Abstract

We report the transmission of probabilistically shaped (PS) 64-ary quadrature amplitude modulation (QAM) at 7.46 b/s/Hz over a 5523-km in-service trans-Atlantic fiber-optic cable that consists of 65–89-km spans of Erbium-doped fiber amplifier only amplified fiber. Using a looped-back system configuration, we achieve 5.68 b/s/Hz over a trans-Pacific-equivalent distance of 11 046 km. Net spectral efficiencies are increased by 18% and 80% by using PS, at 5523 km and 11 046 km, respectively, compared to uniform square QAM. Throughout our experiments, we pay particular attention that our claims are backed by implementable forward error correction schemes. In addition, we demonstrate real-time coherent transmission of single-carrier 200 and 250-Gb/s uniform 8-QAM and 16-QAM at 4 b/s/Hz over the 5523-km cable.

© 2017 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and D. T. Neilson, “From scaling disparities to integrated parallelism: A decathlon for a decade,” J. Lightw. Technol., vol. 35, no. 5, pp. 1099–1115,  2017.
  2. Y. Sverdlik, “Here are the submarine cables funded by cloud giants,”  2017. [Online]. Available: http://www.datacenterknowledge.com/archives/2017/03/03/here-are-the-sub marine-cables-funded-by-cloud-giants/
  3. Aqua Comms Limited, “AEConnect—The newest, most secure Transatlantic cable system in existence.” [Online]. Available: http://www.aquacomms.com/networks/aec-america-europe-connect, Accessed on: 27, 2017.
  4. A. Pilipetskii, “High capacity submarine transmission systems,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper W3G.5.
  5. Nokia Corporation, “The photonic service engine 2.” [Online]. Available: https://resources.ext.nokia.com/asset/194079, Accessed on: 27, 2017.
  6. G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun., vol. 63, no. 12, pp. 4651–4665,  2015.
  7. F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.
  8. S. Chandrasekharet al., “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper Th.3.C.1.
  9. A. Ghazisaeidiet al., “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper Th.3.C.4.
  10. J. Choet al., “Trans-Atlantic field trial using probabilistically shaped 64-QAM at high spectral efficiencies and single-carrier real-time 250-Gb/s 16-QAM,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5B.3.
  11. V. A. J. M. Sleifferet al., “45.8 and 125 Gb/s CP-QPSK/CP-BPSK field trial over installed submarine cable,” J. Lightw. Technol., vol. 30, no. 5, pp. 624–633,  2012.
  12. K. Wang, Y. Lu, and L. Liu, “Dual-carrier 400G field trial submarine transmission over 6,577-km using 60-GBaud digital faster-than-Nyquist shaping PDM-QPSK modulation format,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper W3E.2.
  13. S. Zhanget al., “Capacity-approaching transmission over 6375 km at spectral efficiency of 8.3 bit/s/Hz,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Th5C.2.
  14. J.-X. Caiet al., “49.3 Tb/s transmission over 9100 km using C+L EDFA and 54 Tb/s transmission over 9150 km using hybrid-Raman EDFA,” J. Lightw. Technol., vol. 33, no. 13, pp. 2724–2734,  2015.
  15. J.-X. Caiet al., “70.4 Tb/s capacity over 7,600 km in C+L band using coded modulation with hybrid constellation shaping and nonlinearity compensation,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5B.2.
  16. M. P. Yankovet al., “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol., vol. 34, no. 22, pp. 5146–5156,  2016.
  17. T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express, vol. 21, no. 3, pp. 2632–2641,  2013.
  18. S. Zhanget al., “50.962 Tb/s over 11185 km bi-directional C+L transmission using optimized 32QAM,” in Proc. Conf. Lasers Electro-Opt., 2017, Paper JTh5A.9.
  19. Nokia Corporation, “Nokia 1830 PSS 500G muxponder.” [Online]. Available: https://resources.ext.nokia.com/asset/194076, Accessed on: 27, 2017.
  20. Nokia Corporation, “Nokia 1830 PSS-24x.” [Online]. Available: https://resources.ext.nokia.com/asset/194070, Accessed on: 27, 2017.
  21. Roshmere Inc., White Paper. [Online]. Available: http://roshmere.com/white-paper/, Accessed on: 27, 2017.
  22. B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper PDP.3.1.
  23. M. E. McCarthy, N. M. Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.5.7.
  24. D. J. Elson, L. Galdino, R. Maher, R. I. Killey, B. C. Thomsen, and P. Bayvel, “High spectral density transmission emulation using amplified spontaneous emission noise,” Opt. Lett., vol. 41, no. 1, pp. 68–71, 2016.
  25. D. S. Millaret al., “A simplified dual-carrier DP-64QAM 1 Tb/s transceiver,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper M3D.2.
  26. R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photon. Technol. Lett., vol. 28, no. 11, pp. 1253–1256,  2016.
  27. R. Dar and P. J. Winzer, “Nonlinear interference mitigation: Methods and potential gain,” J. Lightw. Technol., vol. 35, no. 4, pp. 903–930,  2017.
  28. P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434,  2016.
  29. F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929,  1993.
  30. A. Alvarado, E. Agrell, R. Maher, and P. Bayvel, “Replacing the soft FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 4338–4352,  2016.
  31. T. A. Eriksson, F. Buchali, W. Idler, L. Schmalen, and G. Charlet, “Electronically subcarrier multiplexed PM-32QAM with optimized FEC overheads,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W3J.4.
  32. F. Buchali, W. Idler, L. Schmalen, and Q. Hu, “Flexible optical transmission close to the Shannon limit by probabilistically shaped QAM,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper M3C.3.
  33. F. Buchali, W. Idler, L. Schmalen, G. Böcherer, P. Schulte, and F. Steiner, “Probabilistically shaped QAM for independent reach, spectral efficiency and bit-rate adaptation,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.1.C.1.
  34. M. P. Yankovet al., “Experimental study of nonlinear phase noise and its impact on WDM systems with DP-256QAM,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.1.D.1.
  35. J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.2.D.2.
  36. L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.
  37. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for ${M}$-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999,  2009.
  38. T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightw. Technol., vol. 34, no. 21, pp. 5063–5073,  2016.

2017 (2)

P. J. Winzer and D. T. Neilson, “From scaling disparities to integrated parallelism: A decathlon for a decade,” J. Lightw. Technol., vol. 35, no. 5, pp. 1099–1115,  2017.

R. Dar and P. J. Winzer, “Nonlinear interference mitigation: Methods and potential gain,” J. Lightw. Technol., vol. 35, no. 4, pp. 903–930,  2017.

2016 (7)

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434,  2016.

A. Alvarado, E. Agrell, R. Maher, and P. Bayvel, “Replacing the soft FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 4338–4352,  2016.

T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightw. Technol., vol. 34, no. 21, pp. 5063–5073,  2016.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

M. P. Yankovet al., “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol., vol. 34, no. 22, pp. 5146–5156,  2016.

D. J. Elson, L. Galdino, R. Maher, R. I. Killey, B. C. Thomsen, and P. Bayvel, “High spectral density transmission emulation using amplified spontaneous emission noise,” Opt. Lett., vol. 41, no. 1, pp. 68–71, 2016.

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photon. Technol. Lett., vol. 28, no. 11, pp. 1253–1256,  2016.

2015 (3)

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun., vol. 63, no. 12, pp. 4651–4665,  2015.

J.-X. Caiet al., “49.3 Tb/s transmission over 9100 km using C+L EDFA and 54 Tb/s transmission over 9150 km using hybrid-Raman EDFA,” J. Lightw. Technol., vol. 33, no. 13, pp. 2724–2734,  2015.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

2013 (1)

2012 (1)

V. A. J. M. Sleifferet al., “45.8 and 125 Gb/s CP-QPSK/CP-BPSK field trial over installed submarine cable,” J. Lightw. Technol., vol. 30, no. 5, pp. 624–633,  2012.

2009 (1)

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for ${M}$-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999,  2009.

1993 (1)

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929,  1993.

Agrell, E.

A. Alvarado, E. Agrell, R. Maher, and P. Bayvel, “Replacing the soft FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 4338–4352,  2016.

Alvarado, A.

A. Alvarado, E. Agrell, R. Maher, and P. Bayvel, “Replacing the soft FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 4338–4352,  2016.

T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightw. Technol., vol. 34, no. 21, pp. 5063–5073,  2016.

Aref, V.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

Bayvel, P.

A. Alvarado, E. Agrell, R. Maher, and P. Bayvel, “Replacing the soft FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 4338–4352,  2016.

D. J. Elson, L. Galdino, R. Maher, R. I. Killey, B. C. Thomsen, and P. Bayvel, “High spectral density transmission emulation using amplified spontaneous emission noise,” Opt. Lett., vol. 41, no. 1, pp. 68–71, 2016.

Böcherer, G.

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434,  2016.

T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightw. Technol., vol. 34, no. 21, pp. 5063–5073,  2016.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun., vol. 63, no. 12, pp. 4651–4665,  2015.

F. Buchali, W. Idler, L. Schmalen, G. Böcherer, P. Schulte, and F. Steiner, “Probabilistically shaped QAM for independent reach, spectral efficiency and bit-rate adaptation,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.1.C.1.

Buchali, F.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

F. Buchali, W. Idler, L. Schmalen, and Q. Hu, “Flexible optical transmission close to the Shannon limit by probabilistically shaped QAM,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper M3C.3.

F. Buchali, W. Idler, L. Schmalen, G. Böcherer, P. Schulte, and F. Steiner, “Probabilistically shaped QAM for independent reach, spectral efficiency and bit-rate adaptation,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.1.C.1.

T. A. Eriksson, F. Buchali, W. Idler, L. Schmalen, and G. Charlet, “Electronically subcarrier multiplexed PM-32QAM with optimized FEC overheads,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W3J.4.

Cai, J.-X.

J.-X. Caiet al., “49.3 Tb/s transmission over 9100 km using C+L EDFA and 54 Tb/s transmission over 9150 km using hybrid-Raman EDFA,” J. Lightw. Technol., vol. 33, no. 13, pp. 2724–2734,  2015.

J.-X. Caiet al., “70.4 Tb/s capacity over 7,600 km in C+L band using coded modulation with hybrid constellation shaping and nonlinearity compensation,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5B.2.

Chandrasekhar, S.

S. Chandrasekharet al., “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper Th.3.C.1.

Charlet, G.

T. A. Eriksson, F. Buchali, W. Idler, L. Schmalen, and G. Charlet, “Electronically subcarrier multiplexed PM-32QAM with optimized FEC overheads,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W3J.4.

Cho, J.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.2.D.2.

J. Choet al., “Trans-Atlantic field trial using probabilistically shaped 64-QAM at high spectral efficiencies and single-carrier real-time 250-Gb/s 16-QAM,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5B.3.

Dar, R.

R. Dar and P. J. Winzer, “Nonlinear interference mitigation: Methods and potential gain,” J. Lightw. Technol., vol. 35, no. 4, pp. 903–930,  2017.

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photon. Technol. Lett., vol. 28, no. 11, pp. 1253–1256,  2016.

Ellis, A. D.

M. E. McCarthy, N. M. Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.5.7.

Elson, D. J.

Eriksson, T. A.

T. A. Eriksson, F. Buchali, W. Idler, L. Schmalen, and G. Charlet, “Electronically subcarrier multiplexed PM-32QAM with optimized FEC overheads,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W3J.4.

Fehenberger, T.

T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightw. Technol., vol. 34, no. 21, pp. 5063–5073,  2016.

Galdino, L.

Ghazisaeidi, A.

A. Ghazisaeidiet al., “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper Th.3.C.4.

Hanik, N.

T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightw. Technol., vol. 34, no. 21, pp. 5063–5073,  2016.

Harper, P.

M. E. McCarthy, N. M. Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.5.7.

Hoffmann, S.

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for ${M}$-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999,  2009.

Hu, Q.

F. Buchali, W. Idler, L. Schmalen, and Q. Hu, “Flexible optical transmission close to the Shannon limit by probabilistically shaped QAM,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper M3C.3.

Idler, W.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

F. Buchali, W. Idler, L. Schmalen, G. Böcherer, P. Schulte, and F. Steiner, “Probabilistically shaped QAM for independent reach, spectral efficiency and bit-rate adaptation,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.1.C.1.

F. Buchali, W. Idler, L. Schmalen, and Q. Hu, “Flexible optical transmission close to the Shannon limit by probabilistically shaped QAM,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper M3C.3.

T. A. Eriksson, F. Buchali, W. Idler, L. Schmalen, and G. Charlet, “Electronically subcarrier multiplexed PM-32QAM with optimized FEC overheads,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W3J.4.

Killey, R. I.

Kschischang, F. R.

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929,  1993.

Le, S. T.

M. E. McCarthy, N. M. Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.5.7.

Leven, A.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

Liu, L.

K. Wang, Y. Lu, and L. Liu, “Dual-carrier 400G field trial submarine transmission over 6,577-km using 60-GBaud digital faster-than-Nyquist shaping PDM-QPSK modulation format,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper W3E.2.

Lu, Y.

K. Wang, Y. Lu, and L. Liu, “Dual-carrier 400G field trial submarine transmission over 6,577-km using 60-GBaud digital faster-than-Nyquist shaping PDM-QPSK modulation format,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper W3E.2.

Maher, R.

A. Alvarado, E. Agrell, R. Maher, and P. Bayvel, “Replacing the soft FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 4338–4352,  2016.

D. J. Elson, L. Galdino, R. Maher, R. I. Killey, B. C. Thomsen, and P. Bayvel, “High spectral density transmission emulation using amplified spontaneous emission noise,” Opt. Lett., vol. 41, no. 1, pp. 68–71, 2016.

McCarthy, M. E.

M. E. McCarthy, N. M. Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.5.7.

Millar, D. S.

D. S. Millaret al., “A simplified dual-carrier DP-64QAM 1 Tb/s transceiver,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper M3D.2.

Nakazawa, M.

Neilson, D. T.

P. J. Winzer and D. T. Neilson, “From scaling disparities to integrated parallelism: A decathlon for a decade,” J. Lightw. Technol., vol. 35, no. 5, pp. 1099–1115,  2017.

