Abstract

We fabricate a 32 × 32 silicon photonics switch on a 300-mm silicon-on-insulator wafer by using our complementary metal-oxide-semiconductor pilot line equipped with an immersion ArF scanner and demonstrate an average fiber-to-fiber insertion loss of 10.8 dB with a standard deviation of 0.54 dB, and on-chip electric power consumption of 1.9 W. The insertion loss and the power consumption are approximately 1/60, and less than 1/4 of our previous results, respectively. These significant improvements are achieved by design and fabrication optimization of waveguides and intersections on the chip, and by employing a novel optical fiber connector based on extremely-high-Δ silica planar-lightwave-circuit (PLC) technology. The minimum crosstalk was −26.6 dB at a wavelength of 1547 nm, and −20-dB crosstalk bandwidth was 3.5 nm. Furthermore, we demonstrate low-crosstalk bandwidth expansion by using output port exchanged element switches. We achieve a −20 dB crosstalk bandwidth of 14.2 nm, which is four-times wider than that of the conventional element switch based 32 × 32 switch.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.
  2. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M.-B. Yu, and G.-Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2011, Paper OTuM2.
  3. K. Tanizawaet al., “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express, vol. 23, no. 13, pp. 17599–17606, 2015.
  4. L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8 × 8 broadband silicon optical switch,” Opt. Express, vol. 20, no. 17, pp. 18977–18985, 2012.
  5. K. Suzukiet al., “Ultralow-crosstalk and broadband multi-port optical switch using SiN/Si double-layer platform,” in Proc. Opto-Electron. Commun. Conf. Photon. Global Conf., Singapore, 2017, Paper PDP-3.
  6. T. Tanemura, L. Langouche, and Y. Nakano, “Strictly non-blocking 8 × 8 silicon photonic switch based on optical phased array,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper P.2.9.
  7. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.
  8. K. Tanizawaet al., “Silicon photonic 32 × 32 strictly-non-blocking blade switch and its full path characterization,” in Proc. 21st Optoelectron. Commun. Conf. Int.Conf. Photon. Switching, Niigata, Japan, 2016, Paper PD2-3.
  9. K. Suzukiet al., “2.5-dB loss, 100-nm operating bandwidth, and low power consumption strictly-non-blocking 8 × 8 Si switch,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Tu.1.C.2.
  10. J. Hasegawaet al., “32-port 5.5%-Δ silica-based connecting device for low-loss coupling between SMFs and silicon waveguides,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Paper Tu3A.4.
  11. K. Suzukiet al., “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, San Diego, CA, USA, 2018, Paper Th4B.5.
  12. T. Shimoe, K. Hajikano, and K. Murakami, “Path-independent insertion loss optical space switch,” in Proc. Opt. Fiber Commun., Reno, NV, USA, 1987, Paper WB2.
  13. Y. Maet al., “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt Express, vol. 21, no. 24, pp. 29374–29382, 2013.
  14. S. Sudaet al., “Fast and accurate automatic calibration of a 32 × 32 silicon photonic strictly-non-blocking switch,” in Proc. Adv. Photon. 2017 (IPR, NOMA, Sens., Netw., SPPCom, PS), New Orleans, LA, USA, 2017, Paper PTu3C.5.
  15. T. Horikawa, D. Shimura, and T. Mogami, “Low-loss silicon wire waveguides for optical integrated circuits,” MRS Commun., vol. 6, no. 1, pp. 9–15, 2016.
  16. M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Silica-based 8 × 8 optical matrix switch integrating new switching units with large fabrication tolerance,” J. Lightw. Technol., vol. 17, no. 5, pp. 771–781, 1999.
  17. K. Suzukiet al., “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express, vol. 23, no. 7, pp. 9086–9092, 2015.
  18. K. Suzukiet al., “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express, vol. 25, no. 7, pp. 7538–7546, 2017.
  19. S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50 × 50 polarization-insensitive silicon photonic MEMS switches: Design and experiment,” in Proc. Conf. Exhib. Opt. Commun., Düsseldorf, Germany, 2016, Paper Th.3.A.5.
  20. S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

2017 (2)

K. Suzukiet al., “Ultralow-crosstalk and broadband multi-port optical switch using SiN/Si double-layer platform,” in Proc. Opto-Electron. Commun. Conf. Photon. Global Conf., Singapore, 2017, Paper PDP-3.

K. Suzukiet al., “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express, vol. 25, no. 7, pp. 7538–7546, 2017.

2016 (2)

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.

T. Horikawa, D. Shimura, and T. Mogami, “Low-loss silicon wire waveguides for optical integrated circuits,” MRS Commun., vol. 6, no. 1, pp. 9–15, 2016.

2015 (2)

2013 (1)

Y. Maet al., “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt Express, vol. 21, no. 24, pp. 29374–29382, 2013.

2012 (1)

2011 (1)

S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.

1999 (1)

M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Silica-based 8 × 8 optical matrix switch integrating new switching units with large fabrication tolerance,” J. Lightw. Technol., vol. 17, no. 5, pp. 771–781, 1999.

Chen, L.

Chen, Y.-K.

Hajikano, K.

T. Shimoe, K. Hajikano, and K. Murakami, “Path-independent insertion loss optical space switch,” in Proc. Opt. Fiber Commun., Reno, NV, USA, 1987, Paper WB2.

Han, S.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50 × 50 polarization-insensitive silicon photonic MEMS switches: Design and experiment,” in Proc. Conf. Exhib. Opt. Commun., Düsseldorf, Germany, 2016, Paper Th.3.A.5.

Hasegawa, J.

J. Hasegawaet al., “32-port 5.5%-Δ silica-based connecting device for low-loss coupling between SMFs and silicon waveguides,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Paper Tu3A.4.

Himeno, A.

M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Silica-based 8 × 8 optical matrix switch integrating new switching units with large fabrication tolerance,” J. Lightw. Technol., vol. 17, no. 5, pp. 771–781, 1999.

Hino, T.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M.-B. Yu, and G.-Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2011, Paper OTuM2.

Horikawa, T.

T. Horikawa, D. Shimura, and T. Mogami, “Low-loss silicon wire waveguides for optical integrated circuits,” MRS Commun., vol. 6, no. 1, pp. 9–15, 2016.

Itoh, M.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

Kato, K.

M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Silica-based 8 × 8 optical matrix switch integrating new switching units with large fabrication tolerance,” J. Lightw. Technol., vol. 17, no. 5, pp. 771–781, 1999.

Kawachi, M.

M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Silica-based 8 × 8 optical matrix switch integrating new switching units with large fabrication tolerance,” J. Lightw. Technol., vol. 17, no. 5, pp. 771–781, 1999.

Langouche, L.

T. Tanemura, L. Langouche, and Y. Nakano, “Strictly non-blocking 8 × 8 silicon photonic switch based on optical phased array,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper P.2.9.

Lo, G.-Q.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M.-B. Yu, and G.-Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2011, Paper OTuM2.

Ma, Y.

Y. Maet al., “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt Express, vol. 21, no. 24, pp. 29374–29382, 2013.

Mogami, T.

T. Horikawa, D. Shimura, and T. Mogami, “Low-loss silicon wire waveguides for optical integrated circuits,” MRS Commun., vol. 6, no. 1, pp. 9–15, 2016.

Muller, R. S.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50 × 50 polarization-insensitive silicon photonic MEMS switches: Design and experiment,” in Proc. Conf. Exhib. Opt. Commun., Düsseldorf, Germany, 2016, Paper Th.3.A.5.

Murakami, K.

T. Shimoe, K. Hajikano, and K. Murakami, “Path-independent insertion loss optical space switch,” in Proc. Opt. Fiber Commun., Reno, NV, USA, 1987, Paper WB2.

Nagase, R.

M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Silica-based 8 × 8 optical matrix switch integrating new switching units with large fabrication tolerance,” J. Lightw. Technol., vol. 17, no. 5, pp. 771–781, 1999.

Nakamura, S.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M.-B. Yu, and G.-Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2011, Paper OTuM2.

Nakano, Y.

T. Tanemura, L. Langouche, and Y. Nakano, “Strictly non-blocking 8 × 8 silicon photonic switch based on optical phased array,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper P.2.9.

Namiki, S.

S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.

Ohmori, Y.

M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Silica-based 8 × 8 optical matrix switch integrating new switching units with large fabrication tolerance,” J. Lightw. Technol., vol. 17, no. 5, pp. 771–781, 1999.

Okuno, M.

M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Silica-based 8 × 8 optical matrix switch integrating new switching units with large fabrication tolerance,” J. Lightw. Technol., vol. 17, no. 5, pp. 771–781, 1999.

Ooba, N.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

Quack, N.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50 × 50 polarization-insensitive silicon photonic MEMS switches: Design and experiment,” in Proc. Conf. Exhib. Opt. Commun., Düsseldorf, Germany, 2016, Paper Th.3.A.5.

Sakauchi, M.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M.-B. Yu, and G.-Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2011, Paper OTuM2.

Seok, T. J.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50 × 50 polarization-insensitive silicon photonic MEMS switches: Design and experiment,” in Proc. Conf. Exhib. Opt. Commun., Düsseldorf, Germany, 2016, Paper Th.3.A.5.

Shibata, T.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

Shimoe, T.

T. Shimoe, K. Hajikano, and K. Murakami, “Path-independent insertion loss optical space switch,” in Proc. Opt. Fiber Commun., Reno, NV, USA, 1987, Paper WB2.

Shimura, D.

T. Horikawa, D. Shimura, and T. Mogami, “Low-loss silicon wire waveguides for optical integrated circuits,” MRS Commun., vol. 6, no. 1, pp. 9–15, 2016.

Sohma, S.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

Suda, S.

