Abstract

We demonstrate differential mode delay (DMD) unmanaged 2500-km 12-core × 3-mode multicore few-mode fiber (MC-FMF) and 6300-km 3-mode FMF transmission. Mode-division multiplexed signals exhibit different transmission behavior depending on excited spatial modes in the presence of mode-relevant physical phenomena including DMD and mode-dependent loss (MDL). In weakly coupled FMF transmission over long distance where overall DMD and MDL grow almost linearly with fiber length, these phenomena restrict achievable information capacity and/or transmission reach. This paper presents a newly developed transmission scheme and a multiple-input multiple-output (MIMO) signal processing technique that are designed for achieving long-haul FMF transmission. Permutating spatial channels cyclically at each span induced quasi-strongly coupled transmission regime and hence significantly suppressed DMD-induced pulse broadening. Layered MIMO signal processing comprising multiple stages performing successive signal detection and intermodal interference canceling mitigated MDL impact with more than 2-dB Q-factor improvement. The combined use of these techniques enabled us to achieve the first-ever transoceanic-class long-haul FMF transmission.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, “New generation optical infrastructure technologies: ‘EXAT initiative’ towards 2020 and beyond,” in Proc. 14th OptoElectronics Commun. Conf., Hong Kong, China, 2009, Paper FT4.
  2. H. Takaraet al., “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., Amsterdam, The Netherlands, 2012, Paper Th.3.C.1.
  3. B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. 41st Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper PDP.3.1.
  4. D. Somaet al., “10.16 Peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C + L band,” in Proc. 43rd Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Th.PDP.A.1.
  5. A. Turukhinet al., “105.1 Tb/s power-efficient transmission over 14,350 km using a 12-core fiber,” in Proc. 39th Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, 2016, Paper Th4C.1.
  6. J. van Weerdenburget al., “Mode-multiplexed 16-QAM transmission over 2400-km large-effective-area depressed-cladding 3-mode fiber,” in Proc. 43rd Opt. Fiber Commun. Conf. Exhib., San Diego, CA, USA, 2018, Paper W4C.2.
  7. G. Rademacheret al., “159 Tbit/s C $+$ L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Proc. 43rd Opt. Fiber Commun. Conf. Exhib., San Diego, CA, USA, 2018, Paper Th4C.4.
  8. K. Shibaharaet al., “DMD-unmanaged long-haul SDM transmission over 2500-km 12-core × 3-mode MC-FMF and 6300-km 3-mode FMF employing intermodal interference cancelling technique,” in Proc. 43rd Opt. Fiber Commun. Conf. Exhib., San Diego, CA, USA, 2018, Paper Th4C.6.
  9. G. Rademacheret al., “3500-km mode-multiplexed transmission through a three-mode graded-index few-mode fiber link,” in Proc. 43rd Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper M.2.E.4.
  10. J. M. Kahn, K.-P. Ho, and M. B. Shemirani, “Mode coupling effects in multi-mode fibers,” in Proc. 37th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2012, Paper OW3D.3.
  11. A. Lobatoet al., “Impact of mode coupling on the mode-dependent loss tolerance in few-mode fiber transmission,” Opt. Express, vol. 20, pp. 29776–29783, 2012.
  12. D. Somaet al., “2.05 Peta-bit/s super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band,” in Proc. 41st Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper PDP 3.2.
  13. R. Ryfet al., “10-mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in Proc. 41st Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper PDP 3.3.
  14. N. K. Fontaineet al., “30 × 30 MIMO transmission over 15 spatial modes,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2015, Paper Th5C.1.
  15. R. Ryfet al., “708-km combined WDM/SDM transmission over few-mode fiber supporting 12 spatial and polarization modes,” in Proc. 39th Eur. Conf. Exhib. Opt. Commun., London, U.K., 2013, Paper We.2.D.1.
  16. V. Sleifferet al., “73.7 Tb/s (96 $\times\; 3\;\times$ 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., Opt. Soc. Amer., Amsterdam, The Netherlands, 2012, Paper Th.3.C.4.
  17. R. Ryfet al., “Space-division multiplexed transmission over 4200 km 3-core microstructured fiber,” in Proc. 37th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2012, Paper PDP5C.2.
  18. S. O. Arik, K. P. Ho, and J. M. Kahn, “Group delay management and multiinput multioutput signal processing in mode-division multiplexing systems,” J. Lightw. Technol., vol. 34, no. 11, pp. 2867–2880, 2016.
  19. Y. Wakayama, D. Soma, K. Igarashi, H. Taga, and T. Tsuritani, “Intermediate mode interchange for reduction of differential mode-group delay in weakly-coupled 6-mode fiber transmission line,” in Proc. 41th Opt. Fiber Commun. Conf. Exhib., 2016, Paper M3E.6.
  20. J. Fang, A. Li, and W. Shieh, “Low-DMD few-mode fiber with distributed long-period grating,” Opt. Lett., vol. 40, no. 17, pp. 3937–3940, 2015.
  21. H. Liu, H. Wen, R. Amezcua-Correa, P. Sillard, and G. Li, “Reducing group delay spread in a 9-LP mode FMF using uniform long-period gratings,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.5.
  22. A. Hasegawa-Urushibara, T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and K. Nakajima, “Experimental verification of mode-dependent loss reduction by mode coupling using long-period grating,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.6.
  23. K. Shibahara, T. Mizuno, and Y. Miyamoto, “LDPC-coded FMF transmission employing unreplicated successive interference cancellation for MDL-impact mitigation,” in Proc. 43rd Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Th.1.D.4.
  24. K. Shibaharaet al., “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” J. Lightw. Technol., vol. 34, no. 1, pp. 196–204, 2016.
  25. S. D. Personick, “Time dispersion in dielectric waveguides,” Bell Syst. Tech. J., vol. 50, pp. 843–859, 1971.
  26. R. Olshansky, “Mode coupling effects in graded-index optical fibers,” Appl. Opt., vol. 14, pp. 935–945, 1975.
  27. L. G. Cohen and S. D. Personick, “Length dependence of pulse dispersion in a long multimode optical fiber,” Appl. Opt., vol. 14, pp. 1357–1360, 1975.
  28. K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron., vol. 16, no. 3, pp. 356–362, 1980.
  29. S. O. Arik, J. M. Kahn, and K. P. Ho, “MIMO signal processing for mode-division multiplexing: An overview of channel models and signal processing architectures,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 25–34, 2014.
  30. S. Chandrasekharet al., “Wdm/sdm transmission of 10 × 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km b/s/Hz,” in Proc. 37th Eur. Conf. Exhib. Opt. Commun. (ECOC 2011), Geneva, Switzerland, Sep. 2011, Paper Th.13.C.4.
  31. P. W. Wolniansky, G. J. Foschini, G. Golden, and R. A. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” in Proc. URSI Int. Symp. Signals, Syst., Electron, 1998, pp. 295–300.
  32. S. ten Brink, J. Speidel, and R.-H. Yan, “Iterative demapping and decoding for multilevel modulation,” in Proc. IEEE GLOBECOM 1998 (Cat. NO.98CH36250), Sydney, NSW, Australia, 1998, vol. 1, pp. 579–584.
  33. J. Hagenauer, “The EXIT chart-introduction to extrinsic information transfer in iterative processing,” in Proc. 12th Eur. Signal Process. Conf., 2004, pp. 1541–1548.
  34. ETSI, “User guidelines for the second generation system for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2),” Eur. Telecommun. Standards Inst., Sophia Antipolis, France, Tech. Rep., , 2015.
  35. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2016.
  36. H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett., vol. 51, no. 2, pp. 172–173, 2015.
  37. T. Sakamotoet al., “High spatial density six-mode seven-core fibre for repeated dense SDM transmission,” in Proc. 43rd Eur. Conf. Opt. Commun. (ECOC 2017), Gothenburg, Sweden, Sep. 2017, Paper Th.PDP.A.6.

