Abstract

Photonic integrated circuits (PICs) are today acknowledged as an effective solution to fulfill the demanding requirements of many practical applications in both classical and quantum optics. Phase shifters integrated in the photonic circuit offer the possibility to dynamically reconfigure its properties in order to fine tune its operation or to produce adaptive circuits, thus greatly extending the quality and the applicability of these devices. In this paper, we provide a thorough discussion of the main problems that one can encounter when using thermal shifters to reconfigure photonic circuits. We then show how all these issues can be solved by a careful design of the thermal shifters and by choosing the most appropriate way to drive them. Such performance improvement is demonstrated by manufacturing thermal phase shifters in femtosecond laser written PICs (FLW-PICs), and by characterizing their operation in detail. The unprecedented results in terms of power dissipation, miniaturization and stability, enable the scalable implementation of reconfigurable FLW-PICs that can be easily calibrated and exploited in the applications.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sunet al., “Large-scale nanophotonic phased array,” Nature, vol. 493, no. 7431, pp. 195–199, 2013.
  2. A. Sunet al., “Silica-on-silicon waveguide quantum circuits,” Science, vol. 320, no. 5876, pp. 646–649, 2008.
  3. J. Moweret al., “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A, vol. 92, no. 3, 2015, Art. no. .
  4. D. Kwonget al., “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett., vol. 39, no. 4, pp. 941–944, 2014.
  5. E. Polinoet al., “Experimental multiphase estimation on a chip,” Optica, vol. 6, no. 3, pp. 288–295, 2019.
  6. J. Wanget al., “Experimental quantum Hamiltonian learning,” Nat. Phys., vol. 13, no. 6, pp. 551–555, 2017.
  7. J. C. F. Matthewset al., “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photon., vol. 3, no. 6, pp. 346–350, 2009.
  8. L. Chenet al., “Compact bandwidth-tunable microring resonators,” Opt. Lett., vol. 32, no. 22, pp. 3361–3363, 2007.
  9. B. J. Smithet al., “Phase-controlled integrated photonic quantum circuits,” Opt. Express, vol. 17, no. 16, pp. 13516–13525, 2009.
  10. T. Chuet al., “Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express, vol. 13, no. 25, pp. 10109–10114, 2005.
  11. G. T. Reedet al., “Silicon optical modulators,” Nat. Photon., vol. 4, no. 8, pp. 518–526, 2010.
  12. F. Flaminiet al., “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl., vol. 4, 2015, Art. no. .
  13. N. C. Harriset al., “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Express, vol. 22, no. 9, pp. 10487–10493, 2014.
  14. B. J. Metcalfet al., “Quantum teleportation on a photonic chip,” Nat. Photon., vol. 8, no. 10, pp. 770–774, 2014.
  15. I. V. Dyakonovet al., “Reconfigurable photonics on a glass chip,” Phys. Rev. Appl., vol. 10, no. 4, 2018, Art. no. .
  16. R. R. Gattasset al., “Femtosecond laser micromachining in transparent materials,” Nat. Photon., vol. 2, no. 4, pp. 219–225, 2008.
  17. J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Amer. Ceram. Soc., vol. 74, no. 7, pp. 1689–1691, 1991.
  18. Z. Chaboyeret al., “Design and fabrication of reconfigurable laser-written waveguide circuits,” Opt. Express, vol. 25, no. 26, pp. 33056–33065, 2017.
  19. K. E. Haqet al., “Adhesion mechanism of gold-underlayer film combinations to oxide substrates,” J. Vac. Sci. Technol., vol. 6, pp. 148–152, 1969.
  20. M. A. Georgeet al., “Electrical, spectroscopic, and morphological investigation of chromium diffusion through gold films,” Thin Solid Films, vol. 189, no. 1, pp. 59–72, 1990.
  21. K. L. Chopraet al., “Electrical resistivity of thin single-crystal gold films,” J. Appl. Phys., vol. 34, no. 6, pp. 1699–1702, 1963.
  22. Corning Eagle XG Slim Glass Datasheet, 2017. [Online]. Available: https://www.corning.com/media/worldwide/cdt/documents/EAGLE_PI_Sheet_2017.pdf
  23. J. R. Black, “Electromigration-A brief survey and some recent results,” IEEE Trans. Electron Devices, vol. 16, no. 4, pp. 338–347, 1969.
  24. S. Atzeniet al., “Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits,” Optica, vol. 5, no. 3, pp. 311–314, 2018.