S. Sudaet al., “Fast and accurate automatic calibration of a 32 × 32 silicon photonic strictly-non-blocking switch,” in Proc. Adv. Photon. 2017 (IPR, NOMA, Sens., Netw., SPPCom, PS), New Orleans, LA, USA, 2017, Paper PTu3C.5.

Suzuki, K.

K. Suzukiet al., “Ultralow-crosstalk and broadband multi-port optical switch using SiN/Si double-layer platform,” in Proc. Opto-Electron. Commun. Conf. Photon. Global Conf., Singapore, 2017, Paper PDP-3.

K. Suzukiet al., “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express, vol. 25, no. 7, pp. 7538–7546, 2017.

K. Suzukiet al., “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express, vol. 23, no. 7, pp. 9086–9092, 2015.

K. Suzukiet al., “2.5-dB loss, 100-nm operating bandwidth, and low power consumption strictly-non-blocking 8 × 8 Si switch,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Tu.1.C.2.

K. Suzukiet al., “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, San Diego, CA, USA, 2018, Paper Th4B.5.

Takahashi, H.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

Takahashi, S.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M.-B. Yu, and G.-Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2011, Paper OTuM2.

Tanemura, T.

T. Tanemura, L. Langouche, and Y. Nakano, “Strictly non-blocking 8 × 8 silicon photonic switch based on optical phased array,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper P.2.9.

Tanizawa, K.

K. Tanizawaet al., “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express, vol. 23, no. 13, pp. 17599–17606, 2015.

K. Tanizawaet al., “Silicon photonic 32 × 32 strictly-non-blocking blade switch and its full path characterization,” in Proc. 21st Optoelectron. Commun. Conf. Int.Conf. Photon. Switching, Niigata, Japan, 2016, Paper PD2-3.

Watanabe, T.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

Wu, M. C.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50 × 50 polarization-insensitive silicon photonic MEMS switches: Design and experiment,” in Proc. Conf. Exhib. Opt. Commun., Düsseldorf, Germany, 2016, Paper Th.3.A.5.

Yu, K.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50 × 50 polarization-insensitive silicon photonic MEMS switches: Design and experiment,” in Proc. Conf. Exhib. Opt. Commun., Düsseldorf, Germany, 2016, Paper Th.3.A.5.

Yu, M.-B.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M.-B. Yu, and G.-Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2011, Paper OTuM2.

IEEE J. Sel. Topics Quantum Electron. (1)

S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.

J. Lightw. Technol. (1)

M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Silica-based 8 × 8 optical matrix switch integrating new switching units with large fabrication tolerance,” J. Lightw. Technol., vol. 17, no. 5, pp. 771–781, 1999.

MRS Commun. (1)

T. Horikawa, D. Shimura, and T. Mogami, “Low-loss silicon wire waveguides for optical integrated circuits,” MRS Commun., vol. 6, no. 1, pp. 9–15, 2016.

Opt Express (1)

Y. Maet al., “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt Express, vol. 21, no. 24, pp. 29374–29382, 2013.

Opt. Express (4)

Optica (1)

Proc. Opto-Electron. Commun. Conf. Photon. Global Conf. (1)

K. Suzukiet al., “Ultralow-crosstalk and broadband multi-port optical switch using SiN/Si double-layer platform,” in Proc. Opto-Electron. Commun. Conf. Photon. Global Conf., Singapore, 2017, Paper PDP-3.

Other (10)

T. Tanemura, L. Langouche, and Y. Nakano, “Strictly non-blocking 8 × 8 silicon photonic switch based on optical phased array,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper P.2.9.

K. Tanizawaet al., “Silicon photonic 32 × 32 strictly-non-blocking blade switch and its full path characterization,” in Proc. 21st Optoelectron. Commun. Conf. Int.Conf. Photon. Switching, Niigata, Japan, 2016, Paper PD2-3.

K. Suzukiet al., “2.5-dB loss, 100-nm operating bandwidth, and low power consumption strictly-non-blocking 8 × 8 Si switch,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Tu.1.C.2.

J. Hasegawaet al., “32-port 5.5%-Δ silica-based connecting device for low-loss coupling between SMFs and silicon waveguides,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Paper Tu3A.4.

K. Suzukiet al., “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, San Diego, CA, USA, 2018, Paper Th4B.5.

T. Shimoe, K. Hajikano, and K. Murakami, “Path-independent insertion loss optical space switch,” in Proc. Opt. Fiber Commun., Reno, NV, USA, 1987, Paper WB2.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50 × 50 polarization-insensitive silicon photonic MEMS switches: Design and experiment,” in Proc. Conf. Exhib. Opt. Commun., Düsseldorf, Germany, 2016, Paper Th.3.A.5.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

S. Sudaet al., “Fast and accurate automatic calibration of a 32 × 32 silicon photonic strictly-non-blocking switch,” in Proc. Adv. Photon. 2017 (IPR, NOMA, Sens., Netw., SPPCom, PS), New Orleans, LA, USA, 2017, Paper PTu3C.5.

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M.-B. Yu, and G.-Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2011, Paper OTuM2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.