Noé, R.

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for ${M}$-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999,  2009.

Omiya, T.

Pasupathy, S.

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929,  1993.

Pfau, T.

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for ${M}$-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999,  2009.

Pilipetskii, A.

A. Pilipetskii, “High capacity submarine transmission systems,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper W3G.5.

Puttnam, B. J.

B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper PDP.3.1.

Rösener, D.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

Schmalen, L.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.2.D.2.

F. Buchali, W. Idler, L. Schmalen, and Q. Hu, “Flexible optical transmission close to the Shannon limit by probabilistically shaped QAM,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper M3C.3.

F. Buchali, W. Idler, L. Schmalen, G. Böcherer, P. Schulte, and F. Steiner, “Probabilistically shaped QAM for independent reach, spectral efficiency and bit-rate adaptation,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.1.C.1.

T. A. Eriksson, F. Buchali, W. Idler, L. Schmalen, and G. Charlet, “Electronically subcarrier multiplexed PM-32QAM with optimized FEC overheads,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W3J.4.

Schulte, P.

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434,  2016.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun., vol. 63, no. 12, pp. 4651–4665,  2015.

F. Buchali, W. Idler, L. Schmalen, G. Böcherer, P. Schulte, and F. Steiner, “Probabilistically shaped QAM for independent reach, spectral efficiency and bit-rate adaptation,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.1.C.1.

Sleiffer, V. A. J. M.

V. A. J. M. Sleifferet al., “45.8 and 125 Gb/s CP-QPSK/CP-BPSK field trial over installed submarine cable,” J. Lightw. Technol., vol. 30, no. 5, pp. 624–633,  2012.

Steiner, F.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun., vol. 63, no. 12, pp. 4651–4665,  2015.

F. Buchali, W. Idler, L. Schmalen, G. Böcherer, P. Schulte, and F. Steiner, “Probabilistically shaped QAM for independent reach, spectral efficiency and bit-rate adaptation,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.1.C.1.

Suibhne, N. M.

M. E. McCarthy, N. M. Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.5.7.

Suikat, D.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

Sverdlik, Y.

Y. Sverdlik, “Here are the submarine cables funded by cloud giants,”  2017. [Online]. Available: http://www.datacenterknowledge.com/archives/2017/03/03/here-are-the-sub marine-cables-funded-by-cloud-giants/

Thomsen, B. C.

Wang, K.

K. Wang, Y. Lu, and L. Liu, “Dual-carrier 400G field trial submarine transmission over 6,577-km using 60-GBaud digital faster-than-Nyquist shaping PDM-QPSK modulation format,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper W3E.2.

Winzer, P. J.

P. J. Winzer and D. T. Neilson, “From scaling disparities to integrated parallelism: A decathlon for a decade,” J. Lightw. Technol., vol. 35, no. 5, pp. 1099–1115,  2017.

R. Dar and P. J. Winzer, “Nonlinear interference mitigation: Methods and potential gain,” J. Lightw. Technol., vol. 35, no. 4, pp. 903–930,  2017.

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photon. Technol. Lett., vol. 28, no. 11, pp. 1253–1256,  2016.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.2.D.2.

Yankov, M. P.

M. P. Yankovet al., “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol., vol. 34, no. 22, pp. 5146–5156,  2016.

M. P. Yankovet al., “Experimental study of nonlinear phase noise and its impact on WDM systems with DP-256QAM,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.1.D.1.

Yoshida, M.

Zhang, S.

S. Zhanget al., “50.962 Tb/s over 11185 km bi-directional C+L transmission using optimized 32QAM,” in Proc. Conf. Lasers Electro-Opt., 2017, Paper JTh5A.9.

S. Zhanget al., “Capacity-approaching transmission over 6375 km at spectral efficiency of 8.3 bit/s/Hz,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Th5C.2.

IEEE Photon. Technol. Lett. (1)

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photon. Technol. Lett., vol. 28, no. 11, pp. 1253–1256,  2016.

IEEE Trans. Commun. (1)

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun., vol. 63, no. 12, pp. 4651–4665,  2015.

IEEE Trans. Inf. Theory (2)

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434,  2016.

F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929,  1993.

J. Lightw. Technol. (10)

A. Alvarado, E. Agrell, R. Maher, and P. Bayvel, “Replacing the soft FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 4338–4352,  2016.

R. Dar and P. J. Winzer, “Nonlinear interference mitigation: Methods and potential gain,” J. Lightw. Technol., vol. 35, no. 4, pp. 903–930,  2017.

V. A. J. M. Sleifferet al., “45.8 and 125 Gb/s CP-QPSK/CP-BPSK field trial over installed submarine cable,” J. Lightw. Technol., vol. 30, no. 5, pp. 624–633,  