Abstract

A novel integrated scalable multimode switch (SMS) is experimentally demonstrated using tapered multimode-interference-based couplers and Ti/W metal heater phase shifters for mode-division-multiplexing (MDM) silicon photonics switching. The SMS allows path-reconfigurable switching of the first two (TE0 and TE1) or the first three (TE0, TE1, and TE2) transverse electric (TE) modes using the same device achieving footprint efficiency for higher bandwidth density. A proof-of-concept realization of the two-mode switch demonstrates the (de)multiplexing and switching of broadband optical signals over the TE0 and TE1 modes exhibiting $-$ 6.5 dB insertion loss (IL) in the bar state and $-$ 7.3 dB IL in the cross state at 1550 nm with less than $-$ 14 dB crosstalk. Simultaneous switching of two parallel TE modes (TE0+TE1) exhibits less than $-$ 7.0 dB IL and $-$ 11.9 dB crosstalk at 1550 nm. An aggregated bandwidth of 2 × 10 Gb/s is experimentally achieved while switching between two non-return-to-zero PRBS31 data signals with <9.8 $\mu$ s switching time and >17.7 dB switching extinction ratio (ER) for individual-mode transmission, and <7.6 $\mu$ s switching time and >12.0 dB switching ER for dual-mode transmission. The SMS is scalable to switch higher order TE modes with lower energy consumption (up to 63% less) than the single-mode switches indicating its potential application in energy-efficient MDM photonic networks.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco Systems, Inc., “Cisco global cloud index: Forecast and methodology, 2016–2021,” White Paper, 2017.
  2. M. D. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under the European Code of conduct for data centre energy efficiency,” Energies, vol. 10, no. 10, 2017, Art. no. .
  3. W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in Proc. 26th Int. Conf. Comput. Commun. Netw., 2017, pp. 1–8.
  4. C. A. Thraskiaset al., “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2758–2783, Fourth Quarter 2018.
  5. D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightw. Technol., vol. 35, no. 3, pp. 346–396, 2017.
  6. H. D. Thackeret al., “An all-solid-state, WDM silicon photonic digital link for chip-to-chip communications,” Opt. Express, vol. 23, no. 10, pp. 12808–12822, 2015.
  7. A. L. Lentine and C. T. DeRose, “Challenges in the implementation of dense wavelength division multiplexed (DWDM) optical interconnects using resonant silicon photonics,” Proc. SPIE, vol. 9772, 2016, Art. no. .
  8. J. Wang, S. Chen, and D. Dai, “Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects,” Opt. Lett., vol. 39, no. 24, pp. 6993–6996, 2014.
  9. M. Ye, Y. Yu, J. Zou, W. Yang, and X. Zhang, “On-chip multiplexing conversion between wavelength division multiplexing–polarization division multiplexing and wavelength division multiplexing–mode division multiplexing,” Opt. Lett., vol. 39, no. 4, pp. 758–761, 2014.
  10. C. Li, D. Liu, and D. Dai, “Multimode silicon photonics,” Nanophotonics, vol. 8, pp. 227–247, 2018.
  11. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects (invited review),” Progr. Electromagn. Res., vol. 143, pp. 773–819, 2013.
  12. L. Yanget al., “General architectures for on-chip optical space and mode switching,” Optica, vol. 5, no. 2, pp. 180–187, 2018.
  13. M. Ye, Y. Yu, C. Sun, and X. Zhang, “On-chip data exchange for mode division multiplexed signals,” Opt. Express, vol. 24, no. 1, pp. 528–535, 2016.
  14. X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photon. Technol. Lett., vol. 30, no. 7, pp. 618–621, 2018.
  15. Q. Huang, W. Jin, and K. S. Chiang, “Broadband mode switch based on a three-dimensional waveguide Mach-Zehnder interferometer,” Opt. Lett., vol. 42, no. 23, pp. 4877–4880, 2017.
  16. R. B. Priti, H. P. Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, “Mode selecting switch using multimode interference for on-chip optical interconnects,” Opt. Lett., vol. 42, no. 20, pp. 4131–4134, 2017.
  17. R. B. Priti, F. Shokraneh, and O. Liboiron-Ladouceur, “Scalable 2 × 2 multimode switch for mode-multiplexed silicon photonics interconnects,” in Proc. Asia Commun. Photon. Conf., 2018, pp. 1–8.
  18. R. B. Priti, G. Zhang, and O. Liboiron-Ladouceur, “3 × 10 Gb/s silicon three-mode switch with $120^\circ$ hybrid based unbalanced Mach-Zehnder interferometer,” Opt. Express, no. 10, pp. 14199–14212, 2019.
  19. R. B. Priti and O. Liboiron-Ladouceur, “A reconfigurable multimode demultiplexer/switch for mode-multiplexed silicon photonics interconnects,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 6, 2018, Art. no. .
  20. P. J. Reyes-Iglesias, I. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated $120^\circ$ downconverter with relaxed hardware constraints,” Opt. Express, vol. 20, no. 5, pp. 5725–5741, 2012.
  21. K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2287–2289, 2006.
  22. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightw. Technol., vol. 13, no. 4, pp. 615–627, 1995.
  23. D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, and Q. Yang, “Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers,” Opt. Express, vol. 23, no. 9, pp. 11152–11159, 2015.
  24. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett., vol. 38, no. 25, pp. 1701–1702, 2002.
  25. J. D. Love and N. Riesen, “Single-, few-, and multimode y-junctions,” J. Lightw. Technol., vol. 30, no. 3, pp. 304–309, 2012.
  26. M. Teng, K. Kojima, T. Koike-Akino, B. Wang, C. Lin, and K. Parsons, “Broadband SOI mode order converter based on topology optimization,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, Paper Th2A.8.
  27. J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” IEEE Photon. J., vol. 7, no. 5, 2015, Art. no. .
  28. NanoSOI fabrication process. [Online]. Available: http://www.appliednt.com/nanosoi. Accessed on: , 2019.
  29. MMI coupler. [Online]. Available: https://www.lumerical.com/. accessed: , 2019.
  30. R. B. Priti, Y. Xiong, and O. Liboiron-Ladouceur, “Efficiency improvement of an O-band SOI-MZI thermo-optic matrix switch,” in Proc. IEEE Photon. Conf., 2016, pp. 823–824.
  31. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett., vol. 38, no. 5, pp. 733–735, 2013.
  32. A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015.
  33. S. Paulet al., “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 436–443, 2015.
  34. Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 589–595, 2018.
  35. W. Hamad, M. B. Sanayeh, T. Siepelmeyer, H. Hamad, and W. H. E. Hofmann, “Small-signal analysis of high-performance VCSELs,” IEEE Photon. J., vol. 11, no. 2, 2019, Art. no. .

2019 (2)

R. B. Priti, G. Zhang, and O. Liboiron-Ladouceur, “3 × 10 Gb/s silicon three-mode switch with $120^\circ$ hybrid based unbalanced Mach-Zehnder interferometer,” Opt. Express, no. 10, pp. 14199–14212, 2019.

W. Hamad, M. B. Sanayeh, T. Siepelmeyer, H. Hamad, and W. H. E. Hofmann, “Small-signal analysis of high-performance VCSELs,” IEEE Photon. J., vol. 11, no. 2, 2019, Art. no. .

2018 (6)

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 589–595, 2018.

R. B. Priti and O. Liboiron-Ladouceur, “A reconfigurable multimode demultiplexer/switch for mode-multiplexed silicon photonics interconnects,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 6, 2018, Art. no. .

L. Yanget al., “General architectures for on-chip optical space and mode switching,” Optica, vol. 5, no. 2, pp. 180–187, 2018.

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photon. Technol. Lett., vol. 30, no. 7, pp. 618–621, 2018.

C. A. Thraskiaset al., “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2758–2783, Fourth Quarter 2018.

C. Li, D. Liu, and D. Dai, “Multimode silicon photonics,” Nanophotonics, vol. 8, pp. 227–247, 2018.

2017 (5)

Cisco Systems, Inc., “Cisco global cloud index: Forecast and methodology, 2016–2021,” White Paper, 2017.

M. D. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under the European Code of conduct for data centre energy efficiency,” Energies, vol. 10, no. 10, 2017, Art. no. .

D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightw. Technol., vol. 35, no. 3, pp. 346–396, 2017.

Q. Huang, W. Jin, and K. S. Chiang, “Broadband mode switch based on a three-dimensional waveguide Mach-Zehnder interferometer,” Opt. Lett., vol. 42, no. 23, pp. 4877–4880, 2017.

R. B. Priti, H. P. Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, “Mode selecting switch using multimode interference for on-chip optical interconnects,” Opt. Lett., vol. 42, no. 20, pp. 4131–4134, 2017.

2016 (1)

2015 (5)

H. D. Thackeret al., “An all-solid-state, WDM silicon photonic digital link for chip-to-chip communications,” Opt. Express, vol. 23, no. 10, pp. 12808–12822, 2015.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015.

S. Paulet al., “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 436–443, 2015.

D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, and Q. Yang, “Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers,” Opt. Express, vol. 23, no. 9, pp. 11152–11159, 2015.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” IEEE Photon. J., vol. 7, no. 5, 2015, Art. no. .

2014 (2)

2013 (2)

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects (invited review),” Progr. Electromagn. Res., vol. 143, pp. 773–819, 2013.

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett., vol. 38, no. 5, pp. 733–735, 2013.

2012 (2)

2006 (1)

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2287–2289, 2006.

2002 (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett., vol. 38, no. 25, pp. 1701–1702, 2002.

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightw. Technol., vol. 13, no. 4, pp. 615–627, 1995.

Aalto, T.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2287–2289, 2006.

Aflatouni, F.

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 589–595, 2018.

An, X.

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in Proc. 26th Int. Conf. Comput. Commun. Netw., 2017, pp. 1–8.

Avgerinou, M. D.

M. D. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under the European Code of conduct for data centre energy efficiency,” Energies, vol. 10, no. 10, 2017, Art. no. .

Baehr-Jones, T.

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 589–595, 2018.

Bazargani, H. P.

Bertoldi, P.

M. D. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under the European Code of conduct for data centre energy efficiency,” Energies, vol. 10, no. 10, 2017, Art. no. .

Castellazzi, L.

M. D. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under the European Code of conduct for data centre energy efficiency,” Energies, vol. 10, no. 10, 2017, Art. no. .

Chen, D.

Chen, K.

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photon. Technol. Lett., vol. 30, no. 7, pp. 618–621, 2018.

Chen, S.

Chiang, K. S.

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photon. Technol. Lett., vol. 30, no. 7, pp. 618–621, 2018.

Q. Huang, W. Jin, and K. S. Chiang, “Broadband mode switch based on a three-dimensional waveguide Mach-Zehnder interferometer,” Opt. Lett., vol. 42, no. 23, pp. 4877–4880, 2017.

Dai, D.

C. Li, D. Liu, and D. Dai, “Multimode silicon photonics,” Nanophotonics, vol. 8, pp. 227–247, 2018.

J. Wang, S. Chen, and D. Dai, “Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects,” Opt. Lett., vol. 39, no. 24, pp. 6993–6996, 2014.

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects (invited review),” Progr. Electromagn. Res., vol. 143, pp. 773–819, 2013.

Dargie, W.

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in Proc. 26th Int. Conf. Comput. Commun. Netw., 2017, pp. 1–8.

DeRose, C.

DeRose, C. T.

A. L. Lentine and C. T. DeRose, “Challenges in the implementation of dense wavelength division multiplexed (DWDM) optical interconnects using resonant silicon photonics,” Proc. SPIE, vol. 9772, 2016, Art. no. .

Ding, R.

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 589–595, 2018.

Ellinger, F.

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in Proc. 26th Int. Conf. Comput. Commun. Netw., 2017, pp. 1–8.

Hamad, H.

W. Hamad, M. B. Sanayeh, T. Siepelmeyer, H. Hamad, and W. H. E. Hofmann, “Small-signal analysis of high-performance VCSELs,” IEEE Photon. J., vol. 11, no. 2, 2019, Art. no. .

Hamad, W.

W. Hamad, M. B. Sanayeh, T. Siepelmeyer, H. Hamad, and W. H. E. Hofmann, “Small-signal analysis of high-performance VCSELs,” IEEE Photon. J., vol. 11, no. 2, 2019, Art. no. .

Harjanne, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2287–2289, 2006.

He, S.

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects (invited review),” Progr. Electromagn. Res., vol. 143, pp. 773–819, 2013.

Henker, R.

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in Proc. 26th Int. Conf. Comput. Commun. Netw., 2017, pp. 1–8.

Ho, R.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015.

Hochberg, M.

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 589–595, 2018.

Hofmann, W. H. E.

W. Hamad, M. B. Sanayeh, T. Siepelmeyer, H. Hamad, and W. H. E. Hofmann, “Small-signal analysis of high-performance VCSELs,” IEEE Photon. J., vol. 11, no. 2, 2019, Art. no. .

Huang, Q.

Jin, W.

