Abstract

We report the first demonstration of a silicon photonic microring modulator with modulation data rate up to 128 Gb/s (64 Gbaud PAM4). The microring modulator exhibits an electro-optic phase efficiency of V $_\pi \cdot$ L = 0.52 V $\cdot$ cm, an electro-optic bandwidth of 50 GHz, and a measured transmitter dispersion eye closure quaternary of 3.0 dB at this data rate. In addition, the resonant wavelength of the microring modulator can be tuned across a full free spectral range using an integrated heater with a thermo-optic phase efficiency of 19.5 mW $/\pi$ -phase shift.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Liljeberg, “Silicon photonics and the future of optical connectivity in the data center,” in Proc. IEEE Opt. Interconnects Conf.,  2017, pp. 1–2.
  2. A. Samaniet al., “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photon. J., vol. 7, no. 3, pp. 1–13,  2015.
  3. A. Samaniet al., “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express, vol. 25, no. 12, pp. 13252–13262, Jun. 2017. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-25-12-13252
  4. A. V. Krishnamoorthyet al., “Computer systems based on silicon photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361,  2009.
  5. C. Sunet al., “Single-chip microprocessor that communicates directly using light,” Nature, vol. 528, pp. 534–583,  2015. [Online]. Available: http://dx.doi.org/10.1038/nature16454
  6. A. H. Atabakiet al., “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature, vol. 556, no. 7701, pp. 349–354, 2018. [Online]. Available: https://doi.org/10.1038/s41586-018-0028-z
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325–327,  2005. [Online]. Available: http://dx.doi.org/10.1038/nature03569
  8. G. Liet al., “25 Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express, vol. 19, no. 21, pp. 20435–20443,  2011. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-19-21-20435
  9. X. Xiaoet al., “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Optic Engineers Conf.,  2013, pp. 1–3.
  10. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5,  2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/ncomms5008
  11. M. Pantouvakiet al., “Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform,” J. Lightw. Technol., vol. 35, no. 4, pp. 631–638,  2017.
  12. R. Dubé-Demers, S. LaRochelle, and W. Shi, “Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator,” Optica, vol. 3, no. 6, pp. 622–627,  2016. [Online]. Available: http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-6-622
  13. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129,  1987.
  14. J. Mülleret al., “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep., vol. 4, 09 2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep06310
  15. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett., vol. 38, no. 5, pp. 733–735,  2013. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-38-5-733
  16. IEEE Standard for Ethernet - Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation, IEEE Std (Amendment to IEEE 802.3-2015 as amended by IEEE's 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Cor1-2017), pp. 1–372,  2017.

2017 (1)

M. Pantouvakiet al., “Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform,” J. Lightw. Technol., vol. 35, no. 4, pp. 631–638,  2017.

2015 (1)

A. Samaniet al., “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photon. J., vol. 7, no. 3, pp. 1–13,  2015.

2009 (1)

A. V. Krishnamoorthyet al., “Computer systems based on silicon photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361,  2009.

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129,  1987.

Atabaki, A. H.

A. H. Atabakiet al., “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature, vol. 556, no. 7701, pp. 349–354, 2018. [Online]. Available: https://doi.org/10.1038/s41586-018-0028-z

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129,  1987.

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5,  2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/ncomms5008

DeRose, C.

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett., vol. 38, no. 5, pp. 733–735,  2013. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-38-5-733

Dubé-Demers, R.

R. Dubé-Demers, S. LaRochelle, and W. Shi, “Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator,” Optica, vol. 3, no. 6, pp. 622–627,  2016. [Online]. Available: http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-6-622

Hosseini, E. Shah

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5,  2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/ncomms5008

Krishnamoorthy, A. V.

A. V. Krishnamoorthyet al., “Computer systems based on silicon photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361,  2009.

LaRochelle, S.

R. Dubé-Demers, S. LaRochelle, and W. Shi, “Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator,” Optica, vol. 3, no. 6, pp. 622–627,  2016. [Online]. Available: http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-6-622

Li, G.

G. Liet al., “25 Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express, vol. 19, no. 21, pp. 20435–20443,  2011. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-19-21-20435

Liljeberg, T.

T. Liljeberg, “Silicon photonics and the future of optical connectivity in the data center,” in Proc. IEEE Opt. Interconnects Conf.,  2017, pp. 1–2.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325–327,  2005. [Online]. Available: http://dx.doi.org/10.1038/nature03569

Müller, J.

J. Mülleret al., “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep., vol. 4, 09 2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep06310

Nielson, G. N.

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett., vol. 38, no. 5, pp. 733–735,  2013. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-38-5-733

Pantouvaki, M.

M. Pantouvakiet al., “Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform,” J. Lightw. Technol., vol. 35, no. 4, pp. 631–638,  2017.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325–327,  2005. [Online]. Available: http://dx.doi.org/10.1038/nature03569

Samani, A.

A. Samaniet al., “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photon. J., vol. 7, no. 3, pp. 1–13,  2015.

A. Samaniet al., “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express, vol. 25, no. 12, pp. 13252–13262, Jun. 2017. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-25-12-13252

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325–327,  2005. [Online]. Available: http://dx.doi.org/10.1038/nature03569

Shi, W.

R. Dubé-Demers, S. LaRochelle, and W. Shi, “Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator,” Optica, vol. 3, no. 6, pp. 622–627,  2016. [Online]. Available: http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-6-622

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5,  2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/ncomms5008

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129,  1987.

Sun, C.

C. Sunet al., “Single-chip microprocessor that communicates directly using light,” Nature, vol. 528, pp. 534–583,  2015. [Online]. Available: http://dx.doi.org/10.1038/nature16454

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5,  2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/ncomms5008

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett., vol. 38, no. 5, pp. 733–735,  2013. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-38-5-733

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5,  2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/ncomms5008

Trotter, D. C.

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett., vol. 38, no. 5, pp. 733–735,  2013. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-38-5-733

Watts, M. R.

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett., vol. 38, no. 5, pp. 733–735,  2013. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-38-5-733

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5,  2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/ncomms5008

Xiao, X.

X. Xiaoet al., “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Optic Engineers Conf.,  2013, pp. 1–3.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325–327,  2005. [Online]. Available: http://dx.doi.org/10.1038/nature03569

Young, R. W.

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett., vol. 38, no. 5, pp. 733–735,  2013. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-38-5-733

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129,  1987.

IEEE Photon. J. (1)

A. Samaniet al., “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photon. J., vol. 7, no. 3, pp. 1–13,  2015.

J. Lightw. Technol. (1)

M. Pantouvakiet al., “Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform,” J. Lightw. Technol., vol. 35, no. 4, pp. 631–638,  2017.

Proc. IEEE (1)

A. V. Krishnamoorthyet al., “Computer systems based on silicon photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361,  2009.

Other (12)

C. Sunet al., “Single-chip microprocessor that communicates directly using light,” Nature, vol. 528, pp. 534–583,  2015. [Online]. Available: http://dx.doi.org/10.1038/nature16454

A. H. Atabakiet al., “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature, vol. 556, no. 7701, pp. 349–354, 2018. [Online]. Available: https://doi.org/10.1038/s41586-018-0028-z

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325–327,  2005. [Online]. Available: http://dx.doi.org/10.1038/nature03569

G. Liet al., “25 Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express, vol. 19, no. 21, pp. 20435–20443,  2011. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-19-21-20435

X. Xiaoet al., “60 Gbit/s silicon modulators with enhanced electro-optical efficiency,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Optic Engineers Conf.,  2013, pp. 1–3.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5,  2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/ncomms5008

R. Dubé-Demers, S. LaRochelle, and W. Shi, “Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator,” Optica, vol. 3, no. 6, pp. 622–627,  2016. [Online]. Available: http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-6-622

A. Samaniet al., “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express, vol. 25, no. 12, pp. 13252–13262, Jun. 2017. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-25-12-13252

J. Mülleret al., “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep., vol. 4, 09 2014, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep06310

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett., vol. 38, no. 5, pp. 733–735,  2013. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-38-5-733

IEEE Standard for Ethernet - Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation, IEEE Std (Amendment to IEEE 802.3-2015 as amended by IEEE's 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Cor1-2017), pp. 1–372,  2017.

T. Liljeberg, “Silicon photonics and the future of optical connectivity in the data center,” in Proc. IEEE Opt. Interconnects Conf.,  2017, pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.