Abstract

We experimentally demonstrate the lossless transmission of wavelength division multiplexing (WDM) signals through a silicon-photonics 4 × 4 switch with a flip-chip bonded 4-channel semiconductor optical amplifier (SOA). We first optimized the input power and gain of the SOA-integrated switch to obtain the optimum operation point in terms of the transmitted signal quality. We then performed simultaneous transmission of 8-ch, 32-Gbaud, SP 16-QAM WDM (800 Gb/s) signals through all the four paths of the switch. The effect of crosstalk on the switch was very small, and thus could not be observed. We also examined multistage (up to four stages) transmission of the signals with circulating configurations. We show that even for a 4-stage transmission, the bit error rate of the transmitted signal is below the 20% forward-error-correction limit. Finally, we discuss approaches to improve the optical signal-to-noise ratio of the transmitted signals to enlarge the signal quality margin and increase the possible number of the cascading stages and/or WDM channels for wide applications.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.
  2. K. Suzukiet al., “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express, vol. 25, no. 7, pp. 7538–7546, 2017.
  3. K. Suzukiet al., “2.5-dB loss, 100-nm operating bandwidth, and low power consumption strictly-non-blocking 8 × 8 Si switch,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, pp. 1–3.
  4. L. Luet al., “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express, vol. 24, no. 9, pp. 9295–9307, 2016.
  5. K. Tanizawaet al., “Ultra-compact 32 × 32 strictly-non- blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express, vol. 23, no. 13, pp. 17599–17606, 2015.
  6. K. Suzukiet al., “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Th4B.5, pp. 1–3.
  7. K. Ishiiet al., “Energy consumption and traffic scaling of dynamic optical path networks,” in Proc. SPIE, San Francisco, CA, USA, 2013, p. 86460A.
  8. K. Uedaet al., “Novel intra- and inter-datacenter converged network exploiting space- and wavelength-dimensional switches,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, pp. 1–3.
  9. C. Clos, “A study of nonblocking switching networks,” Bell Syst. Tech. J., vol. 32, pp. 407–424, 1953.
  10. N. Kamitaniet al., “Experimental study on impact of SOA nonlinear phase noise in 40 Gbps coherent 16 QAM transmissions,” in Proc. Eur. Conf. Opt. Commun., Amsterdam, The Netherlands, 2012, P1.04, pp. 1–3.
  11. H. Wanget al., “Demonstration of a lossless monolithic 16 × 16 QW SOA switch,” in Proc. Eur. Conf. Opt. Commun., Vienna, Austria, 2009, PD1.7, pp. 1–2.
  12. R. Stabileet al., “Monolithic active-passive 16 × 16 optoelectronic switch,” Opt. Lett., vol. 37, no. 22, pp. 4666–4668, 2012.
  13. Q. Chenget al., “Demonstration of the feasibility of large-port-count optical switching using a hybrid Mach-Zehnder interferometer-semiconductor optical amplifier switch module in a recirculating loop,” Opt. Lett., vol. 39, no. 18, pp. 5244–5247, 2014.
  14. Q. Chenget al., “Photonic switching in high performance datacenters,” Opt. Express, vol. 26, no. 12, pp. 16022–16043, 2018.
  15. L. Schareset al., “A gain-integrated silicon photonic carrier with SOA-array for scalable optical switch fabrics,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Th3F.5, pp. 1–3.
  16. T. Matsumotoet al., “In-line optical amplification for Si waveguides on 1 × 8 splitter and selector by flip-chip bonded InP-SOAs,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Th1C.1, pp. 1–3.
  17. T. Matsumotoet al., “In-line optical amplification for silicon photonics platform by flip-chip bonded InP-SOAs,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Tu2A.4, pp. 1–3.
  18. R. Konoikeet al., “Lossless operation of SOA-integrated silicon photonics switch for 8 × 32-Gbaud 16-QAM WDM signals,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Th4B.6, pp. 1–3.
  19. T. Inoueet al., “Adaptive adjustment of reference constellation for demodulating 16 QAM signal with intrinsic distortion due to imperfect modulation,” Opt. Express, vol. 21, no. 24, pp. 29120–29128, 2013.
  20. T. Inoueet al., “Carrier recovery for M-QAM signals based on a block estimation process with Kalman filter,” Opt. Express, vol. 22, no. 13, pp. 15376–15387, 2014.
  21. A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. T. Taiba, and F. Forghieri, “Statistical characterization of PM-QPSK signals after propagation in uncompressed fiber links,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, P4.07, pp. 1–3.
  22. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 1041–1135, 2011.
  23. D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol., vol. 6, no. 2, pp. 122–154, 2000.
  24. K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Tech. Lett., vol. 17, no. 5, pp. 974–976, 2005.

2018 (1)

2017 (1)

2016 (1)

2015 (1)

2014 (2)

2013 (1)

2012 (1)

2011 (2)

S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 1041–1135, 2011.

2005 (1)

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Tech. Lett., vol. 17, no. 5, pp. 974–976, 2005.

2000 (1)

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol., vol. 6, no. 2, pp. 122–154, 2000.

1953 (1)

C. Clos, “A study of nonblocking switching networks,” Bell Syst. Tech. J., vol. 32, pp. 407–424, 1953.

Baney, D. M.

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol., vol. 6, no. 2, pp. 122–154, 2000.

Bosco, G.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 1041–1135, 2011.

A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. T. Taiba, and F. Forghieri, “Statistical characterization of PM-QPSK signals after propagation in uncompressed fiber links,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, P4.07, pp. 1–3.

Carena, A.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 1041–1135, 2011.

A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. T. Taiba, and F. Forghieri, “Statistical characterization of PM-QPSK signals after propagation in uncompressed fiber links,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, P4.07, pp. 1–3.

Cheng, Q.

Clos, C.

C. Clos, “A study of nonblocking switching networks,” Bell Syst. Tech. J., vol. 32, pp. 407–424, 1953.

Curri, V.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 1041–1135, 2011.

A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. T. Taiba, and F. Forghieri, “Statistical characterization of PM-QPSK signals after propagation in uncompressed fiber links,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, P4.07, pp. 1–3.

Forghieri, F.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 1041–1135, 2011.

A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. T. Taiba, and F. Forghieri, “Statistical characterization of PM-QPSK signals after propagation in uncompressed fiber links,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, P4.07, pp. 1–3.

Gallion, P.

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol., vol. 6, no. 2, pp. 122–154, 2000.

Inoue, T.

Ishii, K.

K. Ishiiet al., “Energy consumption and traffic scaling of dynamic optical path networks,” in Proc. SPIE, San Francisco, CA, USA, 2013, p. 86460A.

Kamitani, N.

N. Kamitaniet al., “Experimental study on impact of SOA nonlinear phase noise in 40 Gbps coherent 16 QAM transmissions,” in Proc. Eur. Conf. Opt. Commun., Amsterdam, The Netherlands, 2012, P1.04, pp. 1–3.

Konoike, R.

R. Konoikeet al., “Lossless operation of SOA-integrated silicon photonics switch for 8 × 32-Gbaud 16-QAM WDM signals,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Th4B.6, pp. 1–3.

Kuramata, A.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Tech. Lett., vol. 17, no. 5, pp. 974–976, 2005.

Lu, L.

Matsumoto, T.

T. Matsumotoet al., “In-line optical amplification for Si waveguides on 1 × 8 splitter and selector by flip-chip bonded InP-SOAs,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Th1C.1, pp. 1–3.

T. Matsumotoet al., “In-line optical amplification for silicon photonics platform by flip-chip bonded InP-SOAs,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Tu2A.4, pp. 1–3.

Morito, K.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Tech. Lett., vol. 17, no. 5, pp. 974–976, 2005.

Namiki, S.

S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.

Poggiolini, P.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 1041–1135, 2011.

A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. T. Taiba, and F. Forghieri, “Statistical characterization of PM-QPSK signals after propagation in uncompressed fiber links,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, P4.07, pp. 1–3.

Schares, L.