2019 (1)

2018 (2)

S. Atzeniet al., “Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits,” Optica, vol. 5, no. 3, pp. 311–314, 2018.

I. V. Dyakonovet al., “Reconfigurable photonics on a glass chip,” Phys. Rev. Appl., vol. 10, no. 4, 2018, Art. no. .

2017 (2)

J. Wanget al., “Experimental quantum Hamiltonian learning,” Nat. Phys., vol. 13, no. 6, pp. 551–555, 2017.

Z. Chaboyeret al., “Design and fabrication of reconfigurable laser-written waveguide circuits,” Opt. Express, vol. 25, no. 26, pp. 33056–33065, 2017.

2015 (2)

J. Moweret al., “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A, vol. 92, no. 3, 2015, Art. no. .

F. Flaminiet al., “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl., vol. 4, 2015, Art. no. .

2014 (3)

2013 (1)

J. Sunet al., “Large-scale nanophotonic phased array,” Nature, vol. 493, no. 7431, pp. 195–199, 2013.

2010 (1)

G. T. Reedet al., “Silicon optical modulators,” Nat. Photon., vol. 4, no. 8, pp. 518–526, 2010.

2009 (2)

J. C. F. Matthewset al., “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photon., vol. 3, no. 6, pp. 346–350, 2009.

B. J. Smithet al., “Phase-controlled integrated photonic quantum circuits,” Opt. Express, vol. 17, no. 16, pp. 13516–13525, 2009.

2008 (2)

A. Sunet al., “Silica-on-silicon waveguide quantum circuits,” Science, vol. 320, no. 5876, pp. 646–649, 2008.

R. R. Gattasset al., “Femtosecond laser micromachining in transparent materials,” Nat. Photon., vol. 2, no. 4, pp. 219–225, 2008.

2007 (1)

2005 (1)

1991 (1)

J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Amer. Ceram. Soc., vol. 74, no. 7, pp. 1689–1691, 1991.

1990 (1)

M. A. Georgeet al., “Electrical, spectroscopic, and morphological investigation of chromium diffusion through gold films,” Thin Solid Films, vol. 189, no. 1, pp. 59–72, 1990.

1969 (2)

J. R. Black, “Electromigration-A brief survey and some recent results,” IEEE Trans. Electron Devices, vol. 16, no. 4, pp. 338–347, 1969.

K. E. Haqet al., “Adhesion mechanism of gold-underlayer film combinations to oxide substrates,” J. Vac. Sci. Technol., vol. 6, pp. 148–152, 1969.

1963 (1)

K. L. Chopraet al., “Electrical resistivity of thin single-crystal gold films,” J. Appl. Phys., vol. 34, no. 6, pp. 1699–1702, 1963.

Atzeni, S.

Black, J. R.

J. R. Black, “Electromigration-A brief survey and some recent results,” IEEE Trans. Electron Devices, vol. 16, no. 4, pp. 338–347, 1969.

Chaboyer, Z.

Chen, L.

Chopra, K. L.

K. L. Chopraet al., “Electrical resistivity of thin single-crystal gold films,” J. Appl. Phys., vol. 34, no. 6, pp. 1699–1702, 1963.

Chu, T.

Dyakonov, I. V.

I. V. Dyakonovet al., “Reconfigurable photonics on a glass chip,” Phys. Rev. Appl., vol. 10, no. 4, 2018, Art. no. .

Flamini, F.

F. Flaminiet al., “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl., vol. 4, 2015, Art. no. .

Gattass, R. R.

R. R. Gattasset al., “Femtosecond laser micromachining in transparent materials,” Nat. Photon., vol. 2, no. 4, pp. 219–225, 2008.

George, M. A.

M. A. Georgeet al., “Electrical, spectroscopic, and morphological investigation of chromium diffusion through gold films,” Thin Solid Films, vol. 189, no. 1, pp. 59–72, 1990.

Haq, K. E.

K. E. Haqet al., “Adhesion mechanism of gold-underlayer film combinations to oxide substrates,” J. Vac. Sci. Technol., vol. 6, pp. 148–152, 1969.

