Abstract

A spider uses up to seven different types of silk, all having specific functions, as building material, weapon, and sensory organ to detect the presence of preys on its web. Recently, scientists have put under the limelight the extraordinary properties of this ancient material. Indeed, native silk, directly extracted from spiders, is a tough, biodegradable, and biocompatible thread used mainly for tissue engineering and textile applications. Blessed with outstanding optical properties, this protein strand can also be used as a bioresorbable optical fiber and is, moreover, intrinsically sensitive to chemical compounds. In this communication, the waveguiding properties of native dragline silk are assessed and a pioneering proof-of-concept experiment using pristine spider silk as an optical fiber to measure humidity content is demonstrated. The feasibility of using silk-based optical fiber chemical sensors is also discussed.

© 2017 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Thévenaz, “Next generation of optical fibre sensors: New concepts and perspectives,” Proc. SPIE, vol. 9157, pp. 9157AN-1–9157AN-4, 2014.
  2. X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2013–2015),” Analytical Chem., vol. 88, no. 1, pp. 203–227, 2015.
  3. B. Kuswandi, R. Andres, and R. Narayanaswamy, “Optical fibre biosensors based on immobilised enzymes,” Analyst, vol. 126, no. 8, pp. 1469–1491, 2001.
  4. Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated brillouin scattering,” Optica, vol. 3, no. 5, pp. 510–516, 2016.
  5. T. Yeo, T. Sun, K. Grattan, D. Parry, R. Lade, and B. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B, Chem., vol. 110, no. 1, pp. 148–156, 2005.
  6. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Exp., vol. 14, no. 24, pp. 11616–11621, 2006.
  7. Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polymer Sci. Part B, Polymer Phys., vol. 49, no. 1, pp. 2–17, 2011.
  8. W. Zhang and D. J. Webb, “Humidity responsivity of poly (methyl methacrylate)-based optical fiber Bragg grating sensors,” Opt. Lett., vol. 39, no. 10, pp. 3026–3029, 2014.
  9. D. E. Meyer, “Miniature moisture sensors for in-package use by the microelectronics industry,” in Proc. 1975 13th Annu. Rel. Phys. Symp., 1975, pp. 48–52.
  10. A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B, Chem., vol. 151, no. 1, pp. 26–29, 2010.
  11. L. Fábiánet al., “Protein-based ultrafast photonic switching,” Opt. Exp., vol. 19, no. 20, pp. 18861–18870, 2011.
  12. A. Matheszet al., “Integrated optical biosensor for rapid detection of bacteria,” Optofluidics, Microfluidics Nanofluidics, vol. 2, no. 1, pp. 15–21, 2015.
  13. C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, and O. Inganäs, “Woven electrochemical transistors on silk fibers,” Adv. Mater., vol. 23, no. 7, pp. 898–901, 2011.
  14. J. Gosline, P. Guerette, C. Ortlepp, and K. Savage, “The mechanical design of spider silks: From fibroin sequence to mechanical function,” J. Exp. Biol., vol. 202, no. 23, pp. 3295–3303, 1999.
  15. F. Vollrath and D. P. Knight, “Liquid crystalline spinning of spider silk,” Nature, vol. 410, no. 6828, pp. 541–548, 2001.
  16. H. Wendtet al., “Artificial skin–culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres,” PloS One, vol. 6, no. 7, p. e21833, 2011.
  17. P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive self-sensing optical systems,” Appl. Phys. Lett., vol. 95, no. 25, p. 253702, 2009.
  18. F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nature Photon., vol. 2, no. 11, pp. 641–643, 2008.
  19. V. M. Swinerd, A. M. Collins, N. J. Skaer, T. Gheysens, and S. Mann, “Silk inverse opals from template-directed β-sheet transformation of regenerated silk fibroin,” Soft Matter, vol. 3, no. 11, pp. 1377–1380, 2007.
  20. R. Capelliet al., “Integration of silk protein in organic and light-emitting transistors,” Organic Electron., vol. 12, no. 7, pp. 1146–1151, 2011.
  21. S. Toffaninet al., “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett., vol. 101, no. 9, p. 091110, 2012.
  22. R. R. da Silvaet al., “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C, vol. 1, no. 43, pp. 7181–7190, 2013.
  23. M. B. Applegate, G. Perotto, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk step-index optical waveguides,” Biomed. Opt. Exp., vol. 6, no. 11, pp. 4221–4227, 2015.
  24. S. Kujala, A. Mannila, L. Karvonen, K. Kieu, and Z. Sun, “Natural silk as a photonics component: A study on its light guiding and nonlinear optical properties,” Sci. Rep., vol. 6, 2016, Art. no. .
  25. N. Hubyet al., “Native spider silk as a biological optical fiber,” Appl. Phys. Lett., vol. 102, no. 12, p. 123702, 2013.
  26. K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Towards a new generation of fibre-optic chemical sensors based on spider silk threads,” in Proc. 2017 25th Opt. Fiber Sens. Conf., 2017, pp. 1–4.
  27. C. Y. Hayashi and R. V. Lewis, “Molecular architecture and evolution of a modular spider silk protein gene,” Science, vol. 287, no. 5457, pp. 1477–1479, 2000.
  28. K. Mita, S. Ichimura, and T. C. James, “Highly repetitive structure and its organization of the silk fibroin gene,” J. Mol. Evol., vol. 38, no. 6, pp. 583–592, 1994.
  29. Z. Shao and F. Vollrath, “Materials: Surprising strength of silkworm silk,” Nature, vol. 418, no. 6899, pp. 741–741, 2002.
  30. B. Madsen, Z. Z. Shao, and F. Vollrath, “Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual,” Int. J. Biolog. Macromol., vol. 24, no. 2, pp. 301–306, 1999.
  31. C. Holland, K. O'Neil, F. Vollrath, and C. Dicko, “Distinct structural and optical regimes in natural silk spinning,” Biopolymers, vol. 97, no. 6, pp. 368–373, 2012.
  32. F. Paquet-Mercier, T. Lefèvre, M. Auger, and M. Pézolet, “Evidence by infrared spectroscopy of the presence of two types of β-sheets in major ampullate spider silk and silkworm silk,” Soft Matter, vol. 9, no. 1, pp. 208–215, 2013.
  33. D. J. Little and D. M. Kane, “Image contrast immersion method for measuring refractive index applied to spider silks,” Opt. Exp., vol. 19, no. 20, pp. 19182–19189, 2011.
  34. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides: A simple method,” Appl. Opt., vol. 22, no. 23, pp. 3892–3894, 1983.
  35. K. Kikuchi and T. Okoshi, “Wavelength-sweeping technique for measuring the beat length of linearly birefringent optical fibers,” Opt. Lett., vol. 8, no. 2, pp. 122–123, 1983.
  36. Z. Shao and F. Vollrath, “The effect of solvents on the contraction and mechanical properties of spider silk,” Polymer, vol. 40, no. 7, pp. 1799–1806, 1999.
  37. K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: A novel optical fibre for biochemical sensing,” in Proc. Int. Conf. Opt. Fibre Sens., 2015, pp. 96347-D1–96347-D4.
  38. J. Guan, F. Vollrath, and D. Porter, “Two mechanisms for supercontraction in nephila spider dragline silk,” Biomacromolecules, vol. 12, no. 11, pp. 4030–4035, 2011.
  39. T. A. Blackledgeet al., “How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk,” J. Exp. Biol., vol. 212, no. 13, pp. 1981–1989, 2009.
  40. C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors, vol. 9, no. 10, pp. 8230–8262, 2009.
  41. T. Yeo, T. Sun, and K. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A, Phys., vol. 144, no. 2, pp. 280–295, 2008.
  42. T. Lefèvre, F. Paquet-Mercier, J.-F. Rioux-Dubé, and M. Pézolet, “Structure of silk by Raman spectromicroscopy: From the spinning glands to the fibers,” Biopolymers, vol. 97, no. 6, pp. 322–336, 2012.
  43. A. Rising and J. Johansson, “Toward spinning artificial spider silk,” Nature Chem. Biol., vol. 11, no. 5, pp. 309–315, 2015.

2016 (2)

Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated brillouin scattering,” Optica, vol. 3, no. 5, pp. 510–516, 2016.

S. Kujala, A. Mannila, L. Karvonen, K. Kieu, and Z. Sun, “Natural silk as a photonics component: A study on its light guiding and nonlinear optical properties,” Sci. Rep., vol. 6, 2016, Art. no. .

2015 (4)

M. B. Applegate, G. Perotto, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk step-index optical waveguides,” Biomed. Opt. Exp., vol. 6, no. 11, pp. 4221–4227, 2015.

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2013–2015),” Analytical Chem., vol. 88, no. 1, pp. 203–227, 2015.

A. Matheszet al., “Integrated optical biosensor for rapid detection of bacteria,” Optofluidics, Microfluidics Nanofluidics, vol. 2, no. 1, pp. 15–21, 2015.

A. Rising and J. Johansson, “Toward spinning artificial spider silk,” Nature Chem. Biol., vol. 11, no. 5, pp. 309–315, 2015.

2014 (2)

L. Thévenaz, “Next generation of optical fibre sensors: New concepts and perspectives,” Proc. SPIE, vol. 9157, pp. 9157AN-1–9157AN-4, 2014.

W. Zhang and D. J. Webb, “Humidity responsivity of poly (methyl methacrylate)-based optical fiber Bragg grating sensors,” Opt. Lett., vol. 39, no. 10, pp. 3026–3029, 2014.

2013 (3)

F. Paquet-Mercier, T. Lefèvre, M. Auger, and M. Pézolet, “Evidence by infrared spectroscopy of the presence of two types of β-sheets in major ampullate spider silk and silkworm silk,” Soft Matter, vol. 9, no. 1, pp. 208–215, 2013.

N. Hubyet al., “Native spider silk as a biological optical fiber,” Appl. Phys. Lett., vol. 102, no. 12, p. 123702, 2013.

R. R. da Silvaet al., “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C, vol. 1, no. 43, pp. 7181–7190, 2013.

2012 (3)

S. Toffaninet al., “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett., vol. 101, no. 9, p. 091110, 2012.

C. Holland, K. O'Neil, F. Vollrath, and C. Dicko, “Distinct structural and optical regimes in natural silk spinning,” Biopolymers, vol. 97, no. 6, pp. 368–373, 2012.

T. Lefèvre, F. Paquet-Mercier, J.-F. Rioux-Dubé, and M. Pézolet, “Structure of silk by Raman spectromicroscopy: From the spinning glands to the fibers,” Biopolymers, vol. 97, no. 6, pp. 322–336, 2012.

2011 (7)

J. Guan, F. Vollrath, and D. Porter, “Two mechanisms for supercontraction in nephila spider dragline silk,” Biomacromolecules, vol. 12, no. 11, pp. 4030–4035, 2011.

D. J. Little and D. M. Kane, “Image contrast immersion method for measuring refractive index applied to spider silks,” Opt. Exp., vol. 19, no. 20, pp. 19182–19189, 2011.

R. Capelliet al., “Integration of silk protein in organic and light-emitting transistors,” Organic Electron., vol. 12, no. 7, pp. 1146–1151, 2011.

C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, and O. Inganäs, “Woven electrochemical transistors on silk fibers,” Adv. Mater., vol. 23, no. 7, pp. 898–901, 2011.

Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polymer Sci. Part B, Polymer Phys., vol. 49, no. 1, pp. 2–17, 2011.

L. Fábiánet al., “Protein-based ultrafast photonic switching,” Opt. Exp., vol. 19, no. 20, pp. 18861–18870, 2011.

H. Wendtet al., “Artificial skin–culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres,” PloS One, vol. 6, no. 7, p. e21833, 2011.

2010 (1)

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B, Chem., vol. 151, no. 1, pp. 26–29, 2010.

2009 (3)

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive self-sensing optical systems,” Appl. Phys. Lett., vol. 95, no. 25, p. 253702, 2009.

T. A. Blackledgeet al., “How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk,” J. Exp. Biol., vol. 212, no. 13, pp. 1981–1989, 2009.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors, vol. 9, no. 10, pp. 8230–8262, 2009.

2008 (2)

T. Yeo, T. Sun, and K. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A, Phys., vol. 144, no. 2, pp. 280–295, 2008.

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nature Photon., vol. 2, no. 11, pp. 641–643, 2008.

2007 (1)

V. M. Swinerd, A. M. Collins, N. J. Skaer, T. Gheysens, and S. Mann, “Silk inverse opals from template-directed β-sheet transformation of regenerated silk fibroin,” Soft Matter, vol. 3, no. 11, pp. 1377–1380, 2007.

2006 (1)

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Exp., vol. 14, no. 24, pp. 11616–11621, 2006.

2005 (1)

T. Yeo, T. Sun, K. Grattan, D. Parry, R. Lade, and B. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B, Chem., vol. 110, no. 1, pp. 148–156, 2005.

2002 (1)

Z. Shao and F. Vollrath, “Materials: Surprising strength of silkworm silk,” Nature, vol. 418, no. 6899, pp. 741–741, 2002.

2001 (2)

F. Vollrath and D. P. Knight, “Liquid crystalline spinning of spider silk,” Nature, vol. 410, no. 6828, pp. 541–548, 2001.

B. Kuswandi, R. Andres, and R. Narayanaswamy, “Optical fibre biosensors based on immobilised enzymes,” Analyst, vol. 126, no. 8, pp. 1469–1491, 2001.

2000 (1)

C. Y. Hayashi and R. V. Lewis, “Molecular architecture and evolution of a modular spider silk protein gene,” Science, vol. 287, no. 5457, pp. 1477–1479, 2000.

1999 (3)

B. Madsen, Z. Z. Shao, and F. Vollrath, “Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual,” Int. J. Biolog. Macromol., vol. 24, no. 2, pp. 301–306, 1999.

J. Gosline, P. Guerette, C. Ortlepp, and K. Savage, “The mechanical design of spider silks: From fibroin sequence to mechanical function,” J. Exp. Biol., vol. 202, no. 23, pp. 3295–3303, 1999.

Z. Shao and F. Vollrath, “The effect of solvents on the contraction and mechanical properties of spider silk,” Polymer, vol. 40, no. 7, pp. 1799–1806, 1999.

1994 (1)

K. Mita, S. Ichimura, and T. C. James, “Highly repetitive structure and its organization of the silk fibroin gene,” J. Mol. Evol., vol. 38, no. 6, pp. 583–592, 1994.

1983 (2)

Amsden, J. J.

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive self-sensing optical systems,” Appl. Phys. Lett., vol. 95, no. 25, p. 253702, 2009.

Andó, I.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B, Chem., vol. 151, no. 1, pp. 26–29, 2010.

Andres, R.

B. Kuswandi, R. Andres, and R. Narayanaswamy, “Optical fibre biosensors based on immobilised enzymes,” Analyst, vol. 126, no. 8, pp. 1469–1491, 2001.

Antman, Y.

Applegate, M. B.

M. B. Applegate, G. Perotto, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk step-index optical waveguides,” Biomed. Opt. Exp., vol. 6, no. 11, pp. 4221–4227, 2015.

Auger, M.

F. Paquet-Mercier, T. Lefèvre, M. Auger, and M. Pézolet, “Evidence by infrared spectroscopy of the presence of two types of β-sheets in major ampullate spider silk and silkworm silk,” Soft Matter, vol. 9, no. 1, pp. 208–215, 2013.

Blackledge, T. A.

T. A. Blackledgeet al., “How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk,” J. Exp. Biol., vol. 212, no. 13, pp. 1981–1989, 2009.

Capelli, R.

R. Capelliet al., “Integration of silk protein in organic and light-emitting transistors,” Organic Electron., vol. 12, no. 7, pp. 1146–1151, 2011.

Chow, D. M.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Towards a new generation of fibre-optic chemical sensors based on spider silk threads,” in Proc. 2017 25th Opt. Fiber Sens. Conf., 2017, pp. 1–4.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: A novel optical fibre for biochemical sensing,” in Proc. Int. Conf. Opt. Fibre Sens., 2015, pp. 96347-D1–96347-D4.

Clain, A.

Collins, A. M.

V. M. Swinerd, A. M. Collins, N. J. Skaer, T. Gheysens, and S. Mann, “Silk inverse opals from template-directed β-sheet transformation of regenerated silk fibroin,” Soft Matter, vol. 3, no. 11, pp. 1377–1380, 2007.

da Silva, R. R.

R. R. da Silvaet al., “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C, vol. 1, no. 43, pp. 7181–7190, 2013.

Dér, A.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B, Chem., vol. 151, no. 1, pp. 26–29, 2010.

Dicaire, I.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Towards a new generation of fibre-optic chemical sensors based on spider silk threads,” in Proc. 2017 25th Opt. Fiber Sens. Conf., 2017, pp. 1–4.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: A novel optical fibre for biochemical sensing,” in Proc. Int. Conf. Opt. Fibre Sens., 2015, pp. 96347-D1–96347-D4.

Dicko, C.

C. Holland, K. O'Neil, F. Vollrath, and C. Dicko, “Distinct structural and optical regimes in natural silk spinning,” Biopolymers, vol. 97, no. 6, pp. 368–373, 2012.

Domachuk, P.

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive self-sensing optical systems,” Appl. Phys. Lett., vol. 95, no. 25, p. 253702, 2009.

Fábián, L.

L. Fábiánet al., “Protein-based ultrafast photonic switching,” Opt. Exp., vol. 19, no. 20, pp. 18861–18870, 2011.

Gheysens, T.

V. M. Swinerd, A. M. Collins, N. J. Skaer, T. Gheysens, and S. Mann, “Silk inverse opals from template-directed β-sheet transformation of regenerated silk fibroin,” Soft Matter, vol. 3, no. 11, pp. 1377–1380, 2007.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Towards a new generation of fibre-optic chemical sensors based on spider silk threads,” in Proc. 2017 25th Opt. Fiber Sens. Conf., 2017, pp. 1–4.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: A novel optical fibre for biochemical sensing,” in Proc. Int. Conf. Opt. Fibre Sens., 2015, pp. 96347-D1–96347-D4.

Gosline, J.

J. Gosline, P. Guerette, C. Ortlepp, and K. Savage, “The mechanical design of spider silks: From fibroin sequence to mechanical function,” J. Exp. Biol., vol. 202, no. 23, pp. 3295–3303, 1999.

Grattan, K.

T. Yeo, T. Sun, and K. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A, Phys., vol. 144, no. 2, pp. 280–295, 2008.

T. Yeo, T. Sun, K. Grattan, D. Parry, R. Lade, and B. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B, Chem., vol. 110, no. 1, pp. 148–156, 2005.

Guan, J.

J. Guan, F. Vollrath, and D. Porter, “Two mechanisms for supercontraction in nephila spider dragline silk,” Biomacromolecules, vol. 12, no. 11, pp. 4030–4035, 2011.

Guerette, P.

J. Gosline, P. Guerette, C. Ortlepp, and K. Savage, “The mechanical design of spider silks: From fibroin sequence to mechanical function,” J. Exp. Biol., vol. 202, no. 23, pp. 3295–3303, 1999.

Hamedi, M.

C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, and O. Inganäs, “Woven electrochemical transistors on silk fibers,” Adv. Mater., vol. 23, no. 7, pp. 898–901, 2011.

Hassani, A.

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Exp., vol. 14, no. 24, pp. 11616–11621, 2006.

Hayashi, C. Y.

C. Y. Hayashi and R. V. Lewis, “Molecular architecture and evolution of a modular spider silk protein gene,” Science, vol. 287, no. 5457, pp. 1477–1479, 2000.

Holland, C.

C. Holland, K. O'Neil, F. Vollrath, and C. Dicko, “Distinct structural and optical regimes in natural silk spinning,” Biopolymers, vol. 97, no. 6, pp. 368–373, 2012.

Huby, N.

N. Hubyet al., “Native spider silk as a biological optical fiber,” Appl. Phys. Lett., vol. 102, no. 12, p. 123702, 2013.

Ichimura, S.

K. Mita, S. Ichimura, and T. C. James, “Highly repetitive structure and its organization of the silk fibroin gene,” J. Mol. Evol., vol. 38, no. 6, pp. 583–592, 1994.

Inganäs, O.

C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, and O. Inganäs, “Woven electrochemical transistors on silk fibers,” Adv. Mater., vol. 23, no. 7, pp. 898–901, 2011.

James, T. C.

K. Mita, S. Ichimura, and T. C. James, “Highly repetitive structure and its organization of the silk fibroin gene,” J. Mol. Evol., vol. 38, no. 6, pp. 583–592, 1994.

Jansson, R.

C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, and O. Inganäs, “Woven electrochemical transistors on silk fibers,” Adv. Mater., vol. 23, no. 7, pp. 898–901, 2011.

Johansson, J.

A. Rising and J. Johansson, “Toward spinning artificial spider silk,” Nature Chem. Biol., vol. 11, no. 5, pp. 309–315, 2015.

Kane, D. M.

D. J. Little and D. M. Kane, “Image contrast immersion method for measuring refractive index applied to spider silks,” Opt. Exp., vol. 19, no. 20, pp. 19182–19189, 2011.

Kaplan, D. L.

M. B. Applegate, G. Perotto, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk step-index optical waveguides,” Biomed. Opt. Exp., vol. 6, no. 11, pp. 4221–4227, 2015.

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive self-sensing optical systems,” Appl. Phys. Lett., vol. 95, no. 25, p. 253702, 2009.

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nature Photon., vol. 2, no. 11, pp. 641–643, 2008.

Karlsson, R.

C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, and O. Inganäs, “Woven electrochemical transistors on silk fibers,” Adv. Mater., vol. 23, no. 7, pp. 898–901, 2011.

Karvonen, L.

S. Kujala, A. Mannila, L. Karvonen, K. Kieu, and Z. Sun, “Natural silk as a photonics component: A study on its light guiding and nonlinear optical properties,” Sci. Rep., vol. 6, 2016, Art. no. .

Kieu, K.

S. Kujala, A. Mannila, L. Karvonen, K. Kieu, and Z. Sun, “Natural silk as a photonics component: A study on its light guiding and nonlinear optical properties,” Sci. Rep., vol. 6, 2016, Art. no. .

Kikuchi, K.

Knight, D. P.

F. Vollrath and D. P. Knight, “Liquid crystalline spinning of spider silk,” Nature, vol. 410, no. 6828, pp. 541–548, 2001.

Koike, K.

Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polymer Sci. Part B, Polymer Phys., vol. 49, no. 1, pp. 2–17, 2011.

Koike, Y.

Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polymer Sci. Part B, Polymer Phys., vol. 49, no. 1, pp. 2–17, 2011.

Kujala, S.

S. Kujala, A. Mannila, L. Karvonen, K. Kieu, and Z. Sun, “Natural silk as a photonics component: A study on its light guiding and nonlinear optical properties,” Sci. Rep., vol. 6, 2016, Art. no. .

Kuswandi, B.

B. Kuswandi, R. Andres, and R. Narayanaswamy, “Optical fibre biosensors based on immobilised enzymes,” Analyst, vol. 126, no. 8, pp. 1469–1491, 2001.

Lade, R.

T. Yeo, T. Sun, K. Grattan, D. Parry, R. Lade, and B. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B, Chem., vol. 110, no. 1, pp. 148–156, 2005.

Lefèvre, T.

F. Paquet-Mercier, T. Lefèvre, M. Auger, and M. Pézolet, “Evidence by infrared spectroscopy of the presence of two types of β-sheets in major ampullate spider silk and silkworm silk,” Soft Matter, vol. 9, no. 1, pp. 208–215, 2013.

T. Lefèvre, F. Paquet-Mercier, J.-F. Rioux-Dubé, and M. Pézolet, “Structure of silk by Raman spectromicroscopy: From the spinning glands to the fibers,” Biopolymers, vol. 97, no. 6, pp. 322–336, 2012.

Lewis, R. V.

C. Y. Hayashi and R. V. Lewis, “Molecular architecture and evolution of a modular spider silk protein gene,” Science, vol. 287, no. 5457, pp. 1477–1479, 2000.

Little, D. J.

D. J. Little and D. M. Kane, “Image contrast immersion method for measuring refractive index applied to spider silks,” Opt. Exp., vol. 19, no. 20, pp. 19182–19189, 2011.

London, Y.

Madsen, B.

B. Madsen, Z. Z. Shao, and F. Vollrath, “Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual,” Int. J. Biolog. Macromol., vol. 24, no. 2, pp. 301–306, 1999.

Mann, S.

V. M. Swinerd, A. M. Collins, N. J. Skaer, T. Gheysens, and S. Mann, “Silk inverse opals from template-directed β-sheet transformation of regenerated silk fibroin,” Soft Matter, vol. 3, no. 11, pp. 1377–1380, 2007.

Mannila, A.

S. Kujala, A. Mannila, L. Karvonen, K. Kieu, and Z. Sun, “Natural silk as a photonics component: A study on its light guiding and nonlinear optical properties,” Sci. Rep., vol. 6, 2016, Art. no. .

Marcilla, R.

C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, and O. Inganäs, “Woven electrochemical transistors on silk fibers,” Adv. Mater., vol. 23, no. 7, pp. 898–901, 2011.

Mathesz, A.

A. Matheszet al., “Integrated optical biosensor for rapid detection of bacteria,” Optofluidics, Microfluidics Nanofluidics, vol. 2, no. 1, pp. 15–21, 2015.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B, Chem., vol. 151, no. 1, pp. 26–29, 2010.

Meyer, D. E.

D. E. Meyer, “Miniature moisture sensors for in-package use by the microelectronics industry,” in Proc. 1975 13th Annu. Rel. Phys. Symp., 1975, pp. 48–52.

Mita, K.

K. Mita, S. Ichimura, and T. C. James, “Highly repetitive structure and its organization of the silk fibroin gene,” J. Mol. Evol., vol. 38, no. 6, pp. 583–592, 1994.

Müller, C.

C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, and O. Inganäs, “Woven electrochemical transistors on silk fibers,” Adv. Mater., vol. 23, no. 7, pp. 898–901, 2011.

Narayanaswamy, R.

B. Kuswandi, R. Andres, and R. Narayanaswamy, “Optical fibre biosensors based on immobilised enzymes,” Analyst, vol. 126, no. 8, pp. 1469–1491, 2001.

Okamura, Y.

Okoshi, T.

Omenetto, F. G.

M. B. Applegate, G. Perotto, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk step-index optical waveguides,” Biomed. Opt. Exp., vol. 6, no. 11, pp. 4221–4227, 2015.

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive self-sensing optical systems,” Appl. Phys. Lett., vol. 95, no. 25, p. 253702, 2009.

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nature Photon., vol. 2, no. 11, pp. 641–643, 2008.

O'Neil, K.

C. Holland, K. O'Neil, F. Vollrath, and C. Dicko, “Distinct structural and optical regimes in natural silk spinning,” Biopolymers, vol. 97, no. 6, pp. 368–373, 2012.

Ormos, P.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B, Chem., vol. 151, no. 1, pp. 26–29, 2010.

Ortlepp, C.

J. Gosline, P. Guerette, C. Ortlepp, and K. Savage, “The mechanical design of spider silks: From fibroin sequence to mechanical function,” J. Exp. Biol., vol. 202, no. 23, pp. 3295–3303, 1999.

Paquet-Mercier, F.

F. Paquet-Mercier, T. Lefèvre, M. Auger, and M. Pézolet, “Evidence by infrared spectroscopy of the presence of two types of β-sheets in major ampullate spider silk and silkworm silk,” Soft Matter, vol. 9, no. 1, pp. 208–215, 2013.

T. Lefèvre, F. Paquet-Mercier, J.-F. Rioux-Dubé, and M. Pézolet, “Structure of silk by Raman spectromicroscopy: From the spinning glands to the fibers,” Biopolymers, vol. 97, no. 6, pp. 322–336, 2012.

Parry, D.

T. Yeo, T. Sun, K. Grattan, D. Parry, R. Lade, and B. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B, Chem., vol. 110, no. 1, pp. 148–156, 2005.

Perotto, G.

M. B. Applegate, G. Perotto, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk step-index optical waveguides,” Biomed. Opt. Exp., vol. 6, no. 11, pp. 4221–4227, 2015.

Perry, H.

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive self-sensing optical systems,” Appl. Phys. Lett., vol. 95, no. 25, p. 253702, 2009.

Pézolet, M.

F. Paquet-Mercier, T. Lefèvre, M. Auger, and M. Pézolet, “Evidence by infrared spectroscopy of the presence of two types of β-sheets in major ampullate spider silk and silkworm silk,” Soft Matter, vol. 9, no. 1, pp. 208–215, 2013.

T. Lefèvre, F. Paquet-Mercier, J.-F. Rioux-Dubé, and M. Pézolet, “Structure of silk by Raman spectromicroscopy: From the spinning glands to the fibers,” Biopolymers, vol. 97, no. 6, pp. 322–336, 2012.

Porter, D.

J. Guan, F. Vollrath, and D. Porter, “Two mechanisms for supercontraction in nephila spider dragline silk,” Biomacromolecules, vol. 12, no. 11, pp. 4030–4035, 2011.

Powell, B.

T. Yeo, T. Sun, K. Grattan, D. Parry, R. Lade, and B. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B, Chem., vol. 110, no. 1, pp. 148–156, 2005.

Rioux-Dubé, J.-F.

T. Lefèvre, F. Paquet-Mercier, J.-F. Rioux-Dubé, and M. Pézolet, “Structure of silk by Raman spectromicroscopy: From the spinning glands to the fibers,” Biopolymers, vol. 97, no. 6, pp. 322–336, 2012.

Rising, A.

A. Rising and J. Johansson, “Toward spinning artificial spider silk,” Nature Chem. Biol., vol. 11, no. 5, pp. 309–315, 2015.

Sahay, P.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors, vol. 9, no. 10, pp. 8230–8262, 2009.

Savage, K.

J. Gosline, P. Guerette, C. Ortlepp, and K. Savage, “The mechanical design of spider silks: From fibroin sequence to mechanical function,” J. Exp. Biol., vol. 202, no. 23, pp. 3295–3303, 1999.

Shao, Z.

Z. Shao and F. Vollrath, “Materials: Surprising strength of silkworm silk,” Nature, vol. 418, no. 6899, pp. 741–741, 2002.

Z. Shao and F. Vollrath, “The effect of solvents on the contraction and mechanical properties of spider silk,” Polymer, vol. 40, no. 7, pp. 1799–1806, 1999.

Shao, Z. Z.

B. Madsen, Z. Z. Shao, and F. Vollrath, “Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual,” Int. J. Biolog. Macromol., vol. 24, no. 2, pp. 301–306, 1999.

Skaer, N. J.

V. M. Swinerd, A. M. Collins, N. J. Skaer, T. Gheysens, and S. Mann, “Silk inverse opals from template-directed β-sheet transformation of regenerated silk fibroin,” Soft Matter, vol. 3, no. 11, pp. 1377–1380, 2007.

Skorobogatiy, M.

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Exp., vol. 14, no. 24, pp. 11616–11621, 2006.

Sun, T.

T. Yeo, T. Sun, and K. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A, Phys., vol. 144, no. 2, pp. 280–295, 2008.

T. Yeo, T. Sun, K. Grattan, D. Parry, R. Lade, and B. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B, Chem., vol. 110, no. 1, pp. 148–156, 2005.

Sun, Z.

S. Kujala, A. Mannila, L. Karvonen, K. Kieu, and Z. Sun, “Natural silk as a photonics component: A study on its light guiding and nonlinear optical properties,” Sci. Rep., vol. 6, 2016, Art. no. .

Swinerd, V. M.

V. M. Swinerd, A. M. Collins, N. J. Skaer, T. Gheysens, and S. Mann, “Silk inverse opals from template-directed β-sheet transformation of regenerated silk fibroin,” Soft Matter, vol. 3, no. 11, pp. 1377–1380, 2007.

Thévenaz, L.

L. Thévenaz, “Next generation of optical fibre sensors: New concepts and perspectives,” Proc. SPIE, vol. 9157, pp. 9157AN-1–9157AN-4, 2014.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: A novel optical fibre for biochemical sensing,” in Proc. Int. Conf. Opt. Fibre Sens., 2015, pp. 96347-D1–96347-D4.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Towards a new generation of fibre-optic chemical sensors based on spider silk threads,” in Proc. 2017 25th Opt. Fiber Sens. Conf., 2017, pp. 1–4.

Toffanin, S.

S. Toffaninet al., “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett., vol. 101, no. 9, p. 091110, 2012.

Tow, K. H.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Towards a new generation of fibre-optic chemical sensors based on spider silk threads,” in Proc. 2017 25th Opt. Fiber Sens. Conf., 2017, pp. 1–4.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: A novel optical fibre for biochemical sensing,” in Proc. Int. Conf. Opt. Fibre Sens., 2015, pp. 96347-D1–96347-D4.

Valkai, S.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B, Chem., vol. 151, no. 1, pp. 26–29, 2010.

Vollrath, F.

C. Holland, K. O'Neil, F. Vollrath, and C. Dicko, “Distinct structural and optical regimes in natural silk spinning,” Biopolymers, vol. 97, no. 6, pp. 368–373, 2012.

J. Guan, F. Vollrath, and D. Porter, “Two mechanisms for supercontraction in nephila spider dragline silk,” Biomacromolecules, vol. 12, no. 11, pp. 4030–4035, 2011.

Z. Shao and F. Vollrath, “Materials: Surprising strength of silkworm silk,” Nature, vol. 418, no. 6899, pp. 741–741, 2002.

F. Vollrath and D. P. Knight, “Liquid crystalline spinning of spider silk,” Nature, vol. 410, no. 6828, pp. 541–548, 2001.

B. Madsen, Z. Z. Shao, and F. Vollrath, “Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual,” Int. J. Biolog. Macromol., vol. 24, no. 2, pp. 301–306, 1999.

Z. Shao and F. Vollrath, “The effect of solvents on the contraction and mechanical properties of spider silk,” Polymer, vol. 40, no. 7, pp. 1799–1806, 1999.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: A novel optical fibre for biochemical sensing,” in Proc. Int. Conf. Opt. Fibre Sens., 2015, pp. 96347-D1–96347-D4.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Towards a new generation of fibre-optic chemical sensors based on spider silk threads,” in Proc. 2017 25th Opt. Fiber Sens. Conf., 2017, pp. 1–4.

Wang, C.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors, vol. 9, no. 10, pp. 8230–8262, 2009.

Wang, X.-D.

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2013–2015),” Analytical Chem., vol. 88, no. 1, pp. 203–227, 2015.

Webb, D. J.

Wendt, H.

H. Wendtet al., “Artificial skin–culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres,” PloS One, vol. 6, no. 7, p. e21833, 2011.

Wolfbeis, O. S.

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2013–2015),” Analytical Chem., vol. 88, no. 1, pp. 203–227, 2015.

Wolff, E. K.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B, Chem., vol. 151, no. 1, pp. 26–29, 2010.

Yamamoto, S.

Yeo, T.

T. Yeo, T. Sun, and K. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A, Phys., vol. 144, no. 2, pp. 280–295, 2008.

T. Yeo, T. Sun, K. Grattan, D. Parry, R. Lade, and B. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B, Chem., vol. 110, no. 1, pp. 148–156, 2005.

Yoshinaka, S.

Zadok, A.

Zhang, W.

Adv. Mater. (1)

C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, and O. Inganäs, “Woven electrochemical transistors on silk fibers,” Adv. Mater., vol. 23, no. 7, pp. 898–901, 2011.

Analyst (1)

B. Kuswandi, R. Andres, and R. Narayanaswamy, “Optical fibre biosensors based on immobilised enzymes,” Analyst, vol. 126, no. 8, pp. 1469–1491, 2001.

Analytical Chem. (1)

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2013–2015),” Analytical Chem., vol. 88, no. 1, pp. 203–227, 2015.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. Toffaninet al., “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett., vol. 101, no. 9, p. 091110, 2012.

N. Hubyet al., “Native spider silk as a biological optical fiber,” Appl. Phys. Lett., vol. 102, no. 12, p. 123702, 2013.

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive self-sensing optical systems,” Appl. Phys. Lett., vol. 95, no. 25, p. 253702, 2009.

Biomacromolecules (1)

J. Guan, F. Vollrath, and D. Porter, “Two mechanisms for supercontraction in nephila spider dragline silk,” Biomacromolecules, vol. 12, no. 11, pp. 4030–4035, 2011.

Biomed. Opt. Exp. (1)

M. B. Applegate, G. Perotto, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk step-index optical waveguides,” Biomed. Opt. Exp., vol. 6, no. 11, pp. 4221–4227, 2015.

Biopolymers (2)

C. Holland, K. O'Neil, F. Vollrath, and C. Dicko, “Distinct structural and optical regimes in natural silk spinning,” Biopolymers, vol. 97, no. 6, pp. 368–373, 2012.

T. Lefèvre, F. Paquet-Mercier, J.-F. Rioux-Dubé, and M. Pézolet, “Structure of silk by Raman spectromicroscopy: From the spinning glands to the fibers,” Biopolymers, vol. 97, no. 6, pp. 322–336, 2012.

Int. J. Biolog. Macromol. (1)

B. Madsen, Z. Z. Shao, and F. Vollrath, “Variability in the mechanical properties of spider silks on three levels: Interspecific, intraspecific and intraindividual,” Int. J. Biolog. Macromol., vol. 24, no. 2, pp. 301–306, 1999.

J. Exp. Biol. (2)

T. A. Blackledgeet al., “How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk,” J. Exp. Biol., vol. 212, no. 13, pp. 1981–1989, 2009.

J. Gosline, P. Guerette, C. Ortlepp, and K. Savage, “The mechanical design of spider silks: From fibroin sequence to mechanical function,” J. Exp. Biol., vol. 202, no. 23, pp. 3295–3303, 1999.

J. Mater. Chem. C (1)

R. R. da Silvaet al., “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C, vol. 1, no. 43, pp. 7181–7190, 2013.

J. Mol. Evol. (1)

K. Mita, S. Ichimura, and T. C. James, “Highly repetitive structure and its organization of the silk fibroin gene,” J. Mol. Evol., vol. 38, no. 6, pp. 583–592, 1994.

J. Polymer Sci. Part B, Polymer Phys. (1)

Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polymer Sci. Part B, Polymer Phys., vol. 49, no. 1, pp. 2–17, 2011.

Nature (2)

F. Vollrath and D. P. Knight, “Liquid crystalline spinning of spider silk,” Nature, vol. 410, no. 6828, pp. 541–548, 2001.

Z. Shao and F. Vollrath, “Materials: Surprising strength of silkworm silk,” Nature, vol. 418, no. 6899, pp. 741–741, 2002.

Nature Chem. Biol. (1)

A. Rising and J. Johansson, “Toward spinning artificial spider silk,” Nature Chem. Biol., vol. 11, no. 5, pp. 309–315, 2015.

Nature Photon. (1)

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nature Photon., vol. 2, no. 11, pp. 641–643, 2008.

Opt. Exp. (3)

L. Fábiánet al., “Protein-based ultrafast photonic switching,” Opt. Exp., vol. 19, no. 20, pp. 18861–18870, 2011.

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Exp., vol. 14, no. 24, pp. 11616–11621, 2006.

D. J. Little and D. M. Kane, “Image contrast immersion method for measuring refractive index applied to spider silks,” Opt. Exp., vol. 19, no. 20, pp. 19182–19189, 2011.

Opt. Lett. (2)

Optica (1)

Optofluidics, Microfluidics Nanofluidics (1)

A. Matheszet al., “Integrated optical biosensor for rapid detection of bacteria,” Optofluidics, Microfluidics Nanofluidics, vol. 2, no. 1, pp. 15–21, 2015.

Organic Electron. (1)

R. Capelliet al., “Integration of silk protein in organic and light-emitting transistors,” Organic Electron., vol. 12, no. 7, pp. 1146–1151, 2011.

PloS One (1)

H. Wendtet al., “Artificial skin–culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres,” PloS One, vol. 6, no. 7, p. e21833, 2011.

Polymer (1)

Z. Shao and F. Vollrath, “The effect of solvents on the contraction and mechanical properties of spider silk,” Polymer, vol. 40, no. 7, pp. 1799–1806, 1999.

Proc. SPIE (1)

L. Thévenaz, “Next generation of optical fibre sensors: New concepts and perspectives,” Proc. SPIE, vol. 9157, pp. 9157AN-1–9157AN-4, 2014.

Sci. Rep. (1)

S. Kujala, A. Mannila, L. Karvonen, K. Kieu, and Z. Sun, “Natural silk as a photonics component: A study on its light guiding and nonlinear optical properties,” Sci. Rep., vol. 6, 2016, Art. no. .

Science (1)

C. Y. Hayashi and R. V. Lewis, “Molecular architecture and evolution of a modular spider silk protein gene,” Science, vol. 287, no. 5457, pp. 1477–1479, 2000.

Sens. Actuators A, Phys. (1)

T. Yeo, T. Sun, and K. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A, Phys., vol. 144, no. 2, pp. 280–295, 2008.

Sens. Actuators B, Chem. (2)

T. Yeo, T. Sun, K. Grattan, D. Parry, R. Lade, and B. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B, Chem., vol. 110, no. 1, pp. 148–156, 2005.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B, Chem., vol. 151, no. 1, pp. 26–29, 2010.

Sensors (1)

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors, vol. 9, no. 10, pp. 8230–8262, 2009.

Soft Matter (2)

V. M. Swinerd, A. M. Collins, N. J. Skaer, T. Gheysens, and S. Mann, “Silk inverse opals from template-directed β-sheet transformation of regenerated silk fibroin,” Soft Matter, vol. 3, no. 11, pp. 1377–1380, 2007.

F. Paquet-Mercier, T. Lefèvre, M. Auger, and M. Pézolet, “Evidence by infrared spectroscopy of the presence of two types of β-sheets in major ampullate spider silk and silkworm silk,” Soft Matter, vol. 9, no. 1, pp. 208–215, 2013.

Other (3)

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Spider silk: A novel optical fibre for biochemical sensing,” in Proc. Int. Conf. Opt. Fibre Sens., 2015, pp. 96347-D1–96347-D4.

K. H. Tow, D. M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, and L. Thévenaz, “Towards a new generation of fibre-optic chemical sensors based on spider silk threads,” in Proc. 2017 25th Opt. Fiber Sens. Conf., 2017, pp. 1–4.

D. E. Meyer, “Miniature moisture sensors for in-package use by the microelectronics industry,” in Proc. 1975 13th Annu. Rel. Phys. Symp., 1975, pp. 48–52.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.