L. Schareset al., “A gain-integrated silicon photonic carrier with SOA-array for scalable optical switch fabrics,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Th3F.5, pp. 1–3.

Stabile, R.

Suzuki, K.

K. Suzukiet al., “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express, vol. 25, no. 7, pp. 7538–7546, 2017.

K. Suzukiet al., “2.5-dB loss, 100-nm operating bandwidth, and low power consumption strictly-non-blocking 8 × 8 Si switch,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, pp. 1–3.

K. Suzukiet al., “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Th4B.5, pp. 1–3.

Taiba, M. T.

A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. T. Taiba, and F. Forghieri, “Statistical characterization of PM-QPSK signals after propagation in uncompressed fiber links,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, P4.07, pp. 1–3.

Tanaka, S.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Tech. Lett., vol. 17, no. 5, pp. 974–976, 2005.

Tanizawa, K.

Tomabechi, S.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Tech. Lett., vol. 17, no. 5, pp. 974–976, 2005.

Tucker, R. S.

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol., vol. 6, no. 2, pp. 122–154, 2000.

Ueda, K.

K. Uedaet al., “Novel intra- and inter-datacenter converged network exploiting space- and wavelength-dimensional switches,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, pp. 1–3.

Wang, H.

H. Wanget al., “Demonstration of a lossless monolithic 16 × 16 QW SOA switch,” in Proc. Eur. Conf. Opt. Commun., Vienna, Austria, 2009, PD1.7, pp. 1–2.

Bell Syst. Tech. J. (1)

C. Clos, “A study of nonblocking switching networks,” Bell Syst. Tech. J., vol. 32, pp. 407–424, 1953.

IEEE J. Sel. Topics Quantum Electron. (1)

S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.

IEEE Photon. Tech. Lett. (1)

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Tech. Lett., vol. 17, no. 5, pp. 974–976, 2005.

IEEE Photon. Technol. Lett. (1)

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 1041–1135, 2011.

Opt. Express (6)

Opt. Fiber Technol. (1)

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol., vol. 6, no. 2, pp. 122–154, 2000.

Opt. Lett. (2)

Other (11)

A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. T. Taiba, and F. Forghieri, “Statistical characterization of PM-QPSK signals after propagation in uncompressed fiber links,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, P4.07, pp. 1–3.

L. Schareset al., “A gain-integrated silicon photonic carrier with SOA-array for scalable optical switch fabrics,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Th3F.5, pp. 1–3.

T. Matsumotoet al., “In-line optical amplification for Si waveguides on 1 × 8 splitter and selector by flip-chip bonded InP-SOAs,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Th1C.1, pp. 1–3.

T. Matsumotoet al., “In-line optical amplification for silicon photonics platform by flip-chip bonded InP-SOAs,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Tu2A.4, pp. 1–3.

R. Konoikeet al., “Lossless operation of SOA-integrated silicon photonics switch for 8 × 32-Gbaud 16-QAM WDM signals,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Th4B.6, pp. 1–3.

K. Suzukiet al., “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Th4B.5, pp. 1–3.

K. Ishiiet al., “Energy consumption and traffic scaling of dynamic optical path networks,” in Proc. SPIE, San Francisco, CA, USA, 2013, p. 86460A.

K. Uedaet al., “Novel intra- and inter-datacenter converged network exploiting space- and wavelength-dimensional switches,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, pp. 1–3.

K. Suzukiet al., “2.5-dB loss, 100-nm operating bandwidth, and low power consumption strictly-non-blocking 8 × 8 Si switch,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, pp. 1–3.

N. Kamitaniet al., “Experimental study on impact of SOA nonlinear phase noise in 40 Gbps coherent 16 QAM transmissions,” in Proc. Eur. Conf. Opt. Commun., Amsterdam, The Netherlands, 2012, P1.04, pp. 1–3.

H. Wanget al., “Demonstration of a lossless monolithic 16 × 16 QW SOA switch,” in Proc. Eur. Conf. Opt. Commun., Vienna, Austria, 2009, PD1.7, pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.