Harris, N. C.

Jewell, J. M.

J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Amer. Ceram. Soc., vol. 74, no. 7, pp. 1689–1691, 1991.

Kwong, D.

Matthews, J. C. F.

J. C. F. Matthewset al., “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photon., vol. 3, no. 6, pp. 346–350, 2009.

Metcalf, B. J.

B. J. Metcalfet al., “Quantum teleportation on a photonic chip,” Nat. Photon., vol. 8, no. 10, pp. 770–774, 2014.

Mower, J.

J. Moweret al., “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A, vol. 92, no. 3, 2015, Art. no. .

Polino, E.

Reed, G. T.

G. T. Reedet al., “Silicon optical modulators,” Nat. Photon., vol. 4, no. 8, pp. 518–526, 2010.

Smith, B. J.

Sun, A.

A. Sunet al., “Silica-on-silicon waveguide quantum circuits,” Science, vol. 320, no. 5876, pp. 646–649, 2008.

Sun, J.

J. Sunet al., “Large-scale nanophotonic phased array,” Nature, vol. 493, no. 7431, pp. 195–199, 2013.

Wang, J.

J. Wanget al., “Experimental quantum Hamiltonian learning,” Nat. Phys., vol. 13, no. 6, pp. 551–555, 2017.

IEEE Trans. Electron Devices (1)

J. R. Black, “Electromigration-A brief survey and some recent results,” IEEE Trans. Electron Devices, vol. 16, no. 4, pp. 338–347, 1969.

J. Amer. Ceram. Soc. (1)

J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Amer. Ceram. Soc., vol. 74, no. 7, pp. 1689–1691, 1991.

J. Appl. Phys. (1)

K. L. Chopraet al., “Electrical resistivity of thin single-crystal gold films,” J. Appl. Phys., vol. 34, no. 6, pp. 1699–1702, 1963.

J. Vac. Sci. Technol. (1)

K. E. Haqet al., “Adhesion mechanism of gold-underlayer film combinations to oxide substrates,” J. Vac. Sci. Technol., vol. 6, pp. 148–152, 1969.

Light Sci. Appl. (1)

F. Flaminiet al., “Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining,” Light Sci. Appl., vol. 4, 2015, Art. no. .

Nat. Photon. (4)

B. J. Metcalfet al., “Quantum teleportation on a photonic chip,” Nat. Photon., vol. 8, no. 10, pp. 770–774, 2014.

G. T. Reedet al., “Silicon optical modulators,” Nat. Photon., vol. 4, no. 8, pp. 518–526, 2010.

R. R. Gattasset al., “Femtosecond laser micromachining in transparent materials,” Nat. Photon., vol. 2, no. 4, pp. 219–225, 2008.

J. C. F. Matthewset al., “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photon., vol. 3, no. 6, pp. 346–350, 2009.

Nat. Phys. (1)

J. Wanget al., “Experimental quantum Hamiltonian learning,” Nat. Phys., vol. 13, no. 6, pp. 551–555, 2017.

Nature (1)

J. Sunet al., “Large-scale nanophotonic phased array,” Nature, vol. 493, no. 7431, pp. 195–199, 2013.

Opt. Express (4)

Opt. Lett. (2)

Optica (2)

Phys. Rev. A (1)

J. Moweret al., “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A, vol. 92, no. 3, 2015, Art. no. .

Phys. Rev. Appl. (1)

I. V. Dyakonovet al., “Reconfigurable photonics on a glass chip,” Phys. Rev. Appl., vol. 10, no. 4, 2018, Art. no. .

Science (1)

A. Sunet al., “Silica-on-silicon waveguide quantum circuits,” Science, vol. 320, no. 5876, pp. 646–649, 2008.

Thin Solid Films (1)

M. A. Georgeet al., “Electrical, spectroscopic, and morphological investigation of chromium diffusion through gold films,” Thin Solid Films, vol. 189, no. 1, pp. 59–72, 1990.

Other (1)

Corning Eagle XG Slim Glass Datasheet, 2017. [Online]. Available: https://www.corning.com/media/worldwide/cdt/documents/EAGLE_PI_Sheet_2017.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.