Abstract

Navigation, biotracking devices, and gravity gradiometry are among the diverse range of applications requiring ultrasensitive measurements of acceleration. We describe an accelerometer that exploits the dispersive and dissipative coupling of the motion of an optical whispering gallery mode (WGM) resonator to a waveguide. A silica microsphere-cantilever is used as both the optical cavity and inertial test-mass. Deflections of the cantilever in response to acceleration alter the evanescent coupling between the microsphere and the waveguide, in turn, causing a measurable frequency shift and broadening of the WGM resonance. The theory of this optomechanical response is outlined. By extracting the dispersive and dissipative optomechanical rates from data, we find good agreement between our model and sensor response. A noise density of 4.5 μg $\mathord {\cdot }$ Hz $^{-\scriptscriptstyle \frac{1}{2}}$ with a bias instability of 31.8 μg (g = 9.81 m $\mathord {\cdot }$ s $^{-2}$ ) is measured, limited by classical noise larger than the test-mass thermal motion. Closed-loop feedback is demonstrated to reduce the bias instability and long-term drift. Currently, this sensor outperforms both commercial accelerometers used for navigation and those in ballistocardiology for monitoring blood flowing into the heart. Furthermore, optimization would enable short-range gravitational force detection with operation beyond the lab for terrestrial or space gradiometry.

© 2018 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, O. Arcizet, R. Riviére, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nature Phys., vol. 5, pp. 509–514, 2009.
  2. O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia, vol. 52, no. 5, pp. 654–665, 2015.
  3. Y. L. Li, J. Millen, and P. F. Barker, “Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances,” Opt. Exp., vol. 24, no. 2, pp. 1392–1401, 2016.
  4. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett., vol. 103, 2009, Art. no. .
  5. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nature Photon., vol. 1, pp. 416–422, 2007.
  6. R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett., vol. 106, 2015, Art. no. .
  7. H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys., vol. 14, 2012, Art. no. .
  8. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nature Nanotechnol., vol. 7, pp. 509–514, 2012.
  9. G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique, vol. 12, no. 9–10, pp. 800–816, 2011.
  10. J.-P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors Actuators A, vol. 93, no. 1, pp. 1–7, 2001.
  11. M. Wuet al., “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X, vol. 4, 2014, Art. no. .
  12. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photon., vol. 6, pp. 768–772, 2012.
  13. LIGO Scientific Collaboration & Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett., vol. 116, 2016, Art. no. .
  14. O. Arcizetet al., “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett., vol. 97, 2006, Art. no. .
  15. A. Setter, M. Toroš, J. F. Ralph, and H. Ulbricht, “Real-time Kalman filter: Cooling of an optically levitated nanoparticle,” Phys. Rev. A., vol. 97, 2018, Art. no. .
  16. G. Gagliardi, M. Salza, D. Avino, P. Ferraro, and P. D. Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 19, pp. 1081–1084, 2010.
  17. J. Kalenik and R. Pajak, “A cantilever optical-fiber accelerometer,” Sensors Actuators A, Phys., vol. 68, no. 1-3, pp. 350–355, 1998.
  18. A. G. Quinchia, G. Falco, E. Falletti, F. Dovis, and C. Ferrer, “A comparison between different error modeling of MEMS applied to GPS/INS integrated systems,” Sensors, vol. 13, no. 8, pp. 9549–9588, 2013.
  19. “High performance advanced MEMS industrial & tactical grade inertial measurement units, IMU-P Rev. 2.0,” Inertial Labs, Paeonian Springs, VA, USA, 2017.
  20. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett., vol. 85, no. 74, pp. 74–77, 2000.
  21. H. A. Haus, Waves and Fields in Optoelectronics. Englewood Cliffs, NJ, USA: Prentice-Hall, 1984.
  22. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behaviour and thermal self-stability of microcavities,” Opt. Exp., vol. 12, no. 20, pp. 4742–4750, 2004.
  23. E. Ogier. AVAR. MATLAB Central File Exchange. 2016. [Online]. Available: https://uk.mathworks.com/matlabcentral/fileexchange/55765-avar
  24. N. El-Sheimy, H. Hou, and X. Niu, “Analysis and modeling of inertial sensors using allan variance,” IEEE Trans. Instrum. Meas., vol. 57, no. 1, pp. 140–149, 2008.
  25. U. Meriheinä, “BCG measurements in beds,” Murata, Whitepaper 8375, 2017.
  26. H. Jung and D.-G. Gweon, “Creep characteristics of piezoelectric actuators,” Rev. Sci. Instrum., vol. 71, no. 4, pp. 1896–1900, 2000.
  27. P. Zwahlenet al., “Breakthrough in high performance inertial navigation grade sigma-delta MEMS accelerometer,” in Proc. IEEE/ION Position, Location Navigation Symp., Myrtle Beach, SC, USA, 2012, pp. 15–19.
  28. W. Hernández, “Improving the responses of several accelerometers used in a car under performance tests by using Kalman filtering,” Sensors, vol. 1, no. 1, pp. 38–52, 2001.
  29. F. A. Levinzon, “Ultra-low-noise seismic piezoelectric accelerometer with integral FET amplifier,” IEEE Sensors J., vol. 12, no. 6, pp. 2262–2268, 2012.
  30. J. Schmöle, M. Dragosits, H. Hepack, and M. Aspelmeyer, “A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses,” Classical Quantum Gravity, vol. 33, no. 4, 2016, Art. no. .

2018 (1)

A. Setter, M. Toroš, J. F. Ralph, and H. Ulbricht, “Real-time Kalman filter: Cooling of an optically levitated nanoparticle,” Phys. Rev. A., vol. 97, 2018, Art. no. .

2017 (2)

“High performance advanced MEMS industrial & tactical grade inertial measurement units, IMU-P Rev. 2.0,” Inertial Labs, Paeonian Springs, VA, USA, 2017.

U. Meriheinä, “BCG measurements in beds,” Murata, Whitepaper 8375, 2017.

2016 (3)

J. Schmöle, M. Dragosits, H. Hepack, and M. Aspelmeyer, “A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses,” Classical Quantum Gravity, vol. 33, no. 4, 2016, Art. no. .

LIGO Scientific Collaboration & Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett., vol. 116, 2016, Art. no. .

Y. L. Li, J. Millen, and P. F. Barker, “Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances,” Opt. Exp., vol. 24, no. 2, pp. 1392–1401, 2016.

2015 (2)

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia, vol. 52, no. 5, pp. 654–665, 2015.

R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett., vol. 106, 2015, Art. no. .

2014 (1)

M. Wuet al., “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X, vol. 4, 2014, Art. no. .

2013 (1)

A. G. Quinchia, G. Falco, E. Falletti, F. Dovis, and C. Ferrer, “A comparison between different error modeling of MEMS applied to GPS/INS integrated systems,” Sensors, vol. 13, no. 8, pp. 9549–9588, 2013.

2012 (4)

F. A. Levinzon, “Ultra-low-noise seismic piezoelectric accelerometer with integral FET amplifier,” IEEE Sensors J., vol. 12, no. 6, pp. 2262–2268, 2012.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photon., vol. 6, pp. 768–772, 2012.

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys., vol. 14, 2012, Art. no. .

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nature Nanotechnol., vol. 7, pp. 509–514, 2012.

2011 (1)

G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique, vol. 12, no. 9–10, pp. 800–816, 2011.

2010 (1)

G. Gagliardi, M. Salza, D. Avino, P. Ferraro, and P. D. Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 19, pp. 1081–1084, 2010.

2009 (2)

A. Schliesser, O. Arcizet, R. Riviére, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nature Phys., vol. 5, pp. 509–514, 2009.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett., vol. 103, 2009, Art. no. .

2008 (1)

N. El-Sheimy, H. Hou, and X. Niu, “Analysis and modeling of inertial sensors using allan variance,” IEEE Trans. Instrum. Meas., vol. 57, no. 1, pp. 140–149, 2008.

2007 (1)

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nature Photon., vol. 1, pp. 416–422, 2007.

2006 (1)

O. Arcizetet al., “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett., vol. 97, 2006, Art. no. .

2004 (1)

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behaviour and thermal self-stability of microcavities,” Opt. Exp., vol. 12, no. 20, pp. 4742–4750, 2004.

2001 (2)

W. Hernández, “Improving the responses of several accelerometers used in a car under performance tests by using Kalman filtering,” Sensors, vol. 1, no. 1, pp. 38–52, 2001.

J.-P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors Actuators A, vol. 93, no. 1, pp. 1–7, 2001.

2000 (2)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett., vol. 85, no. 74, pp. 74–77, 2000.

H. Jung and D.-G. Gweon, “Creep characteristics of piezoelectric actuators,” Rev. Sci. Instrum., vol. 71, no. 4, pp. 1896–1900, 2000.

1998 (1)

J. Kalenik and R. Pajak, “A cantilever optical-fiber accelerometer,” Sensors Actuators A, Phys., vol. 68, no. 1-3, pp. 350–355, 1998.

Aksyuk, V.

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys., vol. 14, 2012, Art. no. .

Anetsberger, G.

G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique, vol. 12, no. 9–10, pp. 800–816, 2011.

A. Schliesser, O. Arcizet, R. Riviére, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nature Phys., vol. 5, pp. 509–514, 2009.

Arcizet, O.

A. Schliesser, O. Arcizet, R. Riviére, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nature Phys., vol. 5, pp. 509–514, 2009.

O. Arcizetet al., “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett., vol. 97, 2006, Art. no. .

Aspelmeyer, M.

J. Schmöle, M. Dragosits, H. Hepack, and M. Aspelmeyer, “A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses,” Classical Quantum Gravity, vol. 33, no. 4, 2016, Art. no. .

Avino, D.

G. Gagliardi, M. Salza, D. Avino, P. Ferraro, and P. D. Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 19, pp. 1081–1084, 2010.

Barker, P. F.

Y. L. Li, J. Millen, and P. F. Barker, “Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances,” Opt. Exp., vol. 24, no. 2, pp. 1392–1401, 2016.

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photon., vol. 6, pp. 768–772, 2012.

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett., vol. 85, no. 74, pp. 74–77, 2000.

Carmon, T.

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behaviour and thermal self-stability of microcavities,” Opt. Exp., vol. 12, no. 20, pp. 4742–4750, 2004.

Cervantes, F. G.

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia, vol. 52, no. 5, pp. 654–665, 2015.

Chormaic, S. Nic

R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett., vol. 106, 2015, Art. no. .

Dovis, F.

A. G. Quinchia, G. Falco, E. Falletti, F. Dovis, and C. Ferrer, “A comparison between different error modeling of MEMS applied to GPS/INS integrated systems,” Sensors, vol. 13, no. 8, pp. 9549–9588, 2013.

Dragosits, M.

J. Schmöle, M. Dragosits, H. Hepack, and M. Aspelmeyer, “A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses,” Classical Quantum Gravity, vol. 33, no. 4, 2016, Art. no. .

Eichenfield, M.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nature Photon., vol. 1, pp. 416–422, 2007.

El-Sheimy, N.

N. El-Sheimy, H. Hou, and X. Niu, “Analysis and modeling of inertial sensors using allan variance,” IEEE Trans. Instrum. Meas., vol. 57, no. 1, pp. 140–149, 2008.

Falco, G.

A. G. Quinchia, G. Falco, E. Falletti, F. Dovis, and C. Ferrer, “A comparison between different error modeling of MEMS applied to GPS/INS integrated systems,” Sensors, vol. 13, no. 8, pp. 9549–9588, 2013.

Falletti, E.

A. G. Quinchia, G. Falco, E. Falletti, F. Dovis, and C. Ferrer, “A comparison between different error modeling of MEMS applied to GPS/INS integrated systems,” Sensors, vol. 13, no. 8, pp. 9549–9588, 2013.

Ferraro, P.

G. Gagliardi, M. Salza, D. Avino, P. Ferraro, and P. D. Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 19, pp. 1081–1084, 2010.

Ferrer, C.

A. G. Quinchia, G. Falco, E. Falletti, F. Dovis, and C. Ferrer, “A comparison between different error modeling of MEMS applied to GPS/INS integrated systems,” Sensors, vol. 13, no. 8, pp. 9549–9588, 2013.

Gagliardi, G.

G. Gagliardi, M. Salza, D. Avino, P. Ferraro, and P. D. Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 19, pp. 1081–1084, 2010.

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nature Nanotechnol., vol. 7, pp. 509–514, 2012.

Gerberding, O.

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia, vol. 52, no. 5, pp. 654–665, 2015.

Gweon, D.-G.

H. Jung and D.-G. Gweon, “Creep characteristics of piezoelectric actuators,” Rev. Sci. Instrum., vol. 71, no. 4, pp. 1896–1900, 2000.

Haus, H.

J.-P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors Actuators A, vol. 93, no. 1, pp. 1–7, 2001.

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics. Englewood Cliffs, NJ, USA: Prentice-Hall, 1984.

Hepack, H.

J. Schmöle, M. Dragosits, H. Hepack, and M. Aspelmeyer, “A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses,” Classical Quantum Gravity, vol. 33, no. 4, 2016, Art. no. .

Hernández, W.

W. Hernández, “Improving the responses of several accelerometers used in a car under performance tests by using Kalman filtering,” Sensors, vol. 1, no. 1, pp. 38–52, 2001.

Hou, H.

N. El-Sheimy, H. Hou, and X. Niu, “Analysis and modeling of inertial sensors using allan variance,” IEEE Trans. Instrum. Meas., vol. 57, no. 1, pp. 140–149, 2008.

Jung, H.

H. Jung and D.-G. Gweon, “Creep characteristics of piezoelectric actuators,” Rev. Sci. Instrum., vol. 71, no. 4, pp. 1896–1900, 2000.

Kalenik, J.

J. Kalenik and R. Pajak, “A cantilever optical-fiber accelerometer,” Sensors Actuators A, Phys., vol. 68, no. 1-3, pp. 350–355, 1998.

Kippenberg, T. J.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nature Nanotechnol., vol. 7, pp. 509–514, 2012.

G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique, vol. 12, no. 9–10, pp. 800–816, 2011.

A. Schliesser, O. Arcizet, R. Riviére, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nature Phys., vol. 5, pp. 509–514, 2009.

Kotthaus, J. P.

G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique, vol. 12, no. 9–10, pp. 800–816, 2011.

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photon., vol. 6, pp. 768–772, 2012.

Laine, J.-P.

J.-P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors Actuators A, vol. 93, no. 1, pp. 1–7, 2001.

Le, V. H.

R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett., vol. 106, 2015, Art. no. .

Levinzon, F. A.

F. A. Levinzon, “Ultra-low-noise seismic piezoelectric accelerometer with integral FET amplifier,” IEEE Sensors J., vol. 12, no. 6, pp. 2262–2268, 2012.

Li, M.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett., vol. 103, 2009, Art. no. .

Li, Y. L.

Y. L. Li, J. Millen, and P. F. Barker, “Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances,” Opt. Exp., vol. 24, no. 2, pp. 1392–1401, 2016.

Lin, Q.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photon., vol. 6, pp. 768–772, 2012.

Little, B.

J.-P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors Actuators A, vol. 93, no. 1, pp. 1–7, 2001.

Madugani, R.

R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett., vol. 106, 2015, Art. no. .

Melcher, J.

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia, vol. 52, no. 5, pp. 654–665, 2015.

Meriheinä, U.

U. Meriheinä, “BCG measurements in beds,” Murata, Whitepaper 8375, 2017.

Miao, H.

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys., vol. 14, 2012, Art. no. .

Michael, C. P.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nature Photon., vol. 1, pp. 416–422, 2007.

Millen, J.

Y. L. Li, J. Millen, and P. F. Barker, “Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances,” Opt. Exp., vol. 24, no. 2, pp. 1392–1401, 2016.

Natale, P. D.

G. Gagliardi, M. Salza, D. Avino, P. Ferraro, and P. D. Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 19, pp. 1081–1084, 2010.

Niu, X.

N. El-Sheimy, H. Hou, and X. Niu, “Analysis and modeling of inertial sensors using allan variance,” IEEE Trans. Instrum. Meas., vol. 57, no. 1, pp. 140–149, 2008.

Ogier, E.

E. Ogier. AVAR. MATLAB Central File Exchange. 2016. [Online]. Available: https://uk.mathworks.com/matlabcentral/fileexchange/55765-avar

Painter, O.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photon., vol. 6, pp. 768–772, 2012.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nature Photon., vol. 1, pp. 416–422, 2007.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett., vol. 85, no. 74, pp. 74–77, 2000.

Pajak, R.

J. Kalenik and R. Pajak, “A cantilever optical-fiber accelerometer,” Sensors Actuators A, Phys., vol. 68, no. 1-3, pp. 350–355, 1998.

Perahia, R.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nature Photon., vol. 1, pp. 416–422, 2007.

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett., vol. 103, 2009, Art. no. .

Pratt, J. R.

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia, vol. 52, no. 5, pp. 654–665, 2015.

Quinchia, A. G.

A. G. Quinchia, G. Falco, E. Falletti, F. Dovis, and C. Ferrer, “A comparison between different error modeling of MEMS applied to GPS/INS integrated systems,” Sensors, vol. 13, no. 8, pp. 9549–9588, 2013.

Ralph, J. F.

A. Setter, M. Toroš, J. F. Ralph, and H. Ulbricht, “Real-time Kalman filter: Cooling of an optically levitated nanoparticle,” Phys. Rev. A., vol. 97, 2018, Art. no. .

Riviére, R.

A. Schliesser, O. Arcizet, R. Riviére, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nature Phys., vol. 5, pp. 509–514, 2009.

Salza, M.

G. Gagliardi, M. Salza, D. Avino, P. Ferraro, and P. D. Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 19, pp. 1081–1084, 2010.

Schliesser, A.

A. Schliesser, O. Arcizet, R. Riviére, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nature Phys., vol. 5, pp. 509–514, 2009.

Schmöle, J.

J. Schmöle, M. Dragosits, H. Hepack, and M. Aspelmeyer, “A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses,” Classical Quantum Gravity, vol. 33, no. 4, 2016, Art. no. .

Setter, A.

A. Setter, M. Toroš, J. F. Ralph, and H. Ulbricht, “Real-time Kalman filter: Cooling of an optically levitated nanoparticle,” Phys. Rev. A., vol. 97, 2018, Art. no. .

Srinivasan, K.

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys., vol. 14, 2012, Art. no. .

Tang, H. X.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett., vol. 103, 2009, Art. no. .

Tapalian, C.

J.-P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors Actuators A, vol. 93, no. 1, pp. 1–7, 2001.

Taylor, J. M.

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia, vol. 52, no. 5, pp. 654–665, 2015.

Toroš, M.

A. Setter, M. Toroš, J. F. Ralph, and H. Ulbricht, “Real-time Kalman filter: Cooling of an optically levitated nanoparticle,” Phys. Rev. A., vol. 97, 2018, Art. no. .

Ulbricht, H.

A. Setter, M. Toroš, J. F. Ralph, and H. Ulbricht, “Real-time Kalman filter: Cooling of an optically levitated nanoparticle,” Phys. Rev. A., vol. 97, 2018, Art. no. .

Vahala, K. J.

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behaviour and thermal self-stability of microcavities,” Opt. Exp., vol. 12, no. 20, pp. 4742–4750, 2004.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett., vol. 85, no. 74, pp. 74–77, 2000.

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nature Nanotechnol., vol. 7, pp. 509–514, 2012.

Ward, J. M.

R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett., vol. 106, 2015, Art. no. .

Weig, E. M.

G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique, vol. 12, no. 9–10, pp. 800–816, 2011.

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photon., vol. 6, pp. 768–772, 2012.

Wu, M.

M. Wuet al., “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X, vol. 4, 2014, Art. no. .

Yang, L.

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behaviour and thermal self-stability of microcavities,” Opt. Exp., vol. 12, no. 20, pp. 4742–4750, 2004.

Yang, Y.

R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett., vol. 106, 2015, Art. no. .

Zwahlen, P.

P. Zwahlenet al., “Breakthrough in high performance inertial navigation grade sigma-delta MEMS accelerometer,” in Proc. IEEE/ION Position, Location Navigation Symp., Myrtle Beach, SC, USA, 2012, pp. 15–19.

Appl. Phys. Lett. (1)

R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett., vol. 106, 2015, Art. no. .

Classical Quantum Gravity (1)

J. Schmöle, M. Dragosits, H. Hepack, and M. Aspelmeyer, “A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses,” Classical Quantum Gravity, vol. 33, no. 4, 2016, Art. no. .

Comptes Rendus Physique (1)

G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique, vol. 12, no. 9–10, pp. 800–816, 2011.

IEEE Sensors J. (1)

F. A. Levinzon, “Ultra-low-noise seismic piezoelectric accelerometer with integral FET amplifier,” IEEE Sensors J., vol. 12, no. 6, pp. 2262–2268, 2012.

IEEE Trans. Instrum. Meas. (1)

N. El-Sheimy, H. Hou, and X. Niu, “Analysis and modeling of inertial sensors using allan variance,” IEEE Trans. Instrum. Meas., vol. 57, no. 1, pp. 140–149, 2008.

Metrologia (1)

O. Gerberding, F. G. Cervantes, J. Melcher, J. R. Pratt, and J. M. Taylor, “Optomechanical reference accelerometer,” Metrologia, vol. 52, no. 5, pp. 654–665, 2015.

Nature Nanotechnol. (1)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nature Nanotechnol., vol. 7, pp. 509–514, 2012.

Nature Photon. (2)

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photon., vol. 6, pp. 768–772, 2012.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nature Photon., vol. 1, pp. 416–422, 2007.

Nature Phys. (1)

A. Schliesser, O. Arcizet, R. Riviére, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nature Phys., vol. 5, pp. 509–514, 2009.

New J. Phys. (1)

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys., vol. 14, 2012, Art. no. .

Opt. Exp. (2)

Y. L. Li, J. Millen, and P. F. Barker, “Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances,” Opt. Exp., vol. 24, no. 2, pp. 1392–1401, 2016.

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behaviour and thermal self-stability of microcavities,” Opt. Exp., vol. 12, no. 20, pp. 4742–4750, 2004.

Phys. Rev. A. (1)

A. Setter, M. Toroš, J. F. Ralph, and H. Ulbricht, “Real-time Kalman filter: Cooling of an optically levitated nanoparticle,” Phys. Rev. A., vol. 97, 2018, Art. no. .

Phys. Rev. Lett. (4)

LIGO Scientific Collaboration & Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett., vol. 116, 2016, Art. no. .

O. Arcizetet al., “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett., vol. 97, 2006, Art. no. .

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett., vol. 103, 2009, Art. no. .

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett., vol. 85, no. 74, pp. 74–77, 2000.

Phys. Rev. X (1)

M. Wuet al., “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X, vol. 4, 2014, Art. no. .

Rev. Sci. Instrum. (1)

H. Jung and D.-G. Gweon, “Creep characteristics of piezoelectric actuators,” Rev. Sci. Instrum., vol. 71, no. 4, pp. 1896–1900, 2000.

Science (1)

G. Gagliardi, M. Salza, D. Avino, P. Ferraro, and P. D. Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 19, pp. 1081–1084, 2010.

Sensors (2)

A. G. Quinchia, G. Falco, E. Falletti, F. Dovis, and C. Ferrer, “A comparison between different error modeling of MEMS applied to GPS/INS integrated systems,” Sensors, vol. 13, no. 8, pp. 9549–9588, 2013.

W. Hernández, “Improving the responses of several accelerometers used in a car under performance tests by using Kalman filtering,” Sensors, vol. 1, no. 1, pp. 38–52, 2001.

Sensors Actuators A (1)

J.-P. Laine, C. Tapalian, B. Little, and H. Haus, “Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sensors Actuators A, vol. 93, no. 1, pp. 1–7, 2001.

Sensors Actuators A, Phys. (1)

J. Kalenik and R. Pajak, “A cantilever optical-fiber accelerometer,” Sensors Actuators A, Phys., vol. 68, no. 1-3, pp. 350–355, 1998.

Other (5)

“High performance advanced MEMS industrial & tactical grade inertial measurement units, IMU-P Rev. 2.0,” Inertial Labs, Paeonian Springs, VA, USA, 2017.

P. Zwahlenet al., “Breakthrough in high performance inertial navigation grade sigma-delta MEMS accelerometer,” in Proc. IEEE/ION Position, Location Navigation Symp., Myrtle Beach, SC, USA, 2012, pp. 15–19.

U. Meriheinä, “BCG measurements in beds,” Murata, Whitepaper 8375, 2017.

H. A. Haus, Waves and Fields in Optoelectronics. Englewood Cliffs, NJ, USA: Prentice-Hall, 1984.

E. Ogier. AVAR. MATLAB Central File Exchange. 2016. [Online]. Available: https://uk.mathworks.com/matlabcentral/fileexchange/55765-avar

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.