2016 (3)

S. O. Arik, K. P. Ho, and J. M. Kahn, “Group delay management and multiinput multioutput signal processing in mode-division multiplexing systems,” J. Lightw. Technol., vol. 34, no. 11, pp. 2867–2880, 2016.

K. Shibaharaet al., “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” J. Lightw. Technol., vol. 34, no. 1, pp. 196–204, 2016.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2016.

2015 (2)

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett., vol. 51, no. 2, pp. 172–173, 2015.

J. Fang, A. Li, and W. Shieh, “Low-DMD few-mode fiber with distributed long-period grating,” Opt. Lett., vol. 40, no. 17, pp. 3937–3940, 2015.

2014 (1)

S. O. Arik, J. M. Kahn, and K. P. Ho, “MIMO signal processing for mode-division multiplexing: An overview of channel models and signal processing architectures,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 25–34, 2014.

2012 (1)

1998 (1)

S. ten Brink, J. Speidel, and R.-H. Yan, “Iterative demapping and decoding for multilevel modulation,” in Proc. IEEE GLOBECOM 1998 (Cat. NO.98CH36250), Sydney, NSW, Australia, 1998, vol. 1, pp. 579–584.

1980 (1)

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron., vol. 16, no. 3, pp. 356–362, 1980.

1975 (2)

1971 (1)

S. D. Personick, “Time dispersion in dielectric waveguides,” Bell Syst. Tech. J., vol. 50, pp. 843–859, 1971.

Amezcua-Correa, R.

H. Liu, H. Wen, R. Amezcua-Correa, P. Sillard, and G. Li, “Reducing group delay spread in a 9-LP mode FMF using uniform long-period gratings,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.5.

Arik, S. O.

S. O. Arik, K. P. Ho, and J. M. Kahn, “Group delay management and multiinput multioutput signal processing in mode-division multiplexing systems,” J. Lightw. Technol., vol. 34, no. 11, pp. 2867–2880, 2016.

S. O. Arik, J. M. Kahn, and K. P. Ho, “MIMO signal processing for mode-division multiplexing: An overview of channel models and signal processing architectures,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 25–34, 2014.

Brink, S. ten

S. ten Brink, J. Speidel, and R.-H. Yan, “Iterative demapping and decoding for multilevel modulation,” in Proc. IEEE GLOBECOM 1998 (Cat. NO.98CH36250), Sydney, NSW, Australia, 1998, vol. 1, pp. 579–584.

Chandrasekhar, S.

S. Chandrasekharet al., “Wdm/sdm transmission of 10 × 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km b/s/Hz,” in Proc. 37th Eur. Conf. Exhib. Opt. Commun. (ECOC 2011), Geneva, Switzerland, Sep. 2011, Paper Th.13.C.4.

Cohen, L. G.

Fang, J.

Fontaine, N. K.

N. K. Fontaineet al., “30 × 30 MIMO transmission over 15 spatial modes,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2015, Paper Th5C.1.

Foschini, G. J.

P. W. Wolniansky, G. J. Foschini, G. Golden, and R. A. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” in Proc. URSI Int. Symp. Signals, Syst., Electron, 1998, pp. 295–300.

Golden, G.

P. W. Wolniansky, G. J. Foschini, G. Golden, and R. A. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” in Proc. URSI Int. Symp. Signals, Syst., Electron, 1998, pp. 295–300.

Hagenauer, J.

J. Hagenauer, “The EXIT chart-introduction to extrinsic information transfer in iterative processing,” in Proc. 12th Eur. Signal Process. Conf., 2004, pp. 1541–1548.

Hasegawa-Urushibara, A.

A. Hasegawa-Urushibara, T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and K. Nakajima, “Experimental verification of mode-dependent loss reduction by mode coupling using long-period grating,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.6.

Ho, K. P.

S. O. Arik, K. P. Ho, and J. M. Kahn, “Group delay management and multiinput multioutput signal processing in mode-division multiplexing systems,” J. Lightw. Technol., vol. 34, no. 11, pp. 2867–2880, 2016.

S. O. Arik, J. M. Kahn, and K. P. Ho, “MIMO signal processing for mode-division multiplexing: An overview of channel models and signal processing architectures,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 25–34, 2014.

Ho, K.-P.

J. M. Kahn, K.-P. Ho, and M. B. Shemirani, “Mode coupling effects in multi-mode fibers,” in Proc. 37th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2012, Paper OW3D.3.

Hosokawa, T.

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett., vol. 51, no. 2, pp. 172–173, 2015.

Ichii, K.

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett., vol. 51, no. 2, pp. 172–173, 2015.

Igarashi, K.

Y. Wakayama, D. Soma, K. Igarashi, H. Taga, and T. Tsuritani, “Intermediate mode interchange for reduction of differential mode-group delay in weakly-coupled 6-mode fiber transmission line,” in Proc. 41th Opt. Fiber Commun. Conf. Exhib., 2016, Paper M3E.6.

Kahn, J. M.

S. O. Arik, K. P. Ho, and J. M. Kahn, “Group delay management and multiinput multioutput signal processing in mode-division multiplexing systems,” J. Lightw. Technol., vol. 34, no. 11, pp. 2867–2880, 2016.

S. O. Arik, J. M. Kahn, and K. P. Ho, “MIMO signal processing for mode-division multiplexing: An overview of channel models and signal processing architectures,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 25–34, 2014.

J. M. Kahn, K.-P. Ho, and M. B. Shemirani, “Mode coupling effects in multi-mode fibers,” in Proc. 37th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2012, Paper OW3D.3.

Kitayama, K.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron., vol. 16, no. 3, pp. 356–362, 1980.

Li, A.

Li, G.

H. Liu, H. Wen, R. Amezcua-Correa, P. Sillard, and G. Li, “Reducing group delay spread in a 9-LP mode FMF using uniform long-period gratings,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.5.

Liu, H.

H. Liu, H. Wen, R. Amezcua-Correa, P. Sillard, and G. Li, “Reducing group delay spread in a 9-LP mode FMF using uniform long-period gratings,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.5.

Lobato, A.

Matsuo, S.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2016.

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett., vol. 51, no. 2, pp. 172–173, 2015.

Miyamoto, Y.

K. Shibahara, T. Mizuno, and Y. Miyamoto, “LDPC-coded FMF transmission employing unreplicated successive interference cancellation for MDL-impact mitigation,” in Proc. 43rd Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Th.1.D.4.

Mizuno, T.

K. Shibahara, T. Mizuno, and Y. Miyamoto, “LDPC-coded FMF transmission employing unreplicated successive interference cancellation for MDL-impact mitigation,” in Proc. 43rd Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Th.1.D.4.

Mori, T.

A. Hasegawa-Urushibara, T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and K. Nakajima, “Experimental verification of mode-dependent loss reduction by mode coupling using long-period grating,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.6.

Morioka, T.

T. Morioka, “New generation optical infrastructure technologies: ‘EXAT initiative’ towards 2020 and beyond,” in Proc. 14th OptoElectronics Commun. Conf., Hong Kong, China, 2009, Paper FT4.

Nakajima, K.

A. Hasegawa-Urushibara, T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and K. Nakajima, “Experimental verification of mode-dependent loss reduction by mode coupling using long-period grating,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.6.

Olshansky, R.

Ono, H.

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett., vol. 51, no. 2, pp. 172–173, 2015.

Personick, S. D.

L. G. Cohen and S. D. Personick, “Length dependence of pulse dispersion in a long multimode optical fiber,” Appl. Opt., vol. 14, pp. 1357–1360, 1975.

S. D. Personick, “Time dispersion in dielectric waveguides,” Bell Syst. Tech. J., vol. 50, pp. 843–859, 1971.

Puttnam, B. J.

B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. 41st Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper PDP.3.1.

Rademacher, G.

G. Rademacheret al., “159 Tbit/s C $+$ L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Proc. 43rd Opt. Fiber Commun. Conf. Exhib., San Diego, CA, USA, 2018, Paper Th4C.4.

G. Rademacheret al., “3500-km mode-multiplexed transmission through a three-mode graded-index few-mode fiber link,” in Proc. 43rd Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper M.2.E.4.

Ryf, R.

R. Ryfet al., “Space-division multiplexed transmission over 4200 km 3-core microstructured fiber,” in Proc. 37th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2012, Paper PDP5C.2.

R. Ryfet al., “708-km combined WDM/SDM transmission over few-mode fiber supporting 12 spatial and polarization modes,” in Proc. 39th Eur. Conf. Exhib. Opt. Commun., London, U.K., 2013, Paper We.2.D.1.

R. Ryfet al., “10-mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in Proc. 41st Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper PDP 3.3.

Saitoh, K.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2016.

Sakamoto, T.

