Abstract

In this paper, a non-line-of-sight multiple-input multiple-output space and time division multiple access optical camera communications system is proposed for an indoor environment. Mask matching and equal-gain combining (EGC) schemes as well as differential modulation and frame subtraction are used. We propose a unique packet structure to label the transmitters and a new detection method for data extraction from the captured video streams. We outline a comprehensive theoretical model and have developed an experimental testbed to evaluate the performance of the proposed system. The results highlight that zooming and defocusing of the camera does not have a significant impact on the system performance, therefore the aperture can be set to its maximum value. The system performs well over a link span of 10 m with a low transmit power of 12 mW and in the presence of ambient light due to the non-linear conversion of RAW to JPEG. Using mask matching and EGC improves the tolerance of the system to the noise.

© 2019 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription