Abstract

For a future 5G Ethernet-based fronthaul architecture, 100G trunk lines of a transmission distance up to 10 km over a standard single-mode fiber (SSMF) in combination with cheap gray optics to daisy chain cell site network interfaces are a promising cost- and power-efficient solution. For such a scenario, different intensity modulation and direct detect formats at a data rate of 112 Gb/s, namely Nyquist four-level pulse amplitude modulation (PAM4), discrete multitone transmission (DMT), and partial-response (PR) PAM4, are experimentally investigated, using a low-cost electroabsorption modulated laser, a 25G driver, and current state-of-the-art high-speed 84-GS/s CMOS digital-to-analog converter and analog-to-digital converter test chips. Each modulation format is optimized independently for the desired scenario, and their digital signal processing requirements are investigated. The performance of Nyquist PAM4 and PR PAM4 depends very much on the efficiency of pre- and postequalization. We show the necessity for at least 11 feedforward equalizer (FFE) taps for pre-emphasis and up to 41 FFE coefficients at the receiver side. In addition, PR PAM4 requires a maximum likelihood sequence estimation with four states to decode the signal back to a PAM4 signal. On the contrary, bit loading and power loading are crucial for DMT, and an FFT length of at least 512 is necessary. With optimized parameters, all modulation formats result in a very similar performances, demonstrating a transmission distance of up to 10 km over an SSMF with bit error rates below an FEC threshold of 4.4E-3, allowing error-free transmission.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zou, C. Wagner, and M. Eiselt, “Optical fronthauling for 5G mobile: A perspective of passive metro WDM technology,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W4C.2.
  2. Packet-based Fronthaul Transport Network, IEEE 1914.1, 2016. [Online]. Available: http://sites.ieee.org/sagroups-1914/p1914-1/ieee-p1914-1-draft-specific ations/
  3. Radio over Ethernet Encapsulations and Mappings, IEEE 1914.3 Draft 1.2, 2016. [Online]. Available: http://sites.ieee.org/sagroups-1914/p1914-3/ieee-p1914-3-draft-specific ations/
  4. H. Jinri and Y. Yannan, “White paper of next generation fronthaul interface,” White Paper, 2015.
  5. Nokia, “Evolution to centralized RAN with mobile fronthaul,” Technical White Paper, 2016.
  6. “iCirrus D3.2 Preliminary Fronthaul Architecture Proposal,” 2016. [Online]. Available: http://www.icirrus-5gnet.eu/category/deliverables/
  7. M. Chagnonet al., “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 $\mu$m,” Opt. Express, vol. 22, no. 17, pp. 21018–21036, 2014.
  8. N. Kikuchi and R. Hirai, “Intensity-modulated/direct-detection (IM/DD) Nyquist pulse-amplitude modulation (PAM) signaling for 100-Gbit/s/$\lambda$ optical short-reach transmission,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2014, Paper P.4.12.
  9. Y. Gao, J. C. Cartledge, S. S. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proc. Eur. Conf. Opt. Commun., Duesseldorf, Germany, 2016, Paper M2.C2.
  10. N. Stojanovic, Z. Qiang, C. Prodaniuc, and F. Karinou, “Performance and DSP complexity evaluation of a 112-Gbit/s PAM-4 transceiver employing a 25-GHz TOSA and ROSA,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper Tu.3.4.5.
  11. L. F. Suhr, J. J. V. Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, “112-Gbit/s x 4-lane duobinary-4-PAM for 400G Base,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2014, Paper Tu.4.3.2.
  12. X. Xuet al., “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express, vol. 23, no. 1, pp. 492–500, 2015.
  13. C. Xieet al., “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2015, Paper Tu2H.2.
  14. Y. Kaiet al., “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,” in Proc. Eur. Conf. Opt. Commun., 2013, Paper Th.1F.3.
  15. M. I. Olmedoet al., “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol., vol. 32, no. 4, pp. 798–804, 2014.
  16. D. Lewis, S. Corbeil, and B. Mason, “Practical demonstration of live-traffic optical DMT link using DMT test chip.” Sep. 2016. [Online]. Available: http://www.ieee802.org/3/bs/public/14_09/lewis_3bs_01a_0914.pdf
  17. F. Caggioni, “100G single Lambda optical link, experimental data,” in Proc. IEEE Interim Meeting, Dallas, TX, USA, 2016. [Online]. Available: http://www.ieee802.org/3/cd/public/Sept16/caggioni_3cd_01_0916.pdf
  18. U. Troppenzet al., “1.3 $\mu$m electroabsorption modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in Proc. Int. Conf. Indium Phosphide Related Mater., Montpellier, France, 2014, Paper Th.B2.5.
  19. J. M. Cioffi, “Data transmission theory: Course text for EE379A-B and EE479,” in Multi-Channel Modulation. Stanford, CA, USA: Stanford Univ., 2015. [Online]. Available: http://www.stanford.edu/group/cioffi/book
  20. F. M. Gardner, Phaselock Techniques. New York, NY, USA: Wiley-Interscience, 1980.
  21. S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightw. Technol., vol. 17, no. 11, pp. 2235–2248, 1999.
  22. G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A robust adaptive pre-distortion method for optical communication transmitters,” IEEE Photon. Technol. Lett., vol. 28, no. 7, pp. 752–755, 2016.
  23. C. Eun and E. J. Powers, “A new Volterra predistorter based on the indirect learning architecture,” IEEE Trans. Signal Process., vol. 45, no. 1, pp. 223–227, 1997.
  24. A. Dochhan, H. Griesser, N. Eiselt, M. Eiselt, and J.-P. Elbers, “Optimizing discrete multi-tone transmission for 400G data center interconnects,” in Proc. ITG Symp. Photon. Netw., 2016, pp. 128–133.
  25. Standard for Ethernet Amendment: Media Access Control Parameters, Physical Layers and Management Parameters for 400 Gb/s Operation, IEEE P802.3bs/D1.2 Draft, 2016, pp. 1–269. [Online]. Available: http://www.ieee802.org/3/bs/
  26. M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications,” in Proc. Conf. Opt. Fiber Commun./Collocated Nat. Fiber Opt. Eng. Conf., 2010, Paper NTuB3.

2016 (2)

Nokia, “Evolution to centralized RAN with mobile fronthaul,” Technical White Paper, 2016.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A robust adaptive pre-distortion method for optical communication transmitters,” IEEE Photon. Technol. Lett., vol. 28, no. 7, pp. 752–755, 2016.

2015 (2)

H. Jinri and Y. Yannan, “White paper of next generation fronthaul interface,” White Paper, 2015.

X. Xuet al., “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express, vol. 23, no. 1, pp. 492–500, 2015.

2014 (2)

M. Chagnonet al., “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 $\mu$m,” Opt. Express, vol. 22, no. 17, pp. 21018–21036, 2014.

M. I. Olmedoet al., “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol., vol. 32, no. 4, pp. 798–804, 2014.

1999 (1)

S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightw. Technol., vol. 17, no. 11, pp. 2235–2248, 1999.

1997 (1)

C. Eun and E. J. Powers, “A new Volterra predistorter based on the indirect learning architecture,” IEEE Trans. Signal Process., vol. 45, no. 1, pp. 223–227, 1997.

Caggioni, F.

F. Caggioni, “100G single Lambda optical link, experimental data,” in Proc. IEEE Interim Meeting, Dallas, TX, USA, 2016. [Online]. Available: http://www.ieee802.org/3/cd/public/Sept16/caggioni_3cd_01_0916.pdf

Calabrò, S.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A robust adaptive pre-distortion method for optical communication transmitters,” IEEE Photon. Technol. Lett., vol. 28, no. 7, pp. 752–755, 2016.

Cartledge, J. C.

Y. Gao, J. C. Cartledge, S. S. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proc. Eur. Conf. Opt. Commun., Duesseldorf, Germany, 2016, Paper M2.C2.

Chagnon, M.

Cioffi, J. M.

J. M. Cioffi, “Data transmission theory: Course text for EE379A-B and EE479,” in Multi-Channel Modulation. Stanford, CA, USA: Stanford Univ., 2015. [Online]. Available: http://www.stanford.edu/group/cioffi/book

Coe, T.

M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications,” in Proc. Conf. Opt. Fiber Commun./Collocated Nat. Fiber Opt. Eng. Conf., 2010, Paper NTuB3.

Conradi, J.

S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightw. Technol., vol. 17, no. 11, pp. 2235–2248, 1999.

Corbeil, S.

D. Lewis, S. Corbeil, and B. Mason, “Practical demonstration of live-traffic optical DMT link using DMT test chip.” Sep. 2016. [Online]. Available: http://www.ieee802.org/3/bs/public/14_09/lewis_3bs_01a_0914.pdf

De Man, E.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A robust adaptive pre-distortion method for optical communication transmitters,” IEEE Photon. Technol. Lett., vol. 28, no. 7, pp. 752–755, 2016.

Dillard, J.

M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications,” in Proc. Conf. Opt. Fiber Commun./Collocated Nat. Fiber Opt. Eng. Conf., 2010, Paper NTuB3.

Dochhan, A.

A. Dochhan, H. Griesser, N. Eiselt, M. Eiselt, and J.-P. Elbers, “Optimizing discrete multi-tone transmission for 400G data center interconnects,” in Proc. ITG Symp. Photon. Netw., 2016, pp. 128–133.

Eiselt, M.

A. Dochhan, H. Griesser, N. Eiselt, M. Eiselt, and J.-P. Elbers, “Optimizing discrete multi-tone transmission for 400G data center interconnects,” in Proc. ITG Symp. Photon. Netw., 2016, pp. 128–133.

J. Zou, C. Wagner, and M. Eiselt, “Optical fronthauling for 5G mobile: A perspective of passive metro WDM technology,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W4C.2.

Eiselt, N.

A. Dochhan, H. Griesser, N. Eiselt, M. Eiselt, and J.-P. Elbers, “Optimizing discrete multi-tone transmission for 400G data center interconnects,” in Proc. ITG Symp. Photon. Netw., 2016, pp. 128–133.

Elbers, J.-P.

A. Dochhan, H. Griesser, N. Eiselt, M. Eiselt, and J.-P. Elbers, “Optimizing discrete multi-tone transmission for 400G data center interconnects,” in Proc. ITG Symp. Photon. Netw., 2016, pp. 128–133.

Eun, C.

C. Eun and E. J. Powers, “A new Volterra predistorter based on the indirect learning architecture,” IEEE Trans. Signal Process., vol. 45, no. 1, pp. 223–227, 1997.

Gao, Y.

Y. Gao, J. C. Cartledge, S. S. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proc. Eur. Conf. Opt. Commun., Duesseldorf, Germany, 2016, Paper M2.C2.

Gardner, F. M.

F. M. Gardner, Phaselock Techniques. New York, NY, USA: Wiley-Interscience, 1980.

Griesser, H.

A. Dochhan, H. Griesser, N. Eiselt, M. Eiselt, and J.-P. Elbers, “Optimizing discrete multi-tone transmission for 400G data center interconnects,” in Proc. ITG Symp. Photon. Netw., 2016, pp. 128–133.

Hanik, N.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A robust adaptive pre-distortion method for optical communication transmitters,” IEEE Photon. Technol. Lett., vol. 28, no. 7, pp. 752–755, 2016.

Hirai, R.

N. Kikuchi and R. Hirai, “Intensity-modulated/direct-detection (IM/DD) Nyquist pulse-amplitude modulation (PAM) signaling for 100-Gbit/s/$\lambda$ optical short-reach transmission,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2014, Paper P.4.12.

Jinri, H.

H. Jinri and Y. Yannan, “White paper of next generation fronthaul interface,” White Paper, 2015.

Kai, Y.

Y. Kaiet al., “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,” in Proc. Eur. Conf. Opt. Commun., 2013, Paper Th.1F.3.

Karinou, F.

N. Stojanovic, Z. Qiang, C. Prodaniuc, and F. Karinou, “Performance and DSP complexity evaluation of a 112-Gbit/s PAM-4 transceiver employing a 25-GHz TOSA and ROSA,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper Tu.3.4.5.

Khanna, G.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A robust adaptive pre-distortion method for optical communication transmitters,” IEEE Photon. Technol. Lett., vol. 28, no. 7, pp. 752–755, 2016.

Kikuchi, N.

N. Kikuchi and R. Hirai, “Intensity-modulated/direct-detection (IM/DD) Nyquist pulse-amplitude modulation (PAM) signaling for 100-Gbit/s/$\lambda$ optical short-reach transmission,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2014, Paper P.4.12.

Lewis, D.

D. Lewis, S. Corbeil, and B. Mason, “Practical demonstration of live-traffic optical DMT link using DMT test chip.” Sep. 2016. [Online]. Available: http://www.ieee802.org/3/bs/public/14_09/lewis_3bs_01a_0914.pdf

Liu, G. N.

L. F. Suhr, J. J. V. Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, “112-Gbit/s x 4-lane duobinary-4-PAM for 400G Base,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2014, Paper Tu.4.3.2.

Mao, B.

L. F. Suhr, J. J. V. Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, “112-Gbit/s x 4-lane duobinary-4-PAM for 400G Base,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2014, Paper Tu.4.3.2.

Mason, B.

D. Lewis, S. Corbeil, and B. Mason, “Practical demonstration of live-traffic optical DMT link using DMT test chip.” Sep. 2016. [Online]. Available: http://www.ieee802.org/3/bs/public/14_09/lewis_3bs_01a_0914.pdf

Matsui, Y.

Y. Gao, J. C. Cartledge, S. S. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proc. Eur. Conf. Opt. Commun., Duesseldorf, Germany, 2016, Paper M2.C2.

Monroy, I. T.

L. F. Suhr, J. J. V. Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, “112-Gbit/s x 4-lane duobinary-4-PAM for 400G Base,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2014, Paper Tu.4.3.2.

Olmedo, M. I.

M. I. Olmedoet al., “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol., vol. 32, no. 4, pp. 798–804, 2014.

Olmos, J. J. V.

L. F. Suhr, J. J. V. Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, “112-Gbit/s x 4-lane duobinary-4-PAM for 400G Base,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2014, Paper Tu.4.3.2.

Powers, E. J.

C. Eun and E. J. Powers, “A new Volterra predistorter based on the indirect learning architecture,” IEEE Trans. Signal Process., vol. 45, no. 1, pp. 223–227, 1997.

Prodaniuc, C.

N. Stojanovic, Z. Qiang, C. Prodaniuc, and F. Karinou, “Performance and DSP complexity evaluation of a 112-Gbit/s PAM-4 transceiver employing a 25-GHz TOSA and ROSA,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper Tu.3.4.5.

Qiang, Z.

N. Stojanovic, Z. Qiang, C. Prodaniuc, and F. Karinou, “Performance and DSP complexity evaluation of a 112-Gbit/s PAM-4 transceiver employing a 25-GHz TOSA and ROSA,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper Tu.3.4.5.

Rezania, A.

Y. Gao, J. C. Cartledge, S. S. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proc. Eur. Conf. Opt. Commun., Duesseldorf, Germany, 2016, Paper M2.C2.

Scholten, M.

M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications,” in Proc. Conf. Opt. Fiber Commun./Collocated Nat. Fiber Opt. Eng. Conf., 2010, Paper NTuB3.

Spinnler, B.

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A robust adaptive pre-distortion method for optical communication transmitters,” IEEE Photon. Technol. Lett., vol. 28, no. 7, pp. 752–755, 2016.

Stojanovic, N.

N. Stojanovic, Z. Qiang, C. Prodaniuc, and F. Karinou, “Performance and DSP complexity evaluation of a 112-Gbit/s PAM-4 transceiver employing a 25-GHz TOSA and ROSA,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper Tu.3.4.5.

Suhr, L. F.

L. F. Suhr, J. J. V. Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, “112-Gbit/s x 4-lane duobinary-4-PAM for 400G Base,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2014, Paper Tu.4.3.2.

Troppenz, U.

U. Troppenzet al., “1.3 $\mu$m electroabsorption modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in Proc. Int. Conf. Indium Phosphide Related Mater., Montpellier, France, 2014, Paper Th.B2.5.

Wagner, C.

J. Zou, C. Wagner, and M. Eiselt, “Optical fronthauling for 5G mobile: A perspective of passive metro WDM technology,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W4C.2.

Walklin, S.

S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightw. Technol., vol. 17, no. 11, pp. 2235–2248, 1999.

Xie, C.

C. Xieet al., “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2015, Paper Tu2H.2.

Xu, X.

X. Xuet al., “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express, vol. 23, no. 1, pp. 492–500, 2015.

L. F. Suhr, J. J. V. Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, “112-Gbit/s x 4-lane duobinary-4-PAM for 400G Base,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2014, Paper Tu.4.3.2.

Yam, S. S.

Y. Gao, J. C. Cartledge, S. S. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proc. Eur. Conf. Opt. Commun., Duesseldorf, Germany, 2016, Paper M2.C2.

Yannan, Y.

H. Jinri and Y. Yannan, “White paper of next generation fronthaul interface,” White Paper, 2015.

Zou, J.

J. Zou, C. Wagner, and M. Eiselt, “Optical fronthauling for 5G mobile: A perspective of passive metro WDM technology,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W4C.2.

IEEE Photon. Technol. Lett. (1)

G. Khanna, B. Spinnler, S. Calabrò, E. De Man, and N. Hanik, “A robust adaptive pre-distortion method for optical communication transmitters,” IEEE Photon. Technol. Lett., vol. 28, no. 7, pp. 752–755, 2016.