T. Sakamotoet al., “High spatial density six-mode seven-core fibre for repeated dense SDM transmission,” in Proc. 43rd Eur. Conf. Opt. Commun. (ECOC 2017), Gothenburg, Sweden, Sep. 2017, Paper Th.PDP.A.6.

A. Hasegawa-Urushibara, T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and K. Nakajima, “Experimental verification of mode-dependent loss reduction by mode coupling using long-period grating,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.6.

Seikai, S.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron., vol. 16, no. 3, pp. 356–362, 1980.

Shemirani, M. B.

J. M. Kahn, K.-P. Ho, and M. B. Shemirani, “Mode coupling effects in multi-mode fibers,” in Proc. 37th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2012, Paper OW3D.3.

Shibahara, K.

K. Shibaharaet al., “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” J. Lightw. Technol., vol. 34, no. 1, pp. 196–204, 2016.

K. Shibahara, T. Mizuno, and Y. Miyamoto, “LDPC-coded FMF transmission employing unreplicated successive interference cancellation for MDL-impact mitigation,” in Proc. 43rd Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Th.1.D.4.

K. Shibaharaet al., “DMD-unmanaged long-haul SDM transmission over 2500-km 12-core × 3-mode MC-FMF and 6300-km 3-mode FMF employing intermodal interference cancelling technique,” in Proc. 43rd Opt. Fiber Commun. Conf. Exhib., San Diego, CA, USA, 2018, Paper Th4C.6.

Shieh, W.

Sillard, P.

H. Liu, H. Wen, R. Amezcua-Correa, P. Sillard, and G. Li, “Reducing group delay spread in a 9-LP mode FMF using uniform long-period gratings,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.5.

Sleiffer, V.

V. Sleifferet al., “73.7 Tb/s (96 $\times\; 3\;\times$ 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., Opt. Soc. Amer., Amsterdam, The Netherlands, 2012, Paper Th.3.C.4.

Soma, D.

D. Somaet al., “2.05 Peta-bit/s super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band,” in Proc. 41st Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper PDP 3.2.

Y. Wakayama, D. Soma, K. Igarashi, H. Taga, and T. Tsuritani, “Intermediate mode interchange for reduction of differential mode-group delay in weakly-coupled 6-mode fiber transmission line,” in Proc. 41th Opt. Fiber Commun. Conf. Exhib., 2016, Paper M3E.6.

D. Somaet al., “10.16 Peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C + L band,” in Proc. 43rd Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Th.PDP.A.1.

Speidel, J.

S. ten Brink, J. Speidel, and R.-H. Yan, “Iterative demapping and decoding for multilevel modulation,” in Proc. IEEE GLOBECOM 1998 (Cat. NO.98CH36250), Sydney, NSW, Australia, 1998, vol. 1, pp. 579–584.

Taga, H.

Y. Wakayama, D. Soma, K. Igarashi, H. Taga, and T. Tsuritani, “Intermediate mode interchange for reduction of differential mode-group delay in weakly-coupled 6-mode fiber transmission line,” in Proc. 41th Opt. Fiber Commun. Conf. Exhib., 2016, Paper M3E.6.

Takara, H.

H. Takaraet al., “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., Amsterdam, The Netherlands, 2012, Paper Th.3.C.1.

Tsuritani, T.

Y. Wakayama, D. Soma, K. Igarashi, H. Taga, and T. Tsuritani, “Intermediate mode interchange for reduction of differential mode-group delay in weakly-coupled 6-mode fiber transmission line,” in Proc. 41th Opt. Fiber Commun. Conf. Exhib., 2016, Paper M3E.6.

Turukhin, A.

A. Turukhinet al., “105.1 Tb/s power-efficient transmission over 14,350 km using a 12-core fiber,” in Proc. 39th Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, 2016, Paper Th4C.1.

Uchida, N.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron., vol. 16, no. 3, pp. 356–362, 1980.

Valenzuela, R. A.

P. W. Wolniansky, G. J. Foschini, G. Golden, and R. A. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” in Proc. URSI Int. Symp. Signals, Syst., Electron, 1998, pp. 295–300.

Wada, M.

A. Hasegawa-Urushibara, T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and K. Nakajima, “Experimental verification of mode-dependent loss reduction by mode coupling using long-period grating,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.6.

