Jun. 2015.

Froggatt, M. E.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J., vol. 8, no. 7, pp. 1375–1380, 2008.

Garcia-Ruiz, A.

Gifford, D. K.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J., vol. 8, no. 7, pp. 1375–1380, 2008.

Gonzalez-Herraez, M.

Gyger, F.

L. Zhang, Z. Yang, F. Gyger, M. A. Soto, and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” in Proc. 26th Int. Conf. Opt. Fiber Sens., Lausanne, Switzerland, 2018, Paper no. .

He, Z.

G. Yang, X. Fan, Q. Liu, and Z. He, “Frequency response enhancement of direct-detection phase-sensitive OTDR by using frequency division multiplexing,” J. Lightw. Technol., vol. 36, no. 4, pp. 1197–1203, 2018.

Hogari, K.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

Huang, Y.

J. Chen, J. Benesty, and Y. Huang, “Time delay estimation in room acoustic environments: An overview,” EURASIP J. Appl. Signal Process., vol. 2006, no. 1, pp. 1–19, 2006.

Ianniello, J.

J. Ianniello, “Time delay estimation via cross-correlation in the presence of large estimation errors,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-30, no. 6, pp. 998–1003, 1982.

Ianniello, J. P.

J. P. Ianniello, “Large and small error performance limits for multipath time delay estimation,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34, no. 2, pp. 245–251, 1986.

Imahama, M.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

Jacovitti, G.

G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 525–533, 1993.

Jäger, L. A.

Jensen, S. M.

Johnson, G. A.

Karapanagiotis, C.

Kowarik, S.

Koyamada, Y.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

Krebber, K.

Kreger, S. T.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J., vol. 8, no. 7, pp. 1375–1380, 2008.

Kubota, K.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

Lee,

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. Patent 5 194 847, 1993.

Li, F.

G. S. Fang, T. W. Xu, S. W. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol., vol. 33, no. 13, pp. 2811–2816, 2015.

Li, J.

F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2055–2057, 2014.

Liang, K.

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE, vol. 590, no. 8, 2011, Paper no. .

Liehr, S.

Liu, Q.

G. Yang, X. Fan, Q. Liu, and Z. He, “Frequency response enhancement of direct-detection phase-sensitive OTDR by using frequency division multiplexing,” J. Lightw. Technol., vol. 36, no. 4, pp. 1197–1203, 2018.

Liu, X.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun., vol. 346, pp. 172–177, 2015.

Lu, X.

Martin-Lopez, S.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express, vol. 24, no. 12, pp. 13121–13133, 2016.

H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed vibration sensing over 125 km with enhanced SNR using Phi-OTDR over a URFL cavity,” J. Lightw. Technol., vol. 33, no. 12, pp. 2628–2632, Jun. 2015.

Martins, H. F.

Masoudi, A.

A. Masoudi and T. P. Newson, “Contributed review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum., vol. 87, no. 1, 2016, Paper no. .

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol., vol. 24, no. 8, 2013, Paper no. .

Mégret, P.

K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Optical frequency domain reflectometry: A review,” in Proc. 11th Int. Conf. Transp. Opt. Netw., 2009, pp. 1–5.

Mermelstein, M. D.

Moeyaert, V.

K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Optical frequency domain reflectometry: A review,” in Proc. 11th Int. Conf. Transp. Opt. Netw., 2009, pp. 1–5.

Muanenda, Y.

Y. Muanenda, “Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry,” J. Sens., vol. 2018, pp. 1–16, 2018.

Muanenda, Y. S.

Münzenberger, S.

Newson, T. P.

A. Masoudi and T. P. Newson, “Contributed review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum., vol. 87, no. 1, 2016, Paper no. .

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol., vol. 24, no. 8, 2013, Paper no. .

Pan, Z.

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE, vol. 590, no. 8, 2011, Paper no. .

Pastor-Graells, J.

Peng, F.

F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2055–2057, 2014.

Peng, G.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun., vol. 346, pp. 172–177, 2015.

Posey, R.

Qu, R.

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE, vol. 590, no. 8, 2011, Paper no. .

Rao, Y. J.

F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2055–2057, 2014.

Sang, A. K.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J., vol. 8, no. 7, pp. 1375–1380, 2008.

Scarano, G.

G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 525–533, 1993.

Shang, Y.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun., vol. 346, pp. 172–177, 2015.

Soto, M. A.

Taylor, H. F.

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. Patent 5 194 847, 1993.

Thévenaz, L.

X. Lu, M. A. Soto, and L. Thévenaz, “Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry,” Opt. Express, vol. 25, no. 14, pp. 16059–16071, 2017.

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express, vol. 23, no. 19, pp. 24923–24936, 2015.

L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: State of the art and perspectives,” Front. Optoelectron. China, vol. 3, no. 1, pp. 13–21, 2010.

L. Zhang, Z. Yang, F. Gyger, M. A. Soto, and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” in Proc. 26th Int. Conf. Opt. Fiber Sens., Lausanne, Switzerland, 2018, Paper no. .

Vohra, S. T.

Wang, C.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun., vol. 346, pp. 172–177, 2015.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun., vol. 346, pp. 172–177, 2015.

Wang, Z.

Wang, Z. N.

Wuilpart, M.

K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Optical frequency domain reflectometry: A review,” in Proc. 11th Int. Conf. Transp. Opt. Netw., 2009, pp. 1–5.

Xu, T. W.

G. S. Fang, T. W. Xu, S. W. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol., vol. 33, no. 13, pp. 2811–2816, 2015.

Yang, G.

G. Yang, X. Fan, Q. Liu, and Z. He, “Frequency response enhancement of direct-detection phase-sensitive OTDR by using frequency division multiplexing,” J. Lightw. Technol., vol. 36, no. 4, pp. 1197–1203, 2018.

Yang, Z.

L. Zhang, Z. Yang, F. Gyger, M. A. Soto, and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” in Proc. 26th Int. Conf. Opt. Fiber Sens., Lausanne, Switzerland, 2018, Paper no. .

Ye, Q.

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE, vol. 590, no. 8, 2011, Paper no. .

Yuksel, K.

K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Optical frequency domain reflectometry: A review,” in Proc. 11th Int. Conf. Transp. Opt. Netw., 2009, pp. 1–5.

Zhang, L.

L. Zhang, Z. Yang, F. Gyger, M. A. Soto, and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” in Proc. 26th Int. Conf. Opt. Fiber Sens., Lausanne, Switzerland, 2018, Paper no. .

Zhou, D. P.

X. Bao, D. P. Zhou, C. Baker, and L. Chen, “Recent development in the distributed fiber optic acoustic and ultrasonic detection,” J. Lightw. Technol., vol. 35, no. 16, pp. 3256–3267, 2017.

Appl. Opt. (1)

EURASIP J. Appl. Signal Process. (1)

J. Chen, J. Benesty, and Y. Huang, “Time delay estimation in room acoustic environments: An overview,” EURASIP J. Appl. Signal Process., vol. 2006, no. 1, pp. 1–19, 2006.

Front. Optoelectron. China (1)

L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: State of the art and perspectives,” Front. Optoelectron. China, vol. 3, no. 1, pp. 13–21, 2010.

IEEE Photon. Technol. Lett. (1)

F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2055–2057, 2014.

IEEE Sens. J. (1)

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J., vol. 8, no. 7, pp. 1375–1380, 2008.

IEEE Trans. Acoust., Speech, Signal Process. (2)

J. P. Ianniello, “Large and small error performance limits for multipath time delay estimation,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34, no. 2, pp. 245–251, 1986.

J. Ianniello, “Time delay estimation via cross-correlation in the presence of large estimation errors,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-30, no. 6, pp. 998–1003, 1982.

IEEE Trans. Signal Process. (1)

G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 525–533, 1993.

J. Lightw. Technol. (5)

G. S. Fang, T. W. Xu, S. W. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightw. Technol., vol. 33, no. 13, pp. 2811–2816, 2015.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

G. Yang, X. Fan, Q. Liu, and Z. He, “Frequency response enhancement of direct-detection phase-sensitive OTDR by using frequency division multiplexing,” J. Lightw. Technol., vol. 36, no. 4, pp. 1197–1203, 2018.

X. Bao, D. P. Zhou, C. Baker, and L. Chen, “Recent development in the distributed fiber optic acoustic and ultrasonic detection,” J. Lightw. Technol., vol. 35, no. 16, pp. 3256–3267, 2017.

H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed vibration sensing over 125 km with enhanced SNR using Phi-OTDR over a URFL cavity,” J. Lightw. Technol., vol. 33, no. 12, pp. 2628–2632, Jun. 2015.

J. Sens. (1)

Y. Muanenda, “Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry,” J. Sens., vol. 2018, pp. 1–16, 2018.

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol., vol. 24, no. 8, 2013, Paper no. .

Opt. Commun. (1)

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun., vol. 346, pp. 172–177, 2015.

Opt. Express (7)

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express, vol. 23, no. 19, pp. 24923–24936, 2015.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express, vol. 24, no. 12, pp. 13121–13133, 2016.

X. Lu, M. A. Soto, and L. Thévenaz, “Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry,” Opt. Express, vol. 25, no. 14, pp. 16059–16071, 2017.

S. Liehr, S. Münzenberger, and K. Krebber, “Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing,” Opt. Express, vol. 26, no. 8, pp. 10573–10588, 2018.

S. Liehr, L. A. Jäger, C. Karapanagiotis, S. Münzenberger, and S. Kowarik, “Real-time dynamic strain sensing in optical fibers using artificial neural networks,” Opt. Express, vol. 27, no. 5, pp. 7405–7425, 2019.

S. Liehr, Y. S. Muanenda, S. Münzenberger, and K. Krebber, “Relative change measurement of physical quantities using dual-wavelength coherent OTDR,” Opt. Express, vol. 25, no. 2, pp. 720–729, 2017.

Z. Wanget al., “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express, vol. 24, no. 2, pp. 853–858, 2016.

Opt. Lett. (3)

Proc. SPIE (1)

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE, vol. 590, no. 8, 2011, Paper no. .

Rev. Sci. Instrum. (1)

A. Masoudi and T. P. Newson, “Contributed review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum., vol. 87, no. 1, 2016, Paper no. .

Sensors (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors, vol. 12, no. 7, pp. 8601–8639, 2012.

Other (4)

K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Optical frequency domain reflectometry: A review,” in Proc. 11th Int. Conf. Transp. Opt. Netw., 2009, pp. 1–5.

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. Patent 5 194 847, 1993.

L. Zhang, Z. Yang, F. Gyger, M. A. Soto, and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” in Proc. 26th Int. Conf. Opt. Fiber Sens., Lausanne, Switzerland, 2018, Paper no. .

X. Lu, “Coherent Rayleigh time domain reflectometry: Novel applications for optical fiber sensing,” Ph.D. dissertation, School of Eng., EPFL, Lausanne, Switzerland, 2016, doi: .
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.