Abstract

We demonstrate a new single-point, multiparameter, fiber optic sensor concept based on a combination of interferometric and plasmonic sensor modalities on an optical fiber end face. The sensor consists of an extrinsic Fabry–Perot interferometer in the form of a hemispherical stimuli-responsive hydrogel with immobilized gold nanoparticles (GNPs). The GNPs exhibit local surface plasmon resonance (LSPR) that is sensitive toward the local refractive index (RI) of the surrounding environment, whereas the stimuli-responsive hydrogel is sensitive toward specific chemical compounds. We evaluate the quality of the interferometric and LSPR signals as a function of GNP concentration and of hydrogel swelling degree stimulated by ethanol solutions. The GNPs have little influence on the visibility of the Fabry–Perot etalon. The swelling degree of the hydrogel, with corresponding bulk RI changes, has little influence on the local surface RI of the GNPs. We expect this novel sensor concept to be of great value for biosensors for medical applications.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev., vol. 111, no. 6, pp. 3828–3857, 2011. [Online]. Available: http://dx.doi.org/10.1021/cr100313v
  2. M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced {LSPR} fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosensors Bioelectron., vol. 61, pp. 95–101, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566314003418
  3. S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic u-shaped biosensor for the detection of blood glucose,” Plasmonics, vol. 7, no. 2, pp. 261–268, 2011. [Online]. Available: http://dx.doi.org/10.1007/s11468-011-9302-8
  4. H. I. D. I. Muri and D. R. Hjelme, “Novel localized surface plasmon resonance based optical fiber sensor,” SPIE, vol. 9702, pp. 97 020L–97 020L–8, 2016. [Online]. Available: http://dx.doi.org/10.1117/12.2212652
  5. H. I. D. I. Muri, A. Bano, and D. R. Hjelme, “Interferometric and localized surface plasmon based fiber optic sensor,” SPIE, vol. 10058, pp. 10 058–10 058–10, 2017. [Online]. Available: http://dx.doi.org/10.1117/12.2250743
  6. Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol., vol. 12, no. 3, pp. 227–237, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1068520006000174
  7. H. F. Taylor, “Fiber optic sensors based upon the Fabry-Perot interferometer,” Opt. Eng., vol. 76. New York, NY, USA: Marcel Dekker, 2002, pp. 41–74.
  8. D. R. Hjelme, A. Berg, R. Ellingsen, B. Falch, A. Bjørkøy, and D. Østling, “Optical sensing of measurands,” U.S. Patent 7  440  110, 21, 2008.
  9. S. Tierney, D. R. Hjelme, and B. T. Stokke, “Determination of swelling of responsive gels with nanometer resolution. fiber-optic based platform for hydrogels as signal transducers,” Anal. Chem., vol. 80, no. 13, pp. 5086–5093, 2008. [Online]. Available: http://dx.doi.org/10.1021/ac800292k
  10. S. Tierney, B. M. H. Falch, D. R. Hjelme, and B. T. Stokke, “Determination of glucose levels using a functionalized hydrogel optical fiber biosensor: Toward continuous monitoring of blood glucose in vivo,” Anal. Chem., vol. 81, no. 9, pp. 3630–3636, 2009. [Online]. Available: http://dx.doi.org/10.1021/ac900019k
  11. D. R. Hjelme, O. Aune, B. Falch, D. Østling, and R. Ellingsen, “Fiber-optic biosensor technology for rapid, accurate and specific detection of enzymes,” in Proc. Adv. Photon. OSA Tech. Dig., 2014, Paper. JTu6A.3. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=Sensors-2014-JTu6A.3
  12. X. Wu and O. Solgaard, “Short-cavity multimode fiber-tip Fabry-Pérot sensors,” Opt. Express, vol. 21, no. 12, pp. 14 487–14 499, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-12-14487
  13. G. Mie, “Beiträge zur optik trüberber medien, speziell kolloidaler metallösungen,” Ann. Physik, vol. 330, no. 3, pp. 377–442, 1908.
  14. R. Gans, “The form of ultramicroscopic gold particles,” Annalen der Physik, vol. 37, pp. 881–900, 1912.
  15. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B, vol. 103, no. 45, pp. 9846–9853, 1999. [Online]. Available: http://dx.doi.org/10.1021/jp9926802
  16. G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.
  17. B. W. Silverman, “Some aspects of the spline smoothing approach to non-parametric regression curve fitting,” J. Roy. Statist. Soc. Series B (Methodological), vol. 47, no. 1, pp. 1–52, 1985. [Online]. Available: http://www.jstor.org/stable/2345542
  18. P. M. P. Gouvêa, H. Jang, I. C. S. Carvalho, M. Cremona, A. M. B. Braga, and M. Fokine, “Internal specular reflection from nanoparticle layers on the end face of optical fibers,” J. Appl. Phys., vol. 109, no. 10, 2011, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3583582
  19. W. M. Haynes, Handbook of Chemistry and Physics, 97th ed., W. M. Haynes, Ed. Boca Raton, FL, USA: CRC, 2016-2017.
  20. K. Bouchal, Z. Sedláková, and M. Ilavský, “Phase transition in swollen gels,” Polymer Bull., vol. 32, no. 3, pp. 331–338, 1994. [Online]. Available: https://doi.org/10.1007/BF00308545
  21. J. Zhang and N. A. Peppas, “Morphology of poly(methacrylic acid)/poly(n-isopropyl acrylamide) interpenetrating polymeric networks,” J. Biomater. Sci., Polymer Ed., vol. 13, no. 5, pp. 511–525, 2002. [Online]. Available: http://dx.doi.org/10.1163/15685620260178373
  22. F. M. Plieva, M. Karlsson, M.-R. Aguilar, D. Gomez, S. Mikhalovsky, and I. Y. Galaev, “Pore structure in supermacroporous polyacrylamide based cryogels,” Soft Matter, vol. 1, no. 4, pp. 303–309, 2005. [Online]. Available: http://dx.doi.org/10.1039/B510010K
  23. A. Mehdizadeh Kashiet al., “How to prepare biological samples and live tissues for scanning electron microscopy (SEM),” Galen Med. J., vol. 3, no. 2, pp. 63–80, 2014. [Online]. Available: http://www.gmj.ir/index.php/gmj/article/view/267/123
  24. A. Goldstein, Y. Soroka, M. Frušić-Zlotkin, I. Popov, and R. Kohen, “High resolution SEM imaging of gold nanoparticles in cells and tissues,” J. Microscopy, vol. 256, no. 3, pp. 237–247, 2014. [Online]. Available: http://dx.doi.org/10.1111/jmi.12179
  25. H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, H.-Y. Lee, and S.-K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor,” Biosensors Bioelectron., vol. 39, no. 1, pp. 346–351, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566312005337

2017 (1)

H. I. D. I. Muri, A. Bano, and D. R. Hjelme, “Interferometric and localized surface plasmon based fiber optic sensor,” SPIE, vol. 10058, pp. 10 058–10 058–10, 2017. [Online]. Available: http://dx.doi.org/10.1117/12.2250743

2016 (1)

H. I. D. I. Muri and D. R. Hjelme, “Novel localized surface plasmon resonance based optical fiber sensor,” SPIE, vol. 9702, pp. 97 020L–97 020L–8, 2016. [Online]. Available: http://dx.doi.org/10.1117/12.2212652

2014 (3)

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced {LSPR} fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosensors Bioelectron., vol. 61, pp. 95–101, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566314003418

A. Mehdizadeh Kashiet al., “How to prepare biological samples and live tissues for scanning electron microscopy (SEM),” Galen Med. J., vol. 3, no. 2, pp. 63–80, 2014. [Online]. Available: http://www.gmj.ir/index.php/gmj/article/view/267/123

A. Goldstein, Y. Soroka, M. Frušić-Zlotkin, I. Popov, and R. Kohen, “High resolution SEM imaging of gold nanoparticles in cells and tissues,” J. Microscopy, vol. 256, no. 3, pp. 237–247, 2014. [Online]. Available: http://dx.doi.org/10.1111/jmi.12179

2013 (2)

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, H.-Y. Lee, and S.-K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor,” Biosensors Bioelectron., vol. 39, no. 1, pp. 346–351, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566312005337

X. Wu and O. Solgaard, “Short-cavity multimode fiber-tip Fabry-Pérot sensors,” Opt. Express, vol. 21, no. 12, pp. 14 487–14 499, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-12-14487

2011 (3)

P. M. P. Gouvêa, H. Jang, I. C. S. Carvalho, M. Cremona, A. M. B. Braga, and M. Fokine, “Internal specular reflection from nanoparticle layers on the end face of optical fibers,” J. Appl. Phys., vol. 109, no. 10, 2011, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3583582

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic u-shaped biosensor for the detection of blood glucose,” Plasmonics, vol. 7, no. 2, pp. 261–268, 2011. [Online]. Available: http://dx.doi.org/10.1007/s11468-011-9302-8

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev., vol. 111, no. 6, pp. 3828–3857, 2011. [Online]. Available: http://dx.doi.org/10.1021/cr100313v

2009 (1)

S. Tierney, B. M. H. Falch, D. R. Hjelme, and B. T. Stokke, “Determination of glucose levels using a functionalized hydrogel optical fiber biosensor: Toward continuous monitoring of blood glucose in vivo,” Anal. Chem., vol. 81, no. 9, pp. 3630–3636, 2009. [Online]. Available: http://dx.doi.org/10.1021/ac900019k

2008 (1)

S. Tierney, D. R. Hjelme, and B. T. Stokke, “Determination of swelling of responsive gels with nanometer resolution. fiber-optic based platform for hydrogels as signal transducers,” Anal. Chem., vol. 80, no. 13, pp. 5086–5093, 2008. [Online]. Available: http://dx.doi.org/10.1021/ac800292k

2006 (1)

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol., vol. 12, no. 3, pp. 227–237, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1068520006000174

2002 (1)

J. Zhang and N. A. Peppas, “Morphology of poly(methacrylic acid)/poly(n-isopropyl acrylamide) interpenetrating polymeric networks,” J. Biomater. Sci., Polymer Ed., vol. 13, no. 5, pp. 511–525, 2002. [Online]. Available: http://dx.doi.org/10.1163/15685620260178373

1999 (1)

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B, vol. 103, no. 45, pp. 9846–9853, 1999. [Online]. Available: http://dx.doi.org/10.1021/jp9926802

1994 (1)

K. Bouchal, Z. Sedláková, and M. Ilavský, “Phase transition in swollen gels,” Polymer Bull., vol. 32, no. 3, pp. 331–338, 1994. [Online]. Available: https://doi.org/10.1007/BF00308545

1985 (1)

B. W. Silverman, “Some aspects of the spline smoothing approach to non-parametric regression curve fitting,” J. Roy. Statist. Soc. Series B (Methodological), vol. 47, no. 1, pp. 1–52, 1985. [Online]. Available: http://www.jstor.org/stable/2345542

1912 (1)

R. Gans, “The form of ultramicroscopic gold particles,” Annalen der Physik, vol. 37, pp. 881–900, 1912.

1908 (1)

G. Mie, “Beiträge zur optik trüberber medien, speziell kolloidaler metallösungen,” Ann. Physik, vol. 330, no. 3, pp. 377–442, 1908.

Aguilar, M.-R.

F. M. Plieva, M. Karlsson, M.-R. Aguilar, D. Gomez, S. Mikhalovsky, and I. Y. Galaev, “Pore structure in supermacroporous polyacrylamide based cryogels,” Soft Matter, vol. 1, no. 4, pp. 303–309, 2005. [Online]. Available: http://dx.doi.org/10.1039/B510010K

Arora, V.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic u-shaped biosensor for the detection of blood glucose,” Plasmonics, vol. 7, no. 2, pp. 261–268, 2011. [Online]. Available: http://dx.doi.org/10.1007/s11468-011-9302-8

Aune, O.

D. R. Hjelme, O. Aune, B. Falch, D. Østling, and R. Ellingsen, “Fiber-optic biosensor technology for rapid, accurate and specific detection of enzymes,” in Proc. Adv. Photon. OSA Tech. Dig., 2014, Paper. JTu6A.3. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=Sensors-2014-JTu6A.3

Bano, A.

H. I. D. I. Muri, A. Bano, and D. R. Hjelme, “Interferometric and localized surface plasmon based fiber optic sensor,” SPIE, vol. 10058, pp. 10 058–10 058–10, 2017. [Online]. Available: http://dx.doi.org/10.1117/12.2250743

Berg, A.

D. R. Hjelme, A. Berg, R. Ellingsen, B. Falch, A. Bjørkøy, and D. Østling, “Optical sensing of measurands,” U.S. Patent 7  440  110, 21, 2008.

Bjørkøy, A.

D. R. Hjelme, A. Berg, R. Ellingsen, B. Falch, A. Bjørkøy, and D. Østling, “Optical sensing of measurands,” U.S. Patent 7  440  110, 21, 2008.

Bono, T.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced {LSPR} fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosensors Bioelectron., vol. 61, pp. 95–101, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566314003418

Bouchal, K.

K. Bouchal, Z. Sedláková, and M. Ilavský, “Phase transition in swollen gels,” Polymer Bull., vol. 32, no. 3, pp. 331–338, 1994. [Online]. Available: https://doi.org/10.1007/BF00308545

Box, G. E.

G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.

Braga, A. M. B.

P. M. P. Gouvêa, H. Jang, I. C. S. Carvalho, M. Cremona, A. M. B. Braga, and M. Fokine, “Internal specular reflection from nanoparticle layers on the end face of optical fibers,” J. Appl. Phys., vol. 109, no. 10, 2011, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3583582

Carvalho, I. C. S.

P. M. P. Gouvêa, H. Jang, I. C. S. Carvalho, M. Cremona, A. M. B. Braga, and M. Fokine, “Internal specular reflection from nanoparticle layers on the end face of optical fibers,” J. Appl. Phys., vol. 109, no. 10, 2011, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3583582

Cremona, M.

P. M. P. Gouvêa, H. Jang, I. C. S. Carvalho, M. Cremona, A. M. B. Braga, and M. Fokine, “Internal specular reflection from nanoparticle layers on the end face of optical fibers,” J. Appl. Phys., vol. 109, no. 10, 2011, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3583582

Duval, M. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B, vol. 103, no. 45, pp. 9846–9853, 1999. [Online]. Available: http://dx.doi.org/10.1021/jp9926802

Duyne, R. P. Van

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B, vol. 103, no. 45, pp. 9846–9853, 1999. [Online]. Available: http://dx.doi.org/10.1021/jp9926802

Ellingsen, R.

D. R. Hjelme, A. Berg, R. Ellingsen, B. Falch, A. Bjørkøy, and D. Østling, “Optical sensing of measurands,” U.S. Patent 7  440  110, 21, 2008.

D. R. Hjelme, O. Aune, B. Falch, D. Østling, and R. Ellingsen, “Fiber-optic biosensor technology for rapid, accurate and specific detection of enzymes,” in Proc. Adv. Photon. OSA Tech. Dig., 2014, Paper. JTu6A.3. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=Sensors-2014-JTu6A.3

Erdene, N.

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, H.-Y. Lee, and S.-K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor,” Biosensors Bioelectron., vol. 39, no. 1, pp. 346–351, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566312005337

Falch, B.

D. R. Hjelme, O. Aune, B. Falch, D. Østling, and R. Ellingsen, “Fiber-optic biosensor technology for rapid, accurate and specific detection of enzymes,” in Proc. Adv. Photon. OSA Tech. Dig., 2014, Paper. JTu6A.3. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=Sensors-2014-JTu6A.3

D. R. Hjelme, A. Berg, R. Ellingsen, B. Falch, A. Bjørkøy, and D. Østling, “Optical sensing of measurands,” U.S. Patent 7  440  110, 21, 2008.

Falch, B. M. H.

S. Tierney, B. M. H. Falch, D. R. Hjelme, and B. T. Stokke, “Determination of glucose levels using a functionalized hydrogel optical fiber biosensor: Toward continuous monitoring of blood glucose in vivo,” Anal. Chem., vol. 81, no. 9, pp. 3630–3636, 2009. [Online]. Available: http://dx.doi.org/10.1021/ac900019k

Fokine, M.

P. M. P. Gouvêa, H. Jang, I. C. S. Carvalho, M. Cremona, A. M. B. Braga, and M. Fokine, “Internal specular reflection from nanoparticle layers on the end face of optical fibers,” J. Appl. Phys., vol. 109, no. 10, 2011, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3583582

Frušic-Zlotkin, M.

A. Goldstein, Y. Soroka, M. Frušić-Zlotkin, I. Popov, and R. Kohen, “High resolution SEM imaging of gold nanoparticles in cells and tissues,” J. Microscopy, vol. 256, no. 3, pp. 237–247, 2014. [Online]. Available: http://dx.doi.org/10.1111/jmi.12179

Galaev, I. Y.

F. M. Plieva, M. Karlsson, M.-R. Aguilar, D. Gomez, S. Mikhalovsky, and I. Y. Galaev, “Pore structure in supermacroporous polyacrylamide based cryogels,” Soft Matter, vol. 1, no. 4, pp. 303–309, 2005. [Online]. Available: http://dx.doi.org/10.1039/B510010K

Gans, R.

R. Gans, “The form of ultramicroscopic gold particles,” Annalen der Physik, vol. 37, pp. 881–900, 1912.

Goldstein, A.

A. Goldstein, Y. Soroka, M. Frušić-Zlotkin, I. Popov, and R. Kohen, “High resolution SEM imaging of gold nanoparticles in cells and tissues,” J. Microscopy, vol. 256, no. 3, pp. 237–247, 2014. [Online]. Available: http://dx.doi.org/10.1111/jmi.12179

Gomez, D.

F. M. Plieva, M. Karlsson, M.-R. Aguilar, D. Gomez, S. Mikhalovsky, and I. Y. Galaev, “Pore structure in supermacroporous polyacrylamide based cryogels,” Soft Matter, vol. 1, no. 4, pp. 303–309, 2005. [Online]. Available: http://dx.doi.org/10.1039/B510010K

Gouvêa, P. M. P.

P. M. P. Gouvêa, H. Jang, I. C. S. Carvalho, M. Cremona, A. M. B. Braga, and M. Fokine, “Internal specular reflection from nanoparticle layers on the end face of optical fibers,” J. Appl. Phys., vol. 109, no. 10, 2011, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3583582

Gupta, B. D.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic u-shaped biosensor for the detection of blood glucose,” Plasmonics, vol. 7, no. 2, pp. 261–268, 2011. [Online]. Available: http://dx.doi.org/10.1007/s11468-011-9302-8

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev., vol. 111, no. 6, pp. 3828–3857, 2011. [Online]. Available: http://dx.doi.org/10.1021/cr100313v

Haynes, W. M.

W. M. Haynes, Handbook of Chemistry and Physics, 97th ed., W. M. Haynes, Ed. Boca Raton, FL, USA: CRC, 2016-2017.

Hjelme, D. R.

H. I. D. I. Muri, A. Bano, and D. R. Hjelme, “Interferometric and localized surface plasmon based fiber optic sensor,” SPIE, vol. 10058, pp. 10 058–10 058–10, 2017. [Online]. Available: http://dx.doi.org/10.1117/12.2250743

H. I. D. I. Muri and D. R. Hjelme, “Novel localized surface plasmon resonance based optical fiber sensor,” SPIE, vol. 9702, pp. 97 020L–97 020L–8, 2016. [Online]. Available: http://dx.doi.org/10.1117/12.2212652

S. Tierney, B. M. H. Falch, D. R. Hjelme, and B. T. Stokke, “Determination of glucose levels using a functionalized hydrogel optical fiber biosensor: Toward continuous monitoring of blood glucose in vivo,” Anal. Chem., vol. 81, no. 9, pp. 3630–3636, 2009. [Online]. Available: http://dx.doi.org/10.1021/ac900019k

S. Tierney, D. R. Hjelme, and B. T. Stokke, “Determination of swelling of responsive gels with nanometer resolution. fiber-optic based platform for hydrogels as signal transducers,” Anal. Chem., vol. 80, no. 13, pp. 5086–5093, 2008. [Online]. Available: http://dx.doi.org/10.1021/ac800292k

D. R. Hjelme, A. Berg, R. Ellingsen, B. Falch, A. Bjørkøy, and D. Østling, “Optical sensing of measurands,” U.S. Patent 7  440  110, 21, 2008.

D. R. Hjelme, O. Aune, B. Falch, D. Østling, and R. Ellingsen, “Fiber-optic biosensor technology for rapid, accurate and specific detection of enzymes,” in Proc. Adv. Photon. OSA Tech. Dig., 2014, Paper. JTu6A.3. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=Sensors-2014-JTu6A.3

Ilavský, M.

K. Bouchal, Z. Sedláková, and M. Ilavský, “Phase transition in swollen gels,” Polymer Bull., vol. 32, no. 3, pp. 331–338, 1994. [Online]. Available: https://doi.org/10.1007/BF00308545

Jang, H.

P. M. P. Gouvêa, H. Jang, I. C. S. Carvalho, M. Cremona, A. M. B. Braga, and M. Fokine, “Internal specular reflection from nanoparticle layers on the end face of optical fibers,” J. Appl. Phys., vol. 109, no. 10, 2011, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3583582

Jenkins, G. M.

G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.

Jensen, T. R.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B, vol. 103, no. 45, pp. 9846–9853, 1999. [Online]. Available: http://dx.doi.org/10.1021/jp9926802

Jeong, D.-H.

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, H.-Y. Lee, and S.-K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor,” Biosensors Bioelectron., vol. 39, no. 1, pp. 346–351, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566312005337

Jeong, H.-H.

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, H.-Y. Lee, and S.-K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor,” Biosensors Bioelectron., vol. 39, no. 1, pp. 346–351, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566312005337

Karlsson, M.

F. M. Plieva, M. Karlsson, M.-R. Aguilar, D. Gomez, S. Mikhalovsky, and I. Y. Galaev, “Pore structure in supermacroporous polyacrylamide based cryogels,” Soft Matter, vol. 1, no. 4, pp. 303–309, 2005. [Online]. Available: http://dx.doi.org/10.1039/B510010K

Kashi, A. Mehdizadeh

A. Mehdizadeh Kashiet al., “How to prepare biological samples and live tissues for scanning electron microscopy (SEM),” Galen Med. J., vol. 3, no. 2, pp. 63–80, 2014. [Online]. Available: http://www.gmj.ir/index.php/gmj/article/view/267/123

Kelly, K. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B, vol. 103, no. 45, pp. 9846–9853, 1999. [Online]. Available: http://dx.doi.org/10.1021/jp9926802

Kohen, R.

A. Goldstein, Y. Soroka, M. Frušić-Zlotkin, I. Popov, and R. Kohen, “High resolution SEM imaging of gold nanoparticles in cells and tissues,” J. Microscopy, vol. 256, no. 3, pp. 237–247, 2014. [Online]. Available: http://dx.doi.org/10.1111/jmi.12179

Lazarides, A. A.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B, vol. 103, no. 45, pp. 9846–9853, 1999. [Online]. Available: http://dx.doi.org/10.1021/jp9926802

Lee, H.-Y.

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, H.-Y. Lee, and S.-K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor,” Biosensors Bioelectron., vol. 39, no. 1, pp. 346–351, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566312005337

Lee, S.-K.