Wakayama, Y.

Y. Wakayama, D. Soma, K. Igarashi, H. Taga, and T. Tsuritani, “Intermediate mode interchange for reduction of differential mode-group delay in weakly-coupled 6-mode fiber transmission line,” in Proc. 41th Opt. Fiber Commun. Conf. Exhib., 2016, Paper M3E.6.

Weerdenburg, J. van

J. van Weerdenburget al., “Mode-multiplexed 16-QAM transmission over 2400-km large-effective-area depressed-cladding 3-mode fiber,” in Proc. 43rd Opt. Fiber Commun. Conf. Exhib., San Diego, CA, USA, 2018, Paper W4C.2.

Wen, H.

H. Liu, H. Wen, R. Amezcua-Correa, P. Sillard, and G. Li, “Reducing group delay spread in a 9-LP mode FMF using uniform long-period gratings,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.5.

Wolniansky, P. W.

P. W. Wolniansky, G. J. Foschini, G. Golden, and R. A. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” in Proc. URSI Int. Symp. Signals, Syst., Electron, 1998, pp. 295–300.

Yamada, M.

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett., vol. 51, no. 2, pp. 172–173, 2015.

Yamamoto, T.

A. Hasegawa-Urushibara, T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and K. Nakajima, “Experimental verification of mode-dependent loss reduction by mode coupling using long-period grating,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.6.

Yan, R.-H.

S. ten Brink, J. Speidel, and R.-H. Yan, “Iterative demapping and decoding for multilevel modulation,” in Proc. IEEE GLOBECOM 1998 (Cat. NO.98CH36250), Sydney, NSW, Australia, 1998, vol. 1, pp. 579–584.

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

S. D. Personick, “Time dispersion in dielectric waveguides,” Bell Syst. Tech. J., vol. 50, pp. 843–859, 1971.

Electron. Lett. (1)

H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, and M. Yamada, “Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre,” Electron. Lett., vol. 51, no. 2, pp. 172–173, 2015.

IEEE J. Quantum Electron. (1)

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron., vol. 16, no. 3, pp. 356–362, 1980.

IEEE Signal Process. Mag. (1)

S. O. Arik, J. M. Kahn, and K. P. Ho, “MIMO signal processing for mode-division multiplexing: An overview of channel models and signal processing architectures,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 25–34, 2014.

J. Lightw. Technol. (3)

K. Shibaharaet al., “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” J. Lightw. Technol., vol. 34, no. 1, pp. 196–204, 2016.

S. O. Arik, K. P. Ho, and J. M. Kahn, “Group delay management and multiinput multioutput signal processing in mode-division multiplexing systems,” J. Lightw. Technol., vol. 34, no. 11, pp. 2867–2880, 2016.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightw. Technol., vol. 34, no. 1, pp. 55–66, 2016.

Opt. Express (1)

Opt. Lett. (1)

Proc. 37th Eur. Conf. Exhib. Opt. Commun. (ECOC 2011) (1)

S. Chandrasekharet al., “Wdm/sdm transmission of 10 × 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km b/s/Hz,” in Proc. 37th Eur. Conf. Exhib. Opt. Commun. (ECOC 2011), Geneva, Switzerland, Sep. 2011, Paper Th.13.C.4.

Proc. 43rd Eur. Conf. Opt. Commun. (ECOC 2017) (1)

T. Sakamotoet al., “High spatial density six-mode seven-core fibre for repeated dense SDM transmission,” in Proc. 43rd Eur. Conf. Opt. Commun. (ECOC 2017), Gothenburg, Sweden, Sep. 2017, Paper Th.PDP.A.6.

Proc. IEEE GLOBECOM 1998 (Cat. NO.98CH36250) (1)

S. ten Brink, J. Speidel, and R.-H. Yan, “Iterative demapping and decoding for multilevel modulation,” in Proc. IEEE GLOBECOM 1998 (Cat. NO.98CH36250), Sydney, NSW, Australia, 1998, vol. 1, pp. 579–584.

Other (23)

J. Hagenauer, “The EXIT chart-introduction to extrinsic information transfer in iterative processing,” in Proc. 12th Eur. Signal Process. Conf., 2004, pp. 1541–1548.