Kapulainen, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2287–2289, 2006.

Kawaguchi, Y.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett., vol. 38, no. 25, pp. 1701–1702, 2002.

Koike-Akino, T.

M. Teng, K. Kojima, T. Koike-Akino, B. Wang, C. Lin, and K. Parsons, “Broadband SOI mode order converter based on topology optimization,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, Paper Th2A.8.

Kojima, K.

M. Teng, K. Kojima, T. Koike-Akino, B. Wang, C. Lin, and K. Parsons, “Broadband SOI mode order converter based on topology optimization,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, Paper Th2A.8.

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015.

Lentine, A. L.

A. L. Lentine and C. T. DeRose, “Challenges in the implementation of dense wavelength division multiplexed (DWDM) optical interconnects using resonant silicon photonics,” Proc. SPIE, vol. 9772, 2016, Art. no. .

Li, C.

C. Li, D. Liu, and D. Dai, “Multimode silicon photonics,” Nanophotonics, vol. 8, pp. 227–247, 2018.

Li, Y.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” IEEE Photon. J., vol. 7, no. 5, 2015, Art. no. .

Liboiron-Ladouceur, O.

R. B. Priti, G. Zhang, and O. Liboiron-Ladouceur, “3 × 10 Gb/s silicon three-mode switch with $120^\circ$ hybrid based unbalanced Mach-Zehnder interferometer,” Opt. Express, no. 10, pp. 14199–14212, 2019.

R. B. Priti and O. Liboiron-Ladouceur, “A reconfigurable multimode demultiplexer/switch for mode-multiplexed silicon photonics interconnects,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 6, 2018, Art. no. .

R. B. Priti, H. P. Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, “Mode selecting switch using multimode interference for on-chip optical interconnects,” Opt. Lett., vol. 42, no. 20, pp. 4131–4134, 2017.

R. B. Priti, F. Shokraneh, and O. Liboiron-Ladouceur, “Scalable 2 × 2 multimode switch for mode-multiplexed silicon photonics interconnects,” in Proc. Asia Commun. Photon. Conf., 2018, pp. 1–8.

R. B. Priti, Y. Xiong, and O. Liboiron-Ladouceur, “Efficiency improvement of an O-band SOI-MZI thermo-optic matrix switch,” in Proc. IEEE Photon. Conf., 2016, pp. 823–824.

Lin, C.

M. Teng, K. Kojima, T. Koike-Akino, B. Wang, C. Lin, and K. Parsons, “Broadband SOI mode order converter based on topology optimization,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, Paper Th2A.8.

Liu, D.

C. Li, D. Liu, and D. Dai, “Multimode silicon photonics,” Nanophotonics, vol. 8, pp. 227–247, 2018.

Liu, W.

Liu, Y.

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 589–595, 2018.

Love, J. D.

J. D. Love and N. Riesen, “Single-, few-, and multimode y-junctions,” J. Lightw. Technol., vol. 30, no. 3, pp. 304–309, 2012.

Miller, D. A. B.

D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightw. Technol., vol. 35, no. 3, pp. 346–396, 2017.

Molina-Fernández, I.

Moscoso-Mártir, A.

Nielson, G. N.

Ortega-Moñux, A.

Parsons, K.

M. Teng, K. Kojima, T. Koike-Akino, B. Wang, C. Lin, and K. Parsons, “Broadband SOI mode order converter based on topology optimization,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, Paper Th2A.8.

Paul, S.

S. Paulet al., “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 436–443, 2015.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightw. Technol., vol. 13, no. 4, pp. 615–627, 1995.

Priti, R. B.

R. B. Priti, G. Zhang, and O. Liboiron-Ladouceur, “3 × 10 Gb/s silicon three-mode switch with $120^\circ$ hybrid based unbalanced Mach-Zehnder interferometer,” Opt. Express, no. 10, pp. 14199–14212, 2019.

R. B. Priti and O. Liboiron-Ladouceur, “A reconfigurable multimode demultiplexer/switch for mode-multiplexed silicon photonics interconnects,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 6, 2018, Art. no. .

R. B. Priti, H. P. Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, “Mode selecting switch using multimode interference for on-chip optical interconnects,” Opt. Lett., vol. 42, no. 20, pp. 4131–4134, 2017.

R. B. Priti, F. Shokraneh, and O. Liboiron-Ladouceur, “Scalable 2 × 2 multimode switch for mode-multiplexed silicon photonics interconnects,” in Proc. Asia Commun. Photon. Conf., 2018, pp. 1–8.

R. B. Priti, Y. Xiong, and O. Liboiron-Ladouceur, “Efficiency improvement of an O-band SOI-MZI thermo-optic matrix switch,” in Proc. IEEE Photon. Conf., 2016, pp. 823–824.

Qiu, J.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” IEEE Photon. J., vol. 7, no. 5, 2015, Art. no. .

Reyes-Iglesias, P. J.

Riesen, N.

J. D. Love and N. Riesen, “Single-, few-, and multimode y-junctions,” J. Lightw. Technol., vol. 30, no. 3, pp. 304–309, 2012.

Sanayeh, M. B.

W. Hamad, M. B. Sanayeh, T. Siepelmeyer, H. Hamad, and W. H. E. Hofmann, “Small-signal analysis of high-performance VCSELs,” IEEE Photon. J., vol. 11, no. 2, 2019, Art. no. .

Schoeniger, D.

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in Proc. 26th Int. Conf. Comput. Commun. Netw., 2017, pp. 1–8.

Schwetman, H.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015.

Shokraneh, F.

R. B. Priti, F. Shokraneh, and O. Liboiron-Ladouceur, “Scalable 2 × 2 multimode switch for mode-multiplexed silicon photonics interconnects,” in Proc. Asia Commun. Photon. Conf., 2018, pp. 1–8.

Siepelmeyer, T.

W. Hamad, M. B. Sanayeh, T. Siepelmeyer, H. Hamad, and W. H. E. Hofmann, “Small-signal analysis of high-performance VCSELs,” IEEE Photon. J., vol. 11, no. 2, 2019, Art. no. .

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightw. Technol., vol. 13, no. 4, pp. 615–627, 1995.

Solehmainen, K.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2287–2289, 2006.

Sun, C.

Sun, J.

Szilagyi, L.

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in Proc. 26th Int. Conf. Comput. Commun. Netw., 2017, pp. 1–8.

Teng, M.

M. Teng, K. Kojima, T. Koike-Akino, B. Wang, C. Lin, and K. Parsons, “Broadband SOI mode order converter based on topology optimization,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, Paper Th2A.8.

Thacker, H. D.

Thraskias, C. A.

C. A. Thraskiaset al., “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2758–2783, Fourth Quarter 2018.

Tian, Y.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” IEEE Photon. J., vol. 7, no. 5, 2015, Art. no. .

Trotter, D. C.

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett., vol. 38, no. 25, pp. 1701–1702, 2002.

Wang, B.

M. Teng, K. Kojima, T. Koike-Akino, B. Wang, C. Lin, and K. Parsons, “Broadband SOI mode order converter based on topology optimization,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, Paper Th2A.8.

Wang, J.

J. Wang, S. Chen, and D. Dai, “Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects,” Opt. Lett., vol. 39, no. 24, pp. 6993–6996, 2014.

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects (invited review),” Progr. Electromagn. Res., vol. 143, pp. 773–819, 2013.

Wang, L.

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photon. Technol. Lett., vol. 30, no. 7, pp. 618–621, 2018.

D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, and Q. Yang, “Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers,” Opt. Express, vol. 23, no. 9, pp. 11152–11159, 2015.

Wang, Y.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” IEEE Photon. J., vol. 7, no. 5, 2015, Art. no. .

Watts, M. R.

Wu, J.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” IEEE Photon. J., vol. 7, no. 5, 2015, Art. no. .

Xiao, X.

Xiong, Y.

R. B. Priti, H. P. Bazargani, Y. Xiong, and O. Liboiron-Ladouceur, “Mode selecting switch using multimode interference for on-chip optical interconnects,” Opt. Lett., vol. 42, no. 20, pp. 4131–4134, 2017.

R. B. Priti, Y. Xiong, and O. Liboiron-Ladouceur, “Efficiency improvement of an O-band SOI-MZI thermo-optic matrix switch,” in Proc. IEEE Photon. Conf., 2016, pp. 823–824.

Xuan, Z.

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 589–595, 2018.

Yang, L.

Yang, Q.

Yang, W.

Ye, M.

Young, R. W.

Yu, Y.

Zhang, D.

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” IEEE Photon. J., vol. 7, no. 5, 2015, Art. no. .

Zhang, G.

R. B. Priti, G. Zhang, and O. Liboiron-Ladouceur, “3 × 10 Gb/s silicon three-mode switch with $120^\circ$ hybrid based unbalanced Mach-Zehnder interferometer,” Opt. Express, no. 10, pp. 14199–14212, 2019.

Zhang, X.

Zheng, X.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015.

Zi, X.

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photon. Technol. Lett., vol. 30, no. 7, pp. 618–621, 2018.

Zou, J.

Electron. Lett. (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett., vol. 38, no. 25, pp. 1701–1702, 2002.

Energies (1)

M. D. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption under the European Code of conduct for data centre energy efficiency,” Energies, vol. 10, no. 10, 2017, Art. no. .

IEEE Commun. Surveys Tuts. (1)

C. A. Thraskiaset al., “Survey of photonic and plasmonic interconnect technologies for intra-data center and high-performance computing communications,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2758–2783, Fourth Quarter 2018.

IEEE J. Sel. Topics Quantum Electron. (2)

R. B. Priti and O. Liboiron-Ladouceur, “A reconfigurable multimode demultiplexer/switch for mode-multiplexed silicon photonics interconnects,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 6, 2018, Art. no. .

S. Paulet al., “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 436–443, 2015.

IEEE Photon. J. (2)

W. Hamad, M. B. Sanayeh, T. Siepelmeyer, H. Hamad, and W. H. E. Hofmann, “Small-signal analysis of high-performance VCSELs,” IEEE Photon. J., vol. 11, no. 2, 2019, Art. no. .

J. Qiu, D. Zhang, Y. Tian, J. Wu, Y. Li, and Y. Wang, “Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter,” IEEE Photon. J., vol. 7, no. 5, 2015, Art. no. .

IEEE Photon. Technol. Lett. (2)

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photon. Technol. Lett., vol. 30, no. 7, pp. 618–621, 2018.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2287–2289, 2006.

IEEE Trans. Microw. Theory Techn. (1)

Z. Xuan, R. Ding, Y. Liu, T. Baehr-Jones, M. Hochberg, and F. Aflatouni, “A low-power hybrid-integrated 40-Gb/s optical receiver in silicon,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 589–595, 2018.

J. Lightw. Technol. (4)

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightw. Technol., vol. 13, no. 4, pp. 615–627, 1995.

D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightw. Technol., vol. 35, no. 3, pp. 346–396, 2017.

J. D. Love and N. Riesen, “Single-, few-, and multimode y-junctions,” J. Lightw. Technol., vol. 30, no. 3, pp. 304–309, 2012.

Nanophotonics (1)

C. Li, D. Liu, and D. Dai, “Multimode silicon photonics,” Nanophotonics, vol. 8, pp. 227–247, 2018.

Opt. Express (5)

Opt. Lett. (5)

Optica (1)

Progr. Electromagn. Res. (1)

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects (invited review),” Progr. Electromagn. Res., vol. 143, pp. 773–819, 2013.

Other (8)

R. B. Priti, F. Shokraneh, and O. Liboiron-Ladouceur, “Scalable 2 × 2 multimode switch for mode-multiplexed silicon photonics interconnects,” in Proc. Asia Commun. Photon. Conf., 2018, pp. 1–8.

A. L. Lentine and C. T. DeRose, “Challenges in the implementation of dense wavelength division multiplexed (DWDM) optical interconnects using resonant silicon photonics,” Proc. SPIE, vol. 9772, 2016, Art. no. .

W. Dargie, D. Schoeniger, L. Szilagyi, X. An, R. Henker, and F. Ellinger, “A highly adaptive and energy-efficient optical interconnect for on-board server communications,” in Proc. 26th Int. Conf. Comput. Commun. Netw., 2017, pp. 1–8.

Cisco Systems, Inc., “Cisco global cloud index: Forecast and methodology, 2016–2021,” White Paper, 2017.

M. Teng, K. Kojima, T. Koike-Akino, B. Wang, C. Lin, and K. Parsons, “Broadband SOI mode order converter based on topology optimization,” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, Paper Th2A.8.

NanoSOI fabrication process. [Online]. Available: http://www.appliednt.com/nanosoi. Accessed on: , 2019.

MMI coupler. [Online]. Available: https://www.lumerical.com/. accessed: , 2019.

R. B. Priti, Y. Xiong, and O. Liboiron-Ladouceur, “Efficiency improvement of an O-band SOI-MZI thermo-optic matrix switch,” in Proc. IEEE Photon. Conf., 2016, pp. 823–824.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.