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, H.-Y. Lee, and S.-K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor,” Biosensors Bioelectron., vol. 39, no. 1, pp. 346–351, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566312005337

Lin, Y.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced {LSPR} fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosensors Bioelectron., vol. 61, pp. 95–101, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566314003418

Lindquist, R. G.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced {LSPR} fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosensors Bioelectron., vol. 61, pp. 95–101, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566314003418

Ljung, G. M.

G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev., vol. 111, no. 6, pp. 3828–3857, 2011. [Online]. Available: http://dx.doi.org/10.1021/cr100313v

Mie, G.

G. Mie, “Beiträge zur optik trüberber medien, speziell kolloidaler metallösungen,” Ann. Physik, vol. 330, no. 3, pp. 377–442, 1908.

Mikhalovsky, S.

F. M. Plieva, M. Karlsson, M.-R. Aguilar, D. Gomez, S. Mikhalovsky, and I. Y. Galaev, “Pore structure in supermacroporous polyacrylamide based cryogels,” Soft Matter, vol. 1, no. 4, pp. 303–309, 2005. [Online]. Available: http://dx.doi.org/10.1039/B510010K

Muri, H. I. D. I.

H. I. D. I. Muri, A. Bano, and D. R. Hjelme, “Interferometric and localized surface plasmon based fiber optic sensor,” SPIE, vol. 10058, pp. 10 058–10 058–10, 2017. [Online]. Available: http://dx.doi.org/10.1117/12.2250743

H. I. D. I. Muri and D. R. Hjelme, “Novel localized surface plasmon resonance based optical fiber sensor,” SPIE, vol. 9702, pp. 97 020L–97 020L–8, 2016. [Online]. Available: http://dx.doi.org/10.1117/12.2212652

Østling, D.

D. R. Hjelme, A. Berg, R. Ellingsen, B. Falch, A. Bjørkøy, and D. Østling, “Optical sensing of measurands,” U.S. Patent 7  440  110, 21, 2008.

D. R. Hjelme, O. Aune, B. Falch, D. Østling, and R. Ellingsen, “Fiber-optic biosensor technology for rapid, accurate and specific detection of enzymes,” in Proc. Adv. Photon. OSA Tech. Dig., 2014, Paper. JTu6A.3. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=Sensors-2014-JTu6A.3

Park, J.-H.

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, H.-Y. Lee, and S.-K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor,” Biosensors Bioelectron., vol. 39, no. 1, pp. 346–351, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566312005337

Peppas, N. A.

J. Zhang and N. A. Peppas, “Morphology of poly(methacrylic acid)/poly(n-isopropyl acrylamide) interpenetrating polymeric networks,” J. Biomater. Sci., Polymer Ed., vol. 13, no. 5, pp. 511–525, 2002. [Online]. Available: http://dx.doi.org/10.1163/15685620260178373

Plieva, F. M.

F. M. Plieva, M. Karlsson, M.-R. Aguilar, D. Gomez, S. Mikhalovsky, and I. Y. Galaev, “Pore structure in supermacroporous polyacrylamide based cryogels,” Soft Matter, vol. 1, no. 4, pp. 303–309, 2005. [Online]. Available: http://dx.doi.org/10.1039/B510010K

Popov, I.

A. Goldstein, Y. Soroka, M. Frušić-Zlotkin, I. Popov, and R. Kohen, “High resolution SEM imaging of gold nanoparticles in cells and tissues,” J. Microscopy, vol. 256, no. 3, pp. 237–247, 2014. [Online]. Available: http://dx.doi.org/10.1111/jmi.12179

Rao, Y.-J.

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol., vol. 12, no. 3, pp. 227–237, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1068520006000174

Reinsel, G. C.

G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.

Sanders, M.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced {LSPR} fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosensors Bioelectron., vol. 61, pp. 95–101, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566314003418

Sapra, S.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic u-shaped biosensor for the detection of blood glucose,” Plasmonics, vol. 7, no. 2, pp. 261–268, 2011. [Online]. Available: http://dx.doi.org/10.1007/s11468-011-9302-8

Schatz, G. C.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B, vol. 103, no. 45, pp. 9846–9853, 1999. [Online]. Available: http://dx.doi.org/10.1021/jp9926802

Sedláková, Z.

K. Bouchal, Z. Sedláková, and M. Ilavský, “Phase transition in swollen gels,” Polymer Bull., vol. 32, no. 3, pp. 331–338, 1994. [Online]. Available: https://doi.org/10.1007/BF00308545

Silverman, B. W.

B. W. Silverman, “Some aspects of the spline smoothing approach to non-parametric regression curve fitting,” J. Roy. Statist. Soc. Series B (Methodological), vol. 47, no. 1, pp. 1–52, 1985. [Online]. Available: http://www.jstor.org/stable/2345542

Solgaard, O.

X. Wu and O. Solgaard, “Short-cavity multimode fiber-tip Fabry-Pérot sensors,” Opt. Express, vol. 21, no. 12, pp. 14 487–14 499, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-12-14487

Soroka, Y.

A. Goldstein, Y. Soroka, M. Frušić-Zlotkin, I. Popov, and R. Kohen, “High resolution SEM imaging of gold nanoparticles in cells and tissues,” J. Microscopy, vol. 256, no. 3, pp. 237–247, 2014. [Online]. Available: http://dx.doi.org/10.1111/jmi.12179

Srivastava, S. K.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic u-shaped biosensor for the detection of blood glucose,” Plasmonics, vol. 7, no. 2, pp. 261–268, 2011. [Online]. Available: http://dx.doi.org/10.1007/s11468-011-9302-8

Stokke, B. T.

S. Tierney, B. M. H. Falch, D. R. Hjelme, and B. T. Stokke, “Determination of glucose levels using a functionalized hydrogel optical fiber biosensor: Toward continuous monitoring of blood glucose in vivo,” Anal. Chem., vol. 81, no. 9, pp. 3630–3636, 2009. [Online]. Available: http://dx.doi.org/10.1021/ac900019k

S. Tierney, D. R. Hjelme, and B. T. Stokke, “Determination of swelling of responsive gels with nanometer resolution. fiber-optic based platform for hydrogels as signal transducers,” Anal. Chem., vol. 80, no. 13, pp. 5086–5093, 2008. [Online]. Available: http://dx.doi.org/10.1021/ac800292k

Taylor, H. F.

H. F. Taylor, “Fiber optic sensors based upon the Fabry-Perot interferometer,” Opt. Eng., vol. 76. New York, NY, USA: Marcel Dekker, 2002, pp. 41–74.

Tierney, S.

S. Tierney, B. M. H. Falch, D. R. Hjelme, and B. T. Stokke, “Determination of glucose levels using a functionalized hydrogel optical fiber biosensor: Toward continuous monitoring of blood glucose in vivo,” Anal. Chem., vol. 81, no. 9, pp. 3630–3636, 2009. [Online]. Available: http://dx.doi.org/10.1021/ac900019k

S. Tierney, D. R. Hjelme, and B. T. Stokke, “Determination of swelling of responsive gels with nanometer resolution. fiber-optic based platform for hydrogels as signal transducers,” Anal. Chem., vol. 80, no. 13, pp. 5086–5093, 2008. [Online]. Available: http://dx.doi.org/10.1021/ac800292k

Wei, J.

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced {LSPR} fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosensors Bioelectron., vol. 61, pp. 95–101, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566314003418

Wu, X.

X. Wu and O. Solgaard, “Short-cavity multimode fiber-tip Fabry-Pérot sensors,” Opt. Express, vol. 21, no. 12, pp. 14 487–14 499, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-12-14487

Zhang, J.

J. Zhang and N. A. Peppas, “Morphology of poly(methacrylic acid)/poly(n-isopropyl acrylamide) interpenetrating polymeric networks,” J. Biomater. Sci., Polymer Ed., vol. 13, no. 5, pp. 511–525, 2002. [Online]. Available: http://dx.doi.org/10.1163/15685620260178373

Anal. Chem. (2)

S. Tierney, D. R. Hjelme, and B. T. Stokke, “Determination of swelling of responsive gels with nanometer resolution. fiber-optic based platform for hydrogels as signal transducers,” Anal. Chem., vol. 80, no. 13, pp. 5086–5093, 2008. [Online]. Available: http://dx.doi.org/10.1021/ac800292k

S. Tierney, B. M. H. Falch, D. R. Hjelme, and B. T. Stokke, “Determination of glucose levels using a functionalized hydrogel optical fiber biosensor: Toward continuous monitoring of blood glucose in vivo,” Anal. Chem., vol. 81, no. 9, pp. 3630–3636, 2009. [Online]. Available: http://dx.doi.org/10.1021/ac900019k

Ann. Physik (1)

G. Mie, “Beiträge zur optik trüberber medien, speziell kolloidaler metallösungen,” Ann. Physik, vol. 330, no. 3, pp. 377–442, 1908.

Annalen der Physik (1)

R. Gans, “The form of ultramicroscopic gold particles,” Annalen der Physik, vol. 37, pp. 881–900, 1912.

Biosensors Bioelectron. (2)

M. Sanders, Y. Lin, J. Wei, T. Bono, and R. G. Lindquist, “An enhanced {LSPR} fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosensors Bioelectron., vol. 61, pp. 95–101, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566314003418

H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, H.-Y. Lee, and S.-K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor,” Biosensors Bioelectron., vol. 39, no. 1, pp. 346–351, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0956566312005337

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev., vol. 111, no. 6, pp. 3828–3857, 2011. [Online]. Available: http://dx.doi.org/10.1021/cr100313v

Galen Med. J. (1)

A. Mehdizadeh Kashiet al., “How to prepare biological samples and live tissues for scanning electron microscopy (SEM),” Galen Med. J., vol. 3, no. 2, pp. 63–80, 2014. [Online]. Available: http://www.gmj.ir/index.php/gmj/article/view/267/123

Handbook of Chemistry and Physics (1)

W. M. Haynes, Handbook of Chemistry and Physics, 97th ed., W. M. Haynes, Ed. Boca Raton, FL, USA: CRC, 2016-2017.

J. Appl. Phys. (1)

P. M. P. Gouvêa, H. Jang, I. C. S. Carvalho, M. Cremona, A. M. B. Braga, and M. Fokine, “Internal specular reflection from nanoparticle layers on the end face of optical fibers,” J. Appl. Phys., vol. 109, no. 10, 2011, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3583582

J. Biomater. Sci., Polymer Ed. (1)

J. Zhang and N. A. Peppas, “Morphology of poly(methacrylic acid)/poly(n-isopropyl acrylamide) interpenetrating polymeric networks,” J. Biomater. Sci., Polymer Ed., vol. 13, no. 5, pp. 511–525, 2002. [Online]. Available: http://dx.doi.org/10.1163/15685620260178373

J. Microscopy (1)

A. Goldstein, Y. Soroka, M. Frušić-Zlotkin, I. Popov, and R. Kohen, “High resolution SEM imaging of gold nanoparticles in cells and tissues,” J. Microscopy, vol. 256, no. 3, pp. 237–247, 2014. [Online]. Available: http://dx.doi.org/10.1111/jmi.12179

J. Phys. Chem. B (1)

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B, vol. 103, no. 45, pp. 9846–9853, 1999. [Online]. Available: http://dx.doi.org/10.1021/jp9926802

J. Roy. Statist. Soc. Series B (Methodological) (1)

B. W. Silverman, “Some aspects of the spline smoothing approach to non-parametric regression curve fitting,” J. Roy. Statist. Soc. Series B (Methodological), vol. 47, no. 1, pp. 1–52, 1985. [Online]. Available: http://www.jstor.org/stable/2345542

Opt. Express (1)

X. Wu and O. Solgaard, “Short-cavity multimode fiber-tip Fabry-Pérot sensors,” Opt. Express, vol. 21, no. 12, pp. 14 487–14 499, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-12-14487

Opt. Fiber Technol. (1)

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol., vol. 12, no. 3, pp. 227–237, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1068520006000174

Plasmonics (1)

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic u-shaped biosensor for the detection of blood glucose,” Plasmonics, vol. 7, no. 2, pp. 261–268, 2011. [Online]. Available: http://dx.doi.org/10.1007/s11468-011-9302-8

Polymer Bull. (1)

K. Bouchal, Z. Sedláková, and M. Ilavský, “Phase transition in swollen gels,” Polymer Bull., vol. 32, no. 3, pp. 331–338, 1994. [Online]. Available: https://doi.org/10.1007/BF00308545

Soft Matter (1)

F. M. Plieva, M. Karlsson, M.-R. Aguilar, D. Gomez, S. Mikhalovsky, and I. Y. Galaev, “Pore structure in supermacroporous polyacrylamide based cryogels,” Soft Matter, vol. 1, no. 4, pp. 303–309, 2005. [Online]. Available: http://dx.doi.org/10.1039/B510010K

SPIE (2)

H. I. D. I. Muri and D. R. Hjelme, “Novel localized surface plasmon resonance based optical fiber sensor,” SPIE, vol. 9702, pp. 97 020L–97 020L–8, 2016. [Online]. Available: http://dx.doi.org/10.1117/12.2212652

H. I. D. I. Muri, A. Bano, and D. R. Hjelme, “Interferometric and localized surface plasmon based fiber optic sensor,” SPIE, vol. 10058, pp. 10 058–10 058–10, 2017. [Online]. Available: http://dx.doi.org/10.1117/12.2250743

Other (4)

H. F. Taylor, “Fiber optic sensors based upon the Fabry-Perot interferometer,” Opt. Eng., vol. 76. New York, NY, USA: Marcel Dekker, 2002, pp. 41–74.

D. R. Hjelme, A. Berg, R. Ellingsen, B. Falch, A. Bjørkøy, and D. Østling, “Optical sensing of measurands,” U.S. Patent 7  440  110, 21, 2008.

D. R. Hjelme, O. Aune, B. Falch, D. Østling, and R. Ellingsen, “Fiber-optic biosensor technology for rapid, accurate and specific detection of enzymes,” in Proc. Adv. Photon. OSA Tech. Dig., 2014, Paper. JTu6A.3. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=Sensors-2014-JTu6A.3

G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.