ETSI, “User guidelines for the second generation system for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2),” Eur. Telecommun. Standards Inst., Sophia Antipolis, France, Tech. Rep., , 2015.

P. W. Wolniansky, G. J. Foschini, G. Golden, and R. A. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” in Proc. URSI Int. Symp. Signals, Syst., Electron, 1998, pp. 295–300.

Y. Wakayama, D. Soma, K. Igarashi, H. Taga, and T. Tsuritani, “Intermediate mode interchange for reduction of differential mode-group delay in weakly-coupled 6-mode fiber transmission line,” in Proc. 41th Opt. Fiber Commun. Conf. Exhib., 2016, Paper M3E.6.

H. Liu, H. Wen, R. Amezcua-Correa, P. Sillard, and G. Li, “Reducing group delay spread in a 9-LP mode FMF using uniform long-period gratings,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.5.

A. Hasegawa-Urushibara, T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and K. Nakajima, “Experimental verification of mode-dependent loss reduction by mode coupling using long-period grating,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2017, Paper Tu2J.6.

K. Shibahara, T. Mizuno, and Y. Miyamoto, “LDPC-coded FMF transmission employing unreplicated successive interference cancellation for MDL-impact mitigation,” in Proc. 43rd Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Th.1.D.4.

D. Somaet al., “2.05 Peta-bit/s super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band,” in Proc. 41st Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper PDP 3.2.

R. Ryfet al., “10-mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in Proc. 41st Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper PDP 3.3.

N. K. Fontaineet al., “30 × 30 MIMO transmission over 15 spatial modes,” in Proc. 40th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2015, Paper Th5C.1.

R. Ryfet al., “708-km combined WDM/SDM transmission over few-mode fiber supporting 12 spatial and polarization modes,” in Proc. 39th Eur. Conf. Exhib. Opt. Commun., London, U.K., 2013, Paper We.2.D.1.

V. Sleifferet al., “73.7 Tb/s (96 $\times\; 3\;\times$ 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., Opt. Soc. Amer., Amsterdam, The Netherlands, 2012, Paper Th.3.C.4.

R. Ryfet al., “Space-division multiplexed transmission over 4200 km 3-core microstructured fiber,” in Proc. 37th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2012, Paper PDP5C.2.

T. Morioka, “New generation optical infrastructure technologies: ‘EXAT initiative’ towards 2020 and beyond,” in Proc. 14th OptoElectronics Commun. Conf., Hong Kong, China, 2009, Paper FT4.

H. Takaraet al., “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., Amsterdam, The Netherlands, 2012, Paper Th.3.C.1.

B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. 41st Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper PDP.3.1.

D. Somaet al., “10.16 Peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C + L band,” in Proc. 43rd Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Th.PDP.A.1.

A. Turukhinet al., “105.1 Tb/s power-efficient transmission over 14,350 km using a 12-core fiber,” in Proc. 39th Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, 2016, Paper Th4C.1.

J. van Weerdenburget al., “Mode-multiplexed 16-QAM transmission over 2400-km large-effective-area depressed-cladding 3-mode fiber,” in Proc. 43rd Opt. Fiber Commun. Conf. Exhib., San Diego, CA, USA, 2018, Paper W4C.2.

G. Rademacheret al., “159 Tbit/s C $+$ L band transmission over 1045 km 3-mode graded-index few-mode fiber,” in Proc. 43rd Opt. Fiber Commun. Conf. Exhib., San Diego, CA, USA, 2018, Paper Th4C.4.

K. Shibaharaet al., “DMD-unmanaged long-haul SDM transmission over 2500-km 12-core × 3-mode MC-FMF and 6300-km 3-mode FMF employing intermodal interference cancelling technique,” in Proc. 43rd Opt. Fiber Commun. Conf. Exhib., San Diego, CA, USA, 2018, Paper Th4C.6.

G. Rademacheret al., “3500-km mode-multiplexed transmission through a three-mode graded-index few-mode fiber link,” in Proc. 43rd Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper M.2.E.4.

J. M. Kahn, K.-P. Ho, and M. B. Shemirani, “Mode coupling effects in multi-mode fibers,” in Proc. 37th Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2012, Paper OW3D.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.