Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 36,
  • Issue 1,
  • pp. 68-78
  • (2018)

Approaching the Capacity of Colored-SNR Optical Channels by Multicarrier Entropy Loading

Not Accessible

Your library or personal account may give you access

Abstract

Fiber optics channels provide flat channel response per wavelength in general, owing to the ultrawide available bandwidth of optical fibers and optical amplifiers. However, the recent transport capacity upgrade, which drives the signal baud-rate from 10 to >100 Gbaud, has given rise to severe power fading at high-frequency ranges, induced at levels of both optoelectronic transceivers and optical networks. Especially, the modern meshed optical networks rely on more and more reconfigurable optical add and drop multiplexers (ROADM) to enhance the network flexibility with low latency. These cascaded ROADMs bring about a well-known filter-narrowing effect that has become a severe issue in the deployed networks. This strongly limits the achievable channel bandwidth, and leads to an optical channel with colored signal-to-noise ratio (SNR). Within the linear transmission regime, the capacity-approaching strategy for an individual wavelength channel is to design a Gaussian source, which has been extensively studied recently. However, there is the lack of investigation on approaching the capacity of a channel with colored SNR. This paper addresses this issue with rigor. It reviews the optimum power allocation that determines the capacity of colored-SNR Gaussian channels, and proposes entropy loading based on multicarrier modulation that offers a theoretically optimum strategy to approach the capacity. The entropy loading advantage is verified by a 400-Gb/s coherent optical transmission through band-limited fiber channels with cascaded ROADMs. Entropy loading can be generalized to a variety of applications under colored-SNR Gaussian channels beyond the optical communication.

© 2017 IEEE

PDF Article
More Like This
Flexible transceiver for an access network: a multicarrier entropy loading approach

Gengchen Liu, Ji Zhou, Yuanda Huang, Guanyu Wang, Yu Bo, Yiwen Wu, Yanzhao Lu, Jiale He, Mo Li, Zhicheng Ye, Wenxuan Mo, and Liangchuan Li
J. Opt. Commun. Netw. 15(7) 442-448 (2023)

Squeezing out the last few bits from band-limited channels with entropy loading

Di Che and William Shieh
Opt. Express 27(7) 9321-9329 (2019)

Entropy loading for capacity maximization of RGB-based visible light communications

Pedro A. Loureiro, Vinicius N. H. Silva, Maria C. R. Medeiros, Fernando P. Guiomar, and Paulo P. Monteiro
Opt. Express 30(20) 36025-36037 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.