IEEE Trans. Signal Process. (1)

C. Eun and E. J. Powers, “A new Volterra predistorter based on the indirect learning architecture,” IEEE Trans. Signal Process., vol. 45, no. 1, pp. 223–227, 1997.

J. Lightw. Technol. (2)

M. I. Olmedoet al., “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightw. Technol., vol. 32, no. 4, pp. 798–804, 2014.

S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightw. Technol., vol. 17, no. 11, pp. 2235–2248, 1999.

Opt. Express (2)

Technical White Paper (1)

Nokia, “Evolution to centralized RAN with mobile fronthaul,” Technical White Paper, 2016.

White Paper (1)

H. Jinri and Y. Yannan, “White paper of next generation fronthaul interface,” White Paper, 2015.

Other (18)

J. Zou, C. Wagner, and M. Eiselt, “Optical fronthauling for 5G mobile: A perspective of passive metro WDM technology,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W4C.2.

Packet-based Fronthaul Transport Network, IEEE 1914.1, 2016. [Online]. Available: http://sites.ieee.org/sagroups-1914/p1914-1/ieee-p1914-1-draft-specific ations/

Radio over Ethernet Encapsulations and Mappings, IEEE 1914.3 Draft 1.2, 2016. [Online]. Available: http://sites.ieee.org/sagroups-1914/p1914-3/ieee-p1914-3-draft-specific ations/

D. Lewis, S. Corbeil, and B. Mason, “Practical demonstration of live-traffic optical DMT link using DMT test chip.” Sep. 2016. [Online]. Available: http://www.ieee802.org/3/bs/public/14_09/lewis_3bs_01a_0914.pdf

F. Caggioni, “100G single Lambda optical link, experimental data,” in Proc. IEEE Interim Meeting, Dallas, TX, USA, 2016. [Online]. Available: http://www.ieee802.org/3/cd/public/Sept16/caggioni_3cd_01_0916.pdf

U. Troppenzet al., “1.3 $\mu$m electroabsorption modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in Proc. Int. Conf. Indium Phosphide Related Mater., Montpellier, France, 2014, Paper Th.B2.5.

J. M. Cioffi, “Data transmission theory: Course text for EE379A-B and EE479,” in Multi-Channel Modulation. Stanford, CA, USA: Stanford Univ., 2015. [Online]. Available: http://www.stanford.edu/group/cioffi/book

F. M. Gardner, Phaselock Techniques. New York, NY, USA: Wiley-Interscience, 1980.

“iCirrus D3.2 Preliminary Fronthaul Architecture Proposal,” 2016. [Online]. Available: http://www.icirrus-5gnet.eu/category/deliverables/

N. Kikuchi and R. Hirai, “Intensity-modulated/direct-detection (IM/DD) Nyquist pulse-amplitude modulation (PAM) signaling for 100-Gbit/s/$\lambda$ optical short-reach transmission,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2014, Paper P.4.12.

Y. Gao, J. C. Cartledge, S. S. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proc. Eur. Conf. Opt. Commun., Duesseldorf, Germany, 2016, Paper M2.C2.

N. Stojanovic, Z. Qiang, C. Prodaniuc, and F. Karinou, “Performance and DSP complexity evaluation of a 112-Gbit/s PAM-4 transceiver employing a 25-GHz TOSA and ROSA,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper Tu.3.4.5.

L. F. Suhr, J. J. V. Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, “112-Gbit/s x 4-lane duobinary-4-PAM for 400G Base,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2014, Paper Tu.4.3.2.

C. Xieet al., “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2015, Paper Tu2H.2.

Y. Kaiet al., “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,” in Proc. Eur. Conf. Opt. Commun., 2013, Paper Th.1F.3.

A. Dochhan, H. Griesser, N. Eiselt, M. Eiselt, and J.-P. Elbers, “Optimizing discrete multi-tone transmission for 400G data center interconnects,” in Proc. ITG Symp. Photon. Netw., 2016, pp. 128–133.

Standard for Ethernet Amendment: Media Access Control Parameters, Physical Layers and Management Parameters for 400 Gb/s Operation, IEEE P802.3bs/D1.2 Draft, 2016, pp. 1–269. [Online]. Available: http://www.ieee802.org/3/bs/

M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications,” in Proc. Conf. Opt. Fiber Commun./Collocated Nat. Fiber Opt. Eng. Conf., 2010, Paper NTuB3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.