Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 36,
  • Issue 6,
  • pp. 1304-1308
  • (2018)

Ultrahigh-Spectral-Efficiency WDM/SDM Transmission Using PDM-1024-QAM Probabilistic Shaping With Adaptive Rate

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate wavelength-division-multiplexed (WDM) and space-division-multiplexed (SDM) transmission of probabilistically shaped polarization-division-multiplexed (PDM) 1024-state quadrature amplitude modulation (QAM) channels over a 9.7-km single-mode 30-core fiber, achieving aggregated spectral efficiency of 297.82 bit/s/Hz on a 12.5-GHz grid and 7.01-Tbit/s spatial-super-channel on a 25-GHz grid without multiple-input multiple-output (MIMO) processing. Actual soft-decision forward error correction (SD-FEC) decoding was employed to obtain error-free performance, and adaptive rates and spectral efficiencies for individual WDM/SDM channels have been applied according to their channel conditions, by adjusting the SD-FEC overhead without changing the modulation format. Probabilistically shaped PDM-1024-QAM has been used to further increase the aggregated achievable rate due to the added performance improvement through shaping gain.

© 2017 IEEE

PDF Article
More Like This
Experimental and numerical comparison of probabilistically shaped 4096 QAM and a uniformly shaped 1024 QAM in all-Raman amplified 160 km transmission

Seiji Okamoto, Masaki Terayama, Masato Yoshida, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 26(3) 3535-3543 (2018)

On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems

Junho Cho, Xi Chen, Sethumadhavan Chandrasekhar, and Peter Winzer
Opt. Express 26(8) 9784-9791 (2018)

High-capacity self-homodyne PDM-WDM-SDM transmission in a 19-core fiber

Benjamin J. Puttnam, Ruben Luis, José-Manuel Delgado-Mendinueta, Jun Sakaguchi, Werner Klaus, Yoshinari Awaji, Naoya Wada, Atsushi Kanno, and Tetsuya Kawanishi
Opt. Express 22(18) 21185-21191 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved