Abstract

In this paper, we report a nanosecond 16 × 16 silicon electro-optic switch chip based on a Benes architecture. The switch adopts dual-ring-assisted Mach–Zehnder interferometers as the basic building blocks. In each switch element, both TiN microheaters and PIN diodes are integrated for ring resonance alignment and high-speed switching, respectively. A transfer-matrix-based theoretical model is established to analyze the switch performances. The 16 × 16 switch is characterized by measuring the optical transmission spectra and quadrature phase-shift keying (QPSK) data transmission through 16 representative optical paths. The insertion loss of the entire switch chip is 10.6 ± 1.7 dB and the crosstalk is less than −20.5 dB. The 32-Gb/s QPSK signal is successfully switched to different destination ports by reconfiguring the optical paths, verifying the signal integrity after switching.

© 2017 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco, Global Cloud Index: Forecast and Methodology, 2015–2020. 2016. [Online]. Available: http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
  2. A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys., vol. 75, no. 4, pp. 046402-1–046402-15, 2012.
  3. D. Nikolovaet al., “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Exp., vol. 23, pp. 1159–1175, 2015.
  4. S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical switches based on silicon photonics for ROADM application,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 185–193, 2016.
  5. Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: State of the art and perspectives [Invited],” Photon. Res., vol. 3, pp. B10–B27, 2015.
  6. J. Kimet al., “1100 × 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photon. Technol. Lett., vol. 15, no. 11, pp. 1537–1539, 2003.
  7. M. Mizukamiet al., “128 × 128 three-dimensional MEMS optical switch module with simultaneous optical path connection for optical cross-connect systems,” Appl. Opt., vol. 50, pp. 4037–4041, 2011.
  8. R. Stabile, A. Rohit, and K. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Lightw. Technol., vol. 32, no. 2, pp. 201–207, 2014.
  9. M. J. Kwack, T. Tanemura, A. Higo, and Y Nakano, “Monolithic InP strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection,” Opt. Exp., vol. 20, pp. 28734–28741, 2012.
  10. Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8 × 8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 390–392, 2007.
  11. T. Shibataet al., “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 1300–1302, 2003.
  12. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lightw. Technol., vol. 34, no. 2, pp. 365–371, 2016.
  13. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.
  14. N. Sherwood-Drozet al., “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Exp., vol. 16, pp. 15915–15922, 2008.
  15. H. Jiaet al., “Five-port optical router based on silicon microring optical switches for photonic networks-on-chip,” IEEE Photon. Technol. Lett., vol. 28, no. 9, pp. 947–950, 1, 2016.
  16. Q. Liet al., “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett., vol. 27, no. 18, pp. 1981–1984, 2015.
  17. V. Vujicicet al., “Software-defined silicon-photonics-based metro node for spatial and wavelength superchannel switching,” J. Opt. Commun. Netw., vol. 9, no. 5, pp. 342–350, 2017.
  18. L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep., vol. 7, p. 42306, 2017.
  19. D. Celoet al., “32 × 32 silicon photonic switch,” presented at the OptoElectronics Communications Conf., 2016, Paper WF1–4.
  20. L. Qiao, W. Tang, and T. Chu, “16 × 16 Non-blocking silicon electro-optic switch based on Mach-Zehnder interferometers,” presented at the Optical Fiber Communications Conf., 2016, Paper Th1C. 2.
  21. N. Dupuiset al., “Nanosecond-scale Mach–Zehnder-based CMOS photonic switch fabrics,” J. Lightw. Technol., vol. 35, no. 4, pp. 615–623, 2017.
  22. N. Dupuiset al., “Modeling and characterization of a nonblocking 4 × 4 Mach–Zehnder silicon photonic switch fabric,” J. Lightw. Technol., vol. 33, no. 20 pp. 4329–4337, 2015.
  23. X. Jiejianget al., “Nonblocking 4 × 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1434–1436, 2015.
  24. K. Tanizawaet al., “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Exp., vol. 23, no. 13, pp. 17599–17606, 2015.
  25. L. Lu, L. Zhou, Z. Li, X. Wan, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photon. J., vol. 7, no. 1, pp. 1–8, 2015.
  26. S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16 × 16 silicon Mach-Zehnder interferometer switch actuated with waveguide microheaters,” Photon. Res. vol. 4, pp. 202–207, 2016.
  27. L. Luet al., “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Exp., vol. 24, no. 9, pp. 9295–9307, 2016.
  28. L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2 × 2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett., vol. 39, no. 6, pp. 1633–1636, 2014.
  29. L. Luet al., “4 × 4 silicon optical switches based on double-ring-assisted Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett., vol. 27, no. 23, pp. 2457–2460, 2015.
  30. K. Padmanabhan and A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun., vol. 35, no. 12, pp. 1357–1365, 1987.
  31. L. Heet al., “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett., vol. 25, no. 14, pp. 1358–1361, 2013.
  32. Y. Li and A. W. Poon, “Actively stabilized silicon microrings with integrated surface-state-absorption photodetectors using a slope-detection method,” Opt. Exp., vol 24, no. 19, pp. 21286–21300, 2016.
  33. K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512, 2014.
  34. D. Li, L. Zhou, L. Lu, and J. Chen, “Optical power monitoring with ultrahigh sensitivity in silicon waveguides and ring resonators,” IEEE Photon. J., vol. 9, no. 5, pp. 1–10, 2017.
  35. A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Exp., vol. 21, no. 12, pp. 14139–14145, 2013.
  36. S.-H. Jeonget al., “Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer,” Opt. Exp., vol. 21, no. 25, pp. 30163–30174, 2013.

2017 (4)

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep., vol. 7, p. 42306, 2017.

N. Dupuiset al., “Nanosecond-scale Mach–Zehnder-based CMOS photonic switch fabrics,” J. Lightw. Technol., vol. 35, no. 4, pp. 615–623, 2017.

D. Li, L. Zhou, L. Lu, and J. Chen, “Optical power monitoring with ultrahigh sensitivity in silicon waveguides and ring resonators,” IEEE Photon. J., vol. 9, no. 5, pp. 1–10, 2017.

V. Vujicicet al., “Software-defined silicon-photonics-based metro node for spatial and wavelength superchannel switching,” J. Opt. Commun. Netw., vol. 9, no. 5, pp. 342–350, 2017.

2016 (7)

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.

S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16 × 16 silicon Mach-Zehnder interferometer switch actuated with waveguide microheaters,” Photon. Res. vol. 4, pp. 202–207, 2016.

L. Luet al., “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Exp., vol. 24, no. 9, pp. 9295–9307, 2016.

H. Jiaet al., “Five-port optical router based on silicon microring optical switches for photonic networks-on-chip,” IEEE Photon. Technol. Lett., vol. 28, no. 9, pp. 947–950, 1, 2016.

Y. Li and A. W. Poon, “Actively stabilized silicon microrings with integrated surface-state-absorption photodetectors using a slope-detection method,” Opt. Exp., vol 24, no. 19, pp. 21286–21300, 2016.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical switches based on silicon photonics for ROADM application,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 185–193, 2016.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lightw. Technol., vol. 34, no. 2, pp. 365–371, 2016.

2015 (8)

D. Nikolovaet al., “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Exp., vol. 23, pp. 1159–1175, 2015.

N. Dupuiset al., “Modeling and characterization of a nonblocking 4 × 4 Mach–Zehnder silicon photonic switch fabric,” J. Lightw. Technol., vol. 33, no. 20 pp. 4329–4337, 2015.

X. Jiejianget al., “Nonblocking 4 × 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1434–1436, 2015.

K. Tanizawaet al., “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Exp., vol. 23, no. 13, pp. 17599–17606, 2015.

L. Lu, L. Zhou, Z. Li, X. Wan, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photon. J., vol. 7, no. 1, pp. 1–8, 2015.

L. Luet al., “4 × 4 silicon optical switches based on double-ring-assisted Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett., vol. 27, no. 23, pp. 2457–2460, 2015.

Q. Liet al., “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett., vol. 27, no. 18, pp. 1981–1984, 2015.

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: State of the art and perspectives [Invited],” Photon. Res., vol. 3, pp. B10–B27, 2015.

2014 (3)

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2 × 2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett., vol. 39, no. 6, pp. 1633–1636, 2014.

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512, 2014.

R. Stabile, A. Rohit, and K. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Lightw. Technol., vol. 32, no. 2, pp. 201–207, 2014.

2013 (3)

A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Exp., vol. 21, no. 12, pp. 14139–14145, 2013.

S.-H. Jeonget al., “Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer,” Opt. Exp., vol. 21, no. 25, pp. 30163–30174, 2013.

L. Heet al., “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett., vol. 25, no. 14, pp. 1358–1361, 2013.

2012 (2)

M. J. Kwack, T. Tanemura, A. Higo, and Y Nakano, “Monolithic InP strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection,” Opt. Exp., vol. 20, pp. 28734–28741, 2012.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys., vol. 75, no. 4, pp. 046402-1–046402-15, 2012.

2011 (1)

2008 (1)

N. Sherwood-Drozet al., “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Exp., vol. 16, pp. 15915–15922, 2008.

2007 (1)

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8 × 8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 390–392, 2007.

2003 (2)

T. Shibataet al., “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 1300–1302, 2003.

J. Kimet al., “1100 × 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photon. Technol. Lett., vol. 15, no. 11, pp. 1537–1539, 2003.

1987 (1)

K. Padmanabhan and A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun., vol. 35, no. 12, pp. 1357–1365, 1987.

Ackert, J.

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512, 2014.

Adibi, A.

A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Exp., vol. 21, no. 12, pp. 14139–14145, 2013.

Askari, M.

A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Exp., vol. 21, no. 12, pp. 14139–14145, 2013.

Atabaki, A. H.

A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Exp., vol. 21, no. 12, pp. 14139–14145, 2013.

Bergman, K.

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512, 2014.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys., vol. 75, no. 4, pp. 046402-1–046402-15, 2012.

Biberman, A.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys., vol. 75, no. 4, pp. 046402-1–046402-15, 2012.

Celo, D.

D. Celoet al., “32 × 32 silicon photonic switch,” presented at the OptoElectronics Communications Conf., 2016, Paper WF1–4.

Chen, J.

D. Li, L. Zhou, L. Lu, and J. Chen, “Optical power monitoring with ultrahigh sensitivity in silicon waveguides and ring resonators,” IEEE Photon. J., vol. 9, no. 5, pp. 1–10, 2017.

S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16 × 16 silicon Mach-Zehnder interferometer switch actuated with waveguide microheaters,” Photon. Res. vol. 4, pp. 202–207, 2016.

L. Lu, L. Zhou, Z. Li, X. Wan, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photon. J., vol. 7, no. 1, pp. 1–8, 2015.

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2 × 2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett., vol. 39, no. 6, pp. 1633–1636, 2014.

Chu, T.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep., vol. 7, p. 42306, 2017.

L. Qiao, W. Tang, and T. Chu, “16 × 16 Non-blocking silicon electro-optic switch based on Mach-Zehnder interferometers,” presented at the Optical Fiber Communications Conf., 2016, Paper Th1C. 2.

Dupuis, N.

N. Dupuiset al., “Nanosecond-scale Mach–Zehnder-based CMOS photonic switch fabrics,” J. Lightw. Technol., vol. 35, no. 4, pp. 615–623, 2017.

N. Dupuiset al., “Modeling and characterization of a nonblocking 4 × 4 Mach–Zehnder silicon photonic switch fabric,” J. Lightw. Technol., vol. 33, no. 20 pp. 4329–4337, 2015.

Eftekhar, A. A.

A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Exp., vol. 21, no. 12, pp. 14139–14145, 2013.

Fu, X.

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8 × 8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 390–392, 2007.

Fukuchi, K.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical switches based on silicon photonics for ROADM application,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 185–193, 2016.

Guo, Z.

Han, S.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lightw. Technol., vol. 34, no. 2, pp. 365–371, 2016.

He, L.

L. Heet al., “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett., vol. 25, no. 14, pp. 1358–1361, 2013.

Higo, A.

M. J. Kwack, T. Tanemura, A. Higo, and Y Nakano, “Monolithic InP strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection,” Opt. Exp., vol. 20, pp. 28734–28741, 2012.

Hino, T.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical switches based on silicon photonics for ROADM application,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 185–193, 2016.

Jeong, S.-H.

S.-H. Jeonget al., “Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer,” Opt. Exp., vol. 21, no. 25, pp. 30163–30174, 2013.

Jia, H.

H. Jiaet al., “Five-port optical router based on silicon microring optical switches for photonic networks-on-chip,” IEEE Photon. Technol. Lett., vol. 28, no. 9, pp. 947–950, 1, 2016.

Jiejiang, X.

X. Jiejianget al., “Nonblocking 4 × 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1434–1436, 2015.

Kim, J.

J. Kimet al., “1100 × 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photon. Technol. Lett., vol. 15, no. 11, pp. 1537–1539, 2003.

Knights, A.

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512, 2014.

Kwack, M. J.

M. J. Kwack, T. Tanemura, A. Higo, and Y Nakano, “Monolithic InP strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection,” Opt. Exp., vol. 20, pp. 28734–28741, 2012.

Li, D.

D. Li, L. Zhou, L. Lu, and J. Chen, “Optical power monitoring with ultrahigh sensitivity in silicon waveguides and ring resonators,” IEEE Photon. J., vol. 9, no. 5, pp. 1–10, 2017.

S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16 × 16 silicon Mach-Zehnder interferometer switch actuated with waveguide microheaters,” Photon. Res. vol. 4, pp. 202–207, 2016.

Li, Q.

Q. Liet al., “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett., vol. 27, no. 18, pp. 1981–1984, 2015.

Li, X.

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2 × 2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett., vol. 39, no. 6, pp. 1633–1636, 2014.

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8 × 8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 390–392, 2007.

Li, Y.

Y. Li and A. W. Poon, “Actively stabilized silicon microrings with integrated surface-state-absorption photodetectors using a slope-detection method,” Opt. Exp., vol 24, no. 19, pp. 21286–21300, 2016.

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: State of the art and perspectives [Invited],” Photon. Res., vol. 3, pp. B10–B27, 2015.

Li, Z.

L. Lu, L. Zhou, Z. Li, X. Wan, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photon. J., vol. 7, no. 1, pp. 1–8, 2015.

Liu, T. G.

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8 × 8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 390–392, 2007.

Logan, D.

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512, 2014.

Lu, L.

D. Li, L. Zhou, L. Lu, and J. Chen, “Optical power monitoring with ultrahigh sensitivity in silicon waveguides and ring resonators,” IEEE Photon. J., vol. 9, no. 5, pp. 1–10, 2017.

L. Luet al., “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Exp., vol. 24, no. 9, pp. 9295–9307, 2016.

S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16 × 16 silicon Mach-Zehnder interferometer switch actuated with waveguide microheaters,” Photon. Res. vol. 4, pp. 202–207, 2016.

L. Luet al., “4 × 4 silicon optical switches based on double-ring-assisted Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett., vol. 27, no. 23, pp. 2457–2460, 2015.

L. Lu, L. Zhou, Z. Li, X. Wan, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photon. J., vol. 7, no. 1, pp. 1–8, 2015.

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2 × 2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett., vol. 39, no. 6, pp. 1633–1636, 2014.

Mizukami, M.

Muller, R. S.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lightw. Technol., vol. 34, no. 2, pp. 365–371, 2016.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.

Nakamura, S.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical switches based on silicon photonics for ROADM application,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 185–193, 2016.

Nakano, Y

M. J. Kwack, T. Tanemura, A. Higo, and Y Nakano, “Monolithic InP strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection,” Opt. Exp., vol. 20, pp. 28734–28741, 2012.

Netravali, A.

K. Padmanabhan and A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun., vol. 35, no. 12, pp. 1357–1365, 1987.

Nikolova, D.

D. Nikolovaet al., “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Exp., vol. 23, pp. 1159–1175, 2015.

Padmanabhan, K.

K. Padmanabhan and A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun., vol. 35, no. 12, pp. 1357–1365, 1987.

Padmaraju, K.

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512, 2014.

Poon, A. W.

Y. Li and A. W. Poon, “Actively stabilized silicon microrings with integrated surface-state-absorption photodetectors using a slope-detection method,” Opt. Exp., vol 24, no. 19, pp. 21286–21300, 2016.

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: State of the art and perspectives [Invited],” Photon. Res., vol. 3, pp. B10–B27, 2015.

Qiao, L.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep., vol. 7, p. 42306, 2017.

L. Qiao, W. Tang, and T. Chu, “16 × 16 Non-blocking silicon electro-optic switch based on Mach-Zehnder interferometers,” presented at the Optical Fiber Communications Conf., 2016, Paper Th1C. 2.

Quack, N.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lightw. Technol., vol. 34, no. 2, pp. 365–371, 2016.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.

Rohit, A.

R. Stabile, A. Rohit, and K. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Lightw. Technol., vol. 32, no. 2, pp. 201–207, 2014.

Seok, T. J.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lightw. Technol., vol. 34, no. 2, pp. 365–371, 2016.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.

Sherwood-Droz, N.

N. Sherwood-Drozet al., “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Exp., vol. 16, pp. 15915–15922, 2008.

Shibata, T.

T. Shibataet al., “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 1300–1302, 2003.

Shiraishi, T.

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512, 2014.

Stabile, R.

R. Stabile, A. Rohit, and K. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Lightw. Technol., vol. 32, no. 2, pp. 201–207, 2014.

Sun, D. G.

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8 × 8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 390–392, 2007.

Tajima, A.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical switches based on silicon photonics for ROADM application,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 185–193, 2016.

Takeshita, H.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical switches based on silicon photonics for ROADM application,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 185–193, 2016.

Tanemura, T.

M. J. Kwack, T. Tanemura, A. Higo, and Y Nakano, “Monolithic InP strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection,” Opt. Exp., vol. 20, pp. 28734–28741, 2012.

Tang, W.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep., vol. 7, p. 42306, 2017.

L. Qiao, W. Tang, and T. Chu, “16 × 16 Non-blocking silicon electro-optic switch based on Mach-Zehnder interferometers,” presented at the Optical Fiber Communications Conf., 2016, Paper Th1C. 2.

Tanizawa, K.

K. Tanizawaet al., “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Exp., vol. 23, no. 13, pp. 17599–17606, 2015.

Vujicic, V.

Wan, X.

L. Lu, L. Zhou, Z. Li, X. Wan, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photon. J., vol. 7, no. 1, pp. 1–8, 2015.

Williams, K.

R. Stabile, A. Rohit, and K. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Lightw. Technol., vol. 32, no. 2, pp. 201–207, 2014.

Wu, M. C.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lightw. Technol., vol. 34, no. 2, pp. 365–371, 2016.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica, vol. 3, no. 1, pp. 64–70, 2016.

Yanagimachi, S.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical switches based on silicon photonics for ROADM application,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 185–193, 2016.

Zha, Y.

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8 × 8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 390–392, 2007.

Zhang, L.

Zhang, Y.

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: State of the art and perspectives [Invited],” Photon. Res., vol. 3, pp. B10–B27, 2015.

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8 × 8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 390–392, 2007.

Zhao, S.

Zhou, L.

D. Li, L. Zhou, L. Lu, and J. Chen, “Optical power monitoring with ultrahigh sensitivity in silicon waveguides and ring resonators,” IEEE Photon. J., vol. 9, no. 5, pp. 1–10, 2017.

S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16 × 16 silicon Mach-Zehnder interferometer switch actuated with waveguide microheaters,” Photon. Res. vol. 4, pp. 202–207, 2016.

L. Lu, L. Zhou, Z. Li, X. Wan, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photon. J., vol. 7, no. 1, pp. 1–8, 2015.

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2 × 2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett., vol. 39, no. 6, pp. 1633–1636, 2014.

Appl. Opt. (1)

IEEE J. Sel. Topics Quantum Electron. (1)

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical switches based on silicon photonics for ROADM application,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 185–193, 2016.

IEEE Photon. J. (2)

L. Lu, L. Zhou, Z. Li, X. Wan, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photon. J., vol. 7, no. 1, pp. 1–8, 2015.

D. Li, L. Zhou, L. Lu, and J. Chen, “Optical power monitoring with ultrahigh sensitivity in silicon waveguides and ring resonators,” IEEE Photon. J., vol. 9, no. 5, pp. 1–10, 2017.

IEEE Photon. Technol. Lett. (8)

L. Luet al., “4 × 4 silicon optical switches based on double-ring-assisted Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett., vol. 27, no. 23, pp. 2457–2460, 2015.

L. Heet al., “A high-efficiency nonuniform grating coupler realized with 248-nm optical lithography,” IEEE Photon. Technol. Lett., vol. 25, no. 14, pp. 1358–1361, 2013.

X. Jiejianget al., “Nonblocking 4 × 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1434–1436, 2015.

J. Kimet al., “1100 × 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photon. Technol. Lett., vol. 15, no. 11, pp. 1537–1539, 2003.

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8 × 8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 390–392, 2007.

T. Shibataet al., “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 1300–1302, 2003.

H. Jiaet al., “Five-port optical router based on silicon microring optical switches for photonic networks-on-chip,” IEEE Photon. Technol. Lett., vol. 28, no. 9, pp. 947–950, 1, 2016.

Q. Liet al., “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett., vol. 27, no. 18, pp. 1981–1984, 2015.

IEEE Trans. Commun. (1)

K. Padmanabhan and A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun., vol. 35, no. 12, pp. 1357–1365, 1987.

J. Lightw. Technol. (5)

K. Padmaraju, D. Logan, T. Shiraishi, J. Ackert, A. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512, 2014.

N. Dupuiset al., “Nanosecond-scale Mach–Zehnder-based CMOS photonic switch fabrics,” J. Lightw. Technol., vol. 35, no. 4, pp. 615–623, 2017.

N. Dupuiset al., “Modeling and characterization of a nonblocking 4 × 4 Mach–Zehnder silicon photonic switch fabric,” J. Lightw. Technol., vol. 33, no. 20 pp. 4329–4337, 2015.

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lightw. Technol., vol. 34, no. 2, pp. 365–371, 2016.

R. Stabile, A. Rohit, and K. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Lightw. Technol., vol. 32, no. 2, pp. 201–207, 2014.

J. Opt. Commun. Netw. (1)

Opt. Exp. (8)

M. J. Kwack, T. Tanemura, A. Higo, and Y Nakano, “Monolithic InP strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection,” Opt. Exp., vol. 20, pp. 28734–28741, 2012.

D. Nikolovaet al., “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Exp., vol. 23, pp. 1159–1175, 2015.

K. Tanizawaet al., “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Exp., vol. 23, no. 13, pp. 17599–17606, 2015.

L. Luet al., “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Exp., vol. 24, no. 9, pp. 9295–9307, 2016.

N. Sherwood-Drozet al., “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Exp., vol. 16, pp. 15915–15922, 2008.

A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Exp., vol. 21, no. 12, pp. 14139–14145, 2013.

S.-H. Jeonget al., “Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer,” Opt. Exp., vol. 21, no. 25, pp. 30163–30174, 2013.

Y. Li and A. W. Poon, “Actively stabilized silicon microrings with integrated surface-state-absorption photodetectors using a slope-detection method,” Opt. Exp., vol 24, no. 19, pp. 21286–21300, 2016.

Opt. Lett. (1)

Optica (1)

Photon. Res. (2)

Rep. Prog. Phys. (1)

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys., vol. 75, no. 4, pp. 046402-1–046402-15, 2012.

Sci. Rep. (1)

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep., vol. 7, p. 42306, 2017.

Other (3)

D. Celoet al., “32 × 32 silicon photonic switch,” presented at the OptoElectronics Communications Conf., 2016, Paper WF1–4.

L. Qiao, W. Tang, and T. Chu, “16 × 16 Non-blocking silicon electro-optic switch based on Mach-Zehnder interferometers,” presented at the Optical Fiber Communications Conf., 2016, Paper Th1C. 2.

Cisco, Global Cloud Index: Forecast and Methodology, 2015–2020. 2016. [Online]. Available: http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.