Abstract

Potential niches for a power-over-fiber (PoF) technique can be found in hazardous areas that require controlling unauthorized access to risk areas and integration of multiple sensors, in scenarios avoiding electromagnetic interference, and the presence of ignition factors. This paper develops a PoF system that provides galvanic isolation between two ends of a fiber for remotely powering a proximity sensor as a proof of concept of the proposed technology. We analyze scalability issues for remotely powering multiple sensors in a specific application for the hazardous environment. The maximum number of remote sensors that can be optically powered and the limiting factors are also studied; considering different types of multimode optical fibers, span lengths, and wavelengths. We finally address the fiber mode field diameter effect as a factor that limits the maximum power to be injected into the fiber. This analysis shows the advantages of using step-index versus graded-index fibers.

© 2017 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Products and Systems for Use in Hazardous Areas, Siemens, 2010. [Online]. Available: http://www.automation.siemens.com/salesmaterial-as/brochure/en/brochure_explosion_protection_en.pdf. Accessed on: Jun. 1, 2017.
  2. C. Cojocaur, “Fiber optic distributed sensing for perimeter monitoring,” US Patent 2017/0039826 A1, 2017.
  3. B. C. DeLoach, R. C. Miller, and S. Kaufman, “Sound alerter powered over an optical fiber,” Bell Syst. Tech. J., vol. 57, no. 9, pp. 3309–3316, 1978.
  4. M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” IEEE Photon. J., vol. 7, no. 1, 2015, Paper no. 7900609.
  5. D. Wake, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “An optically powered radio over fiber remote unit using wavelength division multiplexing,” in Proc. IEEE Int. Meeting Microw. Photon. Asia-Pacific Microw. Photon. Conf., Gold Coast, QLD, Austrialia, 2008, pp. 197–200.
  6. Power Over Fiber, RLH Ind., Inc. [Online]. Available: https://www.fiberopticlink.com. Accessed on: 3, 2017.
  7. C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” Proc. SPIE, 2017, vol. 10128, Paper no. 101280E.
  8. C. Vázquez, D. S. Montero, and J. D. López-Cardona, “Monitoring Systems and remote powering for next generation broadband access networks,” in Proc. 19th Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, Paper no. Tu.D2.3.
  9. M. Matsuura and Y. Minamoto, “Optically powered and controlled beam steering system for radio-over-fiber networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 979–988, 2017.
  10. H. Kirkham and A. R. Johnston, “Optically powered data link for power system applications,” IEEE Trans. Power Del., vol. 4, no. 4, pp. 1997–2004, 1989.
  11. Y. Yamagata, T. Kumagai, Y. Sai, Y. Uchida, and K. Imai, “A sensor powered by pulsed light (for gas density of GIS),” in Proc. Int. Conf. Solid-State Sens. Actuators Dig. Tech. Papers, San Francisco, CA, USA, 1991, pp. 824–827.
  12. J. B. Rosolemet al., “A fiber optic powered sensor designed for partial discharges monitoring on high voltage bushings,” in Proc. SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf., 2015, pp. 1–5. doi: .
  13. F. V. B. De Nazaré and M. M. Werneck, “Temperature and current monitoring system for transmission lines using power-over-fiber technology,” in Proc. IEEE Int. Instrum. Meas. Technol. Conf., 2010, pp. 779–784.
  14. J. B. Rosolem, “Power-over-fiber applications for telecommunications and for electric utilities,” in Optical Fiber and Wireless Communications, R. Roka, Ed. London, U.K.: InTech, 2017.
  15. G. Bottgeret al., “An optically powered video camera link,” IEEE Photon. Technol. Lett., vol. 20, no. 1, pp. 39–41, 2008.
  16. M. Roegeret al., “Optically powered fiber networks,” Opt. Express, vol. 16, no. 26, pp. 21821–21834, 2008.
  17. J. Pember, C. M. France, and B. E. Jones, “A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors,” Sens. Actuat. A, Phys., vol. 47, nos. 1–3, pp. 474–477, 1995.
  18. Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,” J. Elect. Comput. Eng., vol. 2016, 2016, Paper no. 2938415.
  19. M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer, “Power transmission by optical fibers for component inherent communication,” J. Syst. Cybern. Informat., vol. 8, no. 1, pp. 55–60, 2010.
  20. X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.
  21. R. Kashyap, “The fiber fuse—From a curious effect to a critical issue: A 25th year retrospective,” Opt. Express, vol. 21, no. 5, pp. 6422–6441, 2013.
  22. Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep., vol. 4, 2014, Paper no. 4800.
  23. D. K. Cheng, Field and Wave Electromagnetics, 2nd ed.Englewood Cliffs, NJ, USA: Prentice-Hall, 1989.
  24. B. Saleh and C. M. Teich, Fundamental of Photonics. New York, NY, USA: Wiley, 1991.
  25. J. W. Dawsonet al., “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express, vol. 16, no. 17, pp. 13240–13266, 2008.
  26. A. Smith, B. Do, and M. Soderlund, “Deterministic nanosecond laser-induced breakdown thresholds in pure and Yb 3+ doped fused silica,” Proc. SPIE, vol. 6453, 2007, Paper no. 645317.
  27. S. Todoroki, “Fiber fuse propagation behavior,” in Selected Topics on Optical Fiber Technology. London, U.K.: InTech, 2012, pp. 551–570.
  28. K. S. Abedin and T. Morioka, “Remote detection of fiber fuse propagating in optical fibers,” in Proc. Opt. Fiber Commun. Conf. Nat. Fiber Opt. Eng. Conf., San Diego, CA, USA, 2009, Paper no. OThD5.
  29. E. M. Dianovet al., “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett., vol. 38, no. 15, pp. 783–784, 2002.
  30. E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists. New York, NY, USA: Wiley, 1991.
  31. J. D. López-Cardona, D. S. Montero, P. J. Pinzón, and C. Vázquez, “GIPOF-based power delivery systems,” in Proc. 25th Int. Conf. Plastic Opt. Fibres, Birmingham, U.K., 2016.
  32. J. D. López-Cardona, C. Vázquez, D. S. Montero, P. J. Pinzón, A. Tapetado, and P. C. Lallana, “Remote optical powering using fiber optics in micro-mechatronic systems,” in Proc. 8th Conf. Smart Struct. Mater. 6th Int. Conf. Smart Mater. Nanotechnol. Eng., Madrid, Spain, 2017, pp. 1598–1608.
  33. High-Power Multimode Fiber Optic Patch Cables-Damage Threshold. [Online]. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4393. Accessed on: 1, 2016.
  34. M. Ari and M. C. Taplamacioglu, “Electrical power over fiber optics,” Int. J. Tech. Phys. Probl. Eng., vol. 2, no. 5, pp. 85–91, 2010.
  35. J. C. V. Silva, E. L. de Souza, V. García, J. B. Rosolem, and C. Floridia, “Design of a multimode fiber optic cable to transmit optical energy for long reach in PoF systems,” in Proc. 63rd Int. Wire Cable Symp. Conf., Providence, RI, USA, 2014, pp. 832–839.

2017 (2)

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” Proc. SPIE, 2017, vol. 10128, Paper no. 101280E.

M. Matsuura and Y. Minamoto, “Optically powered and controlled beam steering system for radio-over-fiber networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 979–988, 2017.

2016 (1)

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,” J. Elect. Comput. Eng., vol. 2016, 2016, Paper no. 2938415.

2015 (1)

M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” IEEE Photon. J., vol. 7, no. 1, 2015, Paper no. 7900609.

2014 (1)

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep., vol. 4, 2014, Paper no. 4800.

2013 (1)

2010 (3)

M. Ari and M. C. Taplamacioglu, “Electrical power over fiber optics,” Int. J. Tech. Phys. Probl. Eng., vol. 2, no. 5, pp. 85–91, 2010.

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer, “Power transmission by optical fibers for component inherent communication,” J. Syst. Cybern. Informat., vol. 8, no. 1, pp. 55–60, 2010.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

2008 (3)

2007 (1)

A. Smith, B. Do, and M. Soderlund, “Deterministic nanosecond laser-induced breakdown thresholds in pure and Yb 3+ doped fused silica,” Proc. SPIE, vol. 6453, 2007, Paper no. 645317.

2002 (1)

E. M. Dianovet al., “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett., vol. 38, no. 15, pp. 783–784, 2002.

1995 (1)

J. Pember, C. M. France, and B. E. Jones, “A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors,” Sens. Actuat. A, Phys., vol. 47, nos. 1–3, pp. 474–477, 1995.

1989 (1)

H. Kirkham and A. R. Johnston, “Optically powered data link for power system applications,” IEEE Trans. Power Del., vol. 4, no. 4, pp. 1997–2004, 1989.

1978 (1)

B. C. DeLoach, R. C. Miller, and S. Kaufman, “Sound alerter powered over an optical fiber,” Bell Syst. Tech. J., vol. 57, no. 9, pp. 3309–3316, 1978.

Abedin, K. S.

K. S. Abedin and T. Morioka, “Remote detection of fiber fuse propagating in optical fibers,” in Proc. Opt. Fiber Commun. Conf. Nat. Fiber Opt. Eng. Conf., San Diego, CA, USA, 2009, Paper no. OThD5.

Ari, M.

M. Ari and M. C. Taplamacioglu, “Electrical power over fiber optics,” Int. J. Tech. Phys. Probl. Eng., vol. 2, no. 5, pp. 85–91, 2010.

Bi, Y.

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,” J. Elect. Comput. Eng., vol. 2016, 2016, Paper no. 2938415.

Bottger, G.

G. Bottgeret al., “An optically powered video camera link,” IEEE Photon. Technol. Lett., vol. 20, no. 1, pp. 39–41, 2008.

Cheng, D. K.

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed.Englewood Cliffs, NJ, USA: Prentice-Hall, 1989.

Cojocaur, C.

C. Cojocaur, “Fiber optic distributed sensing for perimeter monitoring,” US Patent 2017/0039826 A1, 2017.

Contreras, P.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” Proc. SPIE, 2017, vol. 10128, Paper no. 101280E.

Dawson, J. W.

De Nazaré, F. V. B.

F. V. B. De Nazaré and M. M. Werneck, “Temperature and current monitoring system for transmission lines using power-over-fiber technology,” in Proc. IEEE Int. Instrum. Meas. Technol. Conf., 2010, pp. 779–784.

de Souza, E. L.

J. C. V. Silva, E. L. de Souza, V. García, J. B. Rosolem, and C. Floridia, “Design of a multimode fiber optic cable to transmit optical energy for long reach in PoF systems,” in Proc. 63rd Int. Wire Cable Symp. Conf., Providence, RI, USA, 2014, pp. 832–839.

DeLoach, B. C.

B. C. DeLoach, R. C. Miller, and S. Kaufman, “Sound alerter powered over an optical fiber,” Bell Syst. Tech. J., vol. 57, no. 9, pp. 3309–3316, 1978.

Dianov, E. M.

E. M. Dianovet al., “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett., vol. 38, no. 15, pp. 783–784, 2002.

Do, B.

A. Smith, B. Do, and M. Soderlund, “Deterministic nanosecond laser-induced breakdown thresholds in pure and Yb 3+ doped fused silica,” Proc. SPIE, vol. 6453, 2007, Paper no. 645317.

Dumke, M.

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer, “Power transmission by optical fibers for component inherent communication,” J. Syst. Cybern. Informat., vol. 8, no. 1, pp. 55–60, 2010.

Floridia, C.

J. C. V. Silva, E. L. de Souza, V. García, J. B. Rosolem, and C. Floridia, “Design of a multimode fiber optic cable to transmit optical energy for long reach in PoF systems,” in Proc. 63rd Int. Wire Cable Symp. Conf., Providence, RI, USA, 2014, pp. 832–839.

France, C. M.

J. Pember, C. M. France, and B. E. Jones, “A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors,” Sens. Actuat. A, Phys., vol. 47, nos. 1–3, pp. 474–477, 1995.

Franke, S.

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer, “Power transmission by optical fibers for component inherent communication,” J. Syst. Cybern. Informat., vol. 8, no. 1, pp. 55–60, 2010.

García, V.

J. C. V. Silva, E. L. de Souza, V. García, J. B. Rosolem, and C. Floridia, “Design of a multimode fiber optic cable to transmit optical energy for long reach in PoF systems,” in Proc. 63rd Int. Wire Cable Symp. Conf., Providence, RI, USA, 2014, pp. 832–839.

Gomes, N. J.

D. Wake, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “An optically powered radio over fiber remote unit using wavelength division multiplexing,” in Proc. IEEE Int. Meeting Microw. Photon. Asia-Pacific Microw. Photon. Conf., Gold Coast, QLD, Austrialia, 2008, pp. 197–200.

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep., vol. 4, 2014, Paper no. 4800.

Heiserich, G.

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer, “Power transmission by optical fibers for component inherent communication,” J. Syst. Cybern. Informat., vol. 8, no. 1, pp. 55–60, 2010.

Imai, K.

Y. Yamagata, T. Kumagai, Y. Sai, Y. Uchida, and K. Imai, “A sensor powered by pulsed light (for gas density of GIS),” in Proc. Int. Conf. Solid-State Sens. Actuators Dig. Tech. Papers, San Francisco, CA, USA, 1991, pp. 824–827.

Jin, J.

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,” J. Elect. Comput. Eng., vol. 2016, 2016, Paper no. 2938415.

Johnston, A. R.

H. Kirkham and A. R. Johnston, “Optically powered data link for power system applications,” IEEE Trans. Power Del., vol. 4, no. 4, pp. 1997–2004, 1989.

Jones, B. E.

J. Pember, C. M. France, and B. E. Jones, “A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors,” Sens. Actuat. A, Phys., vol. 47, nos. 1–3, pp. 474–477, 1995.

Kashyap, R.

Kaufman, S.

B. C. DeLoach, R. C. Miller, and S. Kaufman, “Sound alerter powered over an optical fiber,” Bell Syst. Tech. J., vol. 57, no. 9, pp. 3309–3316, 1978.

Kazovsky, L. G.

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,” J. Elect. Comput. Eng., vol. 2016, 2016, Paper no. 2938415.

Kirkham, H.

H. Kirkham and A. R. Johnston, “Optically powered data link for power system applications,” IEEE Trans. Power Del., vol. 4, no. 4, pp. 1997–2004, 1989.

Kumagai, T.

Y. Yamagata, T. Kumagai, Y. Sai, Y. Uchida, and K. Imai, “A sensor powered by pulsed light (for gas density of GIS),” in Proc. Int. Conf. Solid-State Sens. Actuators Dig. Tech. Papers, San Francisco, CA, USA, 1991, pp. 824–827.

Lallana, P. C.

J. D. López-Cardona, C. Vázquez, D. S. Montero, P. J. Pinzón, A. Tapetado, and P. C. Lallana, “Remote optical powering using fiber optics in micro-mechatronic systems,” in Proc. 8th Conf. Smart Struct. Mater. 6th Int. Conf. Smart Mater. Nanotechnol. Eng., Madrid, Spain, 2017, pp. 1598–1608.

Lethien, C.

D. Wake, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “An optically powered radio over fiber remote unit using wavelength division multiplexing,” in Proc. IEEE Int. Meeting Microw. Photon. Asia-Pacific Microw. Photon. Conf., Gold Coast, QLD, Austrialia, 2008, pp. 197–200.

López-Cardona, J. D.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” Proc. SPIE, 2017, vol. 10128, Paper no. 101280E.

C. Vázquez, D. S. Montero, and J. D. López-Cardona, “Monitoring Systems and remote powering for next generation broadband access networks,” in Proc. 19th Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, Paper no. Tu.D2.3.

J. D. López-Cardona, D. S. Montero, P. J. Pinzón, and C. Vázquez, “GIPOF-based power delivery systems,” in Proc. 25th Int. Conf. Plastic Opt. Fibres, Birmingham, U.K., 2016.

J. D. López-Cardona, C. Vázquez, D. S. Montero, P. J. Pinzón, A. Tapetado, and P. C. Lallana, “Remote optical powering using fiber optics in micro-mechatronic systems,” in Proc. 8th Conf. Smart Struct. Mater. 6th Int. Conf. Smart Mater. Nanotechnol. Eng., Madrid, Spain, 2017, pp. 1598–1608.

Matsuura, M.

M. Matsuura and Y. Minamoto, “Optically powered and controlled beam steering system for radio-over-fiber networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 979–988, 2017.

M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” IEEE Photon. J., vol. 7, no. 1, 2015, Paper no. 7900609.

Miller, R. C.

B. C. DeLoach, R. C. Miller, and S. Kaufman, “Sound alerter powered over an optical fiber,” Bell Syst. Tech. J., vol. 57, no. 9, pp. 3309–3316, 1978.

Minamoto, Y.

M. Matsuura and Y. Minamoto, “Optically powered and controlled beam steering system for radio-over-fiber networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 979–988, 2017.

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep., vol. 4, 2014, Paper no. 4800.

Montero, D. S.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” Proc. SPIE, 2017, vol. 10128, Paper no. 101280E.

C. Vázquez, D. S. Montero, and J. D. López-Cardona, “Monitoring Systems and remote powering for next generation broadband access networks,” in Proc. 19th Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, Paper no. Tu.D2.3.

J. D. López-Cardona, D. S. Montero, P. J. Pinzón, and C. Vázquez, “GIPOF-based power delivery systems,” in Proc. 25th Int. Conf. Plastic Opt. Fibres, Birmingham, U.K., 2016.

J. D. López-Cardona, C. Vázquez, D. S. Montero, P. J. Pinzón, A. Tapetado, and P. C. Lallana, “Remote optical powering using fiber optics in micro-mechatronic systems,” in Proc. 8th Conf. Smart Struct. Mater. 6th Int. Conf. Smart Mater. Nanotechnol. Eng., Madrid, Spain, 2017, pp. 1598–1608.

Morioka, T.

K. S. Abedin and T. Morioka, “Remote detection of fiber fuse propagating in optical fibers,” in Proc. Opt. Fiber Commun. Conf. Nat. Fiber Opt. Eng. Conf., San Diego, CA, USA, 2009, Paper no. OThD5.

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep., vol. 4, 2014, Paper no. 4800.

Overmeyer, L.

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer, “Power transmission by optical fibers for component inherent communication,” J. Syst. Cybern. Informat., vol. 8, no. 1, pp. 55–60, 2010.

Pember, J.

J. Pember, C. M. France, and B. E. Jones, “A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors,” Sens. Actuat. A, Phys., vol. 47, nos. 1–3, pp. 474–477, 1995.

Pinzón, P. J.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” Proc. SPIE, 2017, vol. 10128, Paper no. 101280E.

J. D. López-Cardona, C. Vázquez, D. S. Montero, P. J. Pinzón, A. Tapetado, and P. C. Lallana, “Remote optical powering using fiber optics in micro-mechatronic systems,” in Proc. 8th Conf. Smart Struct. Mater. 6th Int. Conf. Smart Mater. Nanotechnol. Eng., Madrid, Spain, 2017, pp. 1598–1608.

J. D. López-Cardona, D. S. Montero, P. J. Pinzón, and C. Vázquez, “GIPOF-based power delivery systems,” in Proc. 25th Int. Conf. Plastic Opt. Fibres, Birmingham, U.K., 2016.

Roeger, M.

Rosolem, J. B.

J. B. Rosolem, “Power-over-fiber applications for telecommunications and for electric utilities,” in Optical Fiber and Wireless Communications, R. Roka, Ed. London, U.K.: InTech, 2017.

J. B. Rosolemet al., “A fiber optic powered sensor designed for partial discharges monitoring on high voltage bushings,” in Proc. SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf., 2015, pp. 1–5. doi: .

J. C. V. Silva, E. L. de Souza, V. García, J. B. Rosolem, and C. Floridia, “Design of a multimode fiber optic cable to transmit optical energy for long reach in PoF systems,” in Proc. 63rd Int. Wire Cable Symp. Conf., Providence, RI, USA, 2014, pp. 832–839.

Sai, Y.

Y. Yamagata, T. Kumagai, Y. Sai, Y. Uchida, and K. Imai, “A sensor powered by pulsed light (for gas density of GIS),” in Proc. Int. Conf. Solid-State Sens. Actuators Dig. Tech. Papers, San Francisco, CA, USA, 1991, pp. 824–827.

Saleh, B.

B. Saleh and C. M. Teich, Fundamental of Photonics. New York, NY, USA: Wiley, 1991.

Sato, J.

M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” IEEE Photon. J., vol. 7, no. 1, 2015, Paper no. 7900609.

Schulz, L.

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer, “Power transmission by optical fibers for component inherent communication,” J. Syst. Cybern. Informat., vol. 8, no. 1, pp. 55–60, 2010.

Shen, S.

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,” J. Elect. Comput. Eng., vol. 2016, 2016, Paper no. 2938415.

Silva, J. C. V.

J. C. V. Silva, E. L. de Souza, V. García, J. B. Rosolem, and C. Floridia, “Design of a multimode fiber optic cable to transmit optical energy for long reach in PoF systems,” in Proc. 63rd Int. Wire Cable Symp. Conf., Providence, RI, USA, 2014, pp. 832–839.

Sion, C.

D. Wake, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “An optically powered radio over fiber remote unit using wavelength division multiplexing,” in Proc. IEEE Int. Meeting Microw. Photon. Asia-Pacific Microw. Photon. Conf., Gold Coast, QLD, Austrialia, 2008, pp. 197–200.

Smith, A.

A. Smith, B. Do, and M. Soderlund, “Deterministic nanosecond laser-induced breakdown thresholds in pure and Yb 3+ doped fused silica,” Proc. SPIE, vol. 6453, 2007, Paper no. 645317.

Soderlund, M.

A. Smith, B. Do, and M. Soderlund, “Deterministic nanosecond laser-induced breakdown thresholds in pure and Yb 3+ doped fused silica,” Proc. SPIE, vol. 6453, 2007, Paper no. 645317.

Spillman, W. B.

E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists. New York, NY, USA: Wiley, 1991.

Tanaka, H.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep., vol. 4, 2014, Paper no. 4800.

Tapetado, A.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” Proc. SPIE, 2017, vol. 10128, Paper no. 101280E.

J. D. López-Cardona, C. Vázquez, D. S. Montero, P. J. Pinzón, A. Tapetado, and P. C. Lallana, “Remote optical powering using fiber optics in micro-mechatronic systems,” in Proc. 8th Conf. Smart Struct. Mater. 6th Int. Conf. Smart Mater. Nanotechnol. Eng., Madrid, Spain, 2017, pp. 1598–1608.

Taplamacioglu, M. C.

M. Ari and M. C. Taplamacioglu, “Electrical power over fiber optics,” Int. J. Tech. Phys. Probl. Eng., vol. 2, no. 5, pp. 85–91, 2010.

Teich, C. M.

B. Saleh and C. M. Teich, Fundamental of Photonics. New York, NY, USA: Wiley, 1991.

Todoroki, S.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep., vol. 4, 2014, Paper no. 4800.

S. Todoroki, “Fiber fuse propagation behavior,” in Selected Topics on Optical Fiber Technology. London, U.K.: InTech, 2012, pp. 551–570.

Uchida, Y.

Y. Yamagata, T. Kumagai, Y. Sai, Y. Uchida, and K. Imai, “A sensor powered by pulsed light (for gas density of GIS),” in Proc. Int. Conf. Solid-State Sens. Actuators Dig. Tech. Papers, San Francisco, CA, USA, 1991, pp. 824–827.

Udd, E.

E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists. New York, NY, USA: Wiley, 1991.

Vázquez, C.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” Proc. SPIE, 2017, vol. 10128, Paper no. 101280E.

C. Vázquez, D. S. Montero, and J. D. López-Cardona, “Monitoring Systems and remote powering for next generation broadband access networks,” in Proc. 19th Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, Paper no. Tu.D2.3.

J. D. López-Cardona, C. Vázquez, D. S. Montero, P. J. Pinzón, A. Tapetado, and P. C. Lallana, “Remote optical powering using fiber optics in micro-mechatronic systems,” in Proc. 8th Conf. Smart Struct. Mater. 6th Int. Conf. Smart Mater. Nanotechnol. Eng., Madrid, Spain, 2017, pp. 1598–1608.

J. D. López-Cardona, D. S. Montero, P. J. Pinzón, and C. Vázquez, “GIPOF-based power delivery systems,” in Proc. 25th Int. Conf. Plastic Opt. Fibres, Birmingham, U.K., 2016.

Vilcot, J. P.

D. Wake, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “An optically powered radio over fiber remote unit using wavelength division multiplexing,” in Proc. IEEE Int. Meeting Microw. Photon. Asia-Pacific Microw. Photon. Conf., Gold Coast, QLD, Austrialia, 2008, pp. 197–200.

Wake, D.

D. Wake, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “An optically powered radio over fiber remote unit using wavelength division multiplexing,” in Proc. IEEE Int. Meeting Microw. Photon. Asia-Pacific Microw. Photon. Conf., Gold Coast, QLD, Austrialia, 2008, pp. 197–200.

Wang, K.

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,” J. Elect. Comput. Eng., vol. 2016, 2016, Paper no. 2938415.

Werneck, M. M.

F. V. B. De Nazaré and M. M. Werneck, “Temperature and current monitoring system for transmission lines using power-over-fiber technology,” in Proc. IEEE Int. Instrum. Meas. Technol. Conf., 2010, pp. 779–784.

Wong, K. K. Y.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

Xu, X.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

Yamagata, Y.

Y. Yamagata, T. Kumagai, Y. Sai, Y. Uchida, and K. Imai, “A sensor powered by pulsed light (for gas density of GIS),” in Proc. Int. Conf. Solid-State Sens. Actuators Dig. Tech. Papers, San Francisco, CA, USA, 1991, pp. 824–827.

Yang, S.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

Yuk, T. I.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

Zhang, C.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

Bell Syst. Tech. J. (1)

B. C. DeLoach, R. C. Miller, and S. Kaufman, “Sound alerter powered over an optical fiber,” Bell Syst. Tech. J., vol. 57, no. 9, pp. 3309–3316, 1978.

Electron. Lett. (1)

E. M. Dianovet al., “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett., vol. 38, no. 15, pp. 783–784, 2002.

IEEE Photon. J. (1)

M. Matsuura and J. Sato, “Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units,” IEEE Photon. J., vol. 7, no. 1, 2015, Paper no. 7900609.

IEEE Photon. Technol. Lett. (1)

G. Bottgeret al., “An optically powered video camera link,” IEEE Photon. Technol. Lett., vol. 20, no. 1, pp. 39–41, 2008.

IEEE Trans. Power Del. (1)

H. Kirkham and A. R. Johnston, “Optically powered data link for power system applications,” IEEE Trans. Power Del., vol. 4, no. 4, pp. 1997–2004, 1989.

Int. J. Tech. Phys. Probl. Eng. (1)

M. Ari and M. C. Taplamacioglu, “Electrical power over fiber optics,” Int. J. Tech. Phys. Probl. Eng., vol. 2, no. 5, pp. 85–91, 2010.

J. Elect. Comput. Eng. (1)

Y. Bi, S. Shen, J. Jin, K. Wang, and L. G. Kazovsky, “Remotely powered and reconfigured quasi-passive reconfigurable nodes for optical access networks,” J. Elect. Comput. Eng., vol. 2016, 2016, Paper no. 2938415.

J. Lightw. Technol. (2)

M. Matsuura and Y. Minamoto, “Optically powered and controlled beam steering system for radio-over-fiber networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 979–988, 2017.

X. Xu, S. Yang, C. Zhang, T. I. Yuk, and K. K. Y. Wong, “Optically powered communication system with distributed amplifiers,” J. Lightw. Technol., vol. 28, no. 21, pp. 3062–3069, 2010.

J. Syst. Cybern. Informat. (1)

M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer, “Power transmission by optical fibers for component inherent communication,” J. Syst. Cybern. Informat., vol. 8, no. 1, pp. 55–60, 2010.

Opt. Express (3)

Proc. SPIE (2)

A. Smith, B. Do, and M. Soderlund, “Deterministic nanosecond laser-induced breakdown thresholds in pure and Yb 3+ doped fused silica,” Proc. SPIE, vol. 6453, 2007, Paper no. 645317.

C. Vázquez, D. S. Montero, P. J. Pinzón, J. D. López-Cardona, P. Contreras, and A. Tapetado, “Integration of power over fiber on RoF systems in different scenarios,” Proc. SPIE, 2017, vol. 10128, Paper no. 101280E.

Sci. Rep. (1)

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Propagation mechanism of polymer optical fiber fuse,” Sci. Rep., vol. 4, 2014, Paper no. 4800.

Sens. Actuat. A, Phys. (1)

J. Pember, C. M. France, and B. E. Jones, “A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors,” Sens. Actuat. A, Phys., vol. 47, nos. 1–3, pp. 474–477, 1995.

Other (18)

Y. Yamagata, T. Kumagai, Y. Sai, Y. Uchida, and K. Imai, “A sensor powered by pulsed light (for gas density of GIS),” in Proc. Int. Conf. Solid-State Sens. Actuators Dig. Tech. Papers, San Francisco, CA, USA, 1991, pp. 824–827.

J. B. Rosolemet al., “A fiber optic powered sensor designed for partial discharges monitoring on high voltage bushings,” in Proc. SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf., 2015, pp. 1–5. doi: .

F. V. B. De Nazaré and M. M. Werneck, “Temperature and current monitoring system for transmission lines using power-over-fiber technology,” in Proc. IEEE Int. Instrum. Meas. Technol. Conf., 2010, pp. 779–784.

J. B. Rosolem, “Power-over-fiber applications for telecommunications and for electric utilities,” in Optical Fiber and Wireless Communications, R. Roka, Ed. London, U.K.: InTech, 2017.

C. Vázquez, D. S. Montero, and J. D. López-Cardona, “Monitoring Systems and remote powering for next generation broadband access networks,” in Proc. 19th Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, Paper no. Tu.D2.3.

Products and Systems for Use in Hazardous Areas, Siemens, 2010. [Online]. Available: http://www.automation.siemens.com/salesmaterial-as/brochure/en/brochure_explosion_protection_en.pdf. Accessed on: Jun. 1, 2017.

C. Cojocaur, “Fiber optic distributed sensing for perimeter monitoring,” US Patent 2017/0039826 A1, 2017.

D. Wake, N. J. Gomes, C. Lethien, C. Sion, and J. P. Vilcot, “An optically powered radio over fiber remote unit using wavelength division multiplexing,” in Proc. IEEE Int. Meeting Microw. Photon. Asia-Pacific Microw. Photon. Conf., Gold Coast, QLD, Austrialia, 2008, pp. 197–200.

Power Over Fiber, RLH Ind., Inc. [Online]. Available: https://www.fiberopticlink.com. Accessed on: 3, 2017.

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed.Englewood Cliffs, NJ, USA: Prentice-Hall, 1989.

B. Saleh and C. M. Teich, Fundamental of Photonics. New York, NY, USA: Wiley, 1991.

E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists. New York, NY, USA: Wiley, 1991.

J. D. López-Cardona, D. S. Montero, P. J. Pinzón, and C. Vázquez, “GIPOF-based power delivery systems,” in Proc. 25th Int. Conf. Plastic Opt. Fibres, Birmingham, U.K., 2016.

J. D. López-Cardona, C. Vázquez, D. S. Montero, P. J. Pinzón, A. Tapetado, and P. C. Lallana, “Remote optical powering using fiber optics in micro-mechatronic systems,” in Proc. 8th Conf. Smart Struct. Mater. 6th Int. Conf. Smart Mater. Nanotechnol. Eng., Madrid, Spain, 2017, pp. 1598–1608.

High-Power Multimode Fiber Optic Patch Cables-Damage Threshold. [Online]. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4393. Accessed on: 1, 2016.

S. Todoroki, “Fiber fuse propagation behavior,” in Selected Topics on Optical Fiber Technology. London, U.K.: InTech, 2012, pp. 551–570.

K. S. Abedin and T. Morioka, “Remote detection of fiber fuse propagating in optical fibers,” in Proc. Opt. Fiber Commun. Conf. Nat. Fiber Opt. Eng. Conf., San Diego, CA, USA, 2009, Paper no. OThD5.

J. C. V. Silva, E. L. de Souza, V. García, J. B. Rosolem, and C. Floridia, “Design of a multimode fiber optic cable to transmit optical energy for long reach in PoF systems,” in Proc. 63rd Int. Wire Cable Symp. Conf., Providence, RI, USA, 2014, pp. 832–839.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.