Abstract

Silicon photonics has enormous potential for ultrahigh-capacity coherent optical transceivers. We demonstrate an in-phase and quadrature (IQ) modulator using silicon photonic traveling-wave modulators optimized for higher order quadrature amplitude modulation (QAM). Its optical and RF characteristics are studied thoroughly in simulation and experiment. We propose a system-orientated approach to optimization of the silicon photonic IQ modulator, which minimizes modulator-induced power penalty in a QAM transmission link. We examine the tradeoff between modulation efficiency and bandwidth for the optimal combination of modulator length and bias voltage to maximize the clear distance between adjacent constellation points. This optimum depends on baud rate and modulation format, as well as achievable driving voltage swing. Measured results confirm our prediction using the proposed methodology. Without precompensating bandwidth limitation of the modulator, net data rates up to 232 Gb/s (70 Gbaud 16-QAM) on single polarization are captured, indicating great potential for 400+ Gb/s dual-polarization transmission.

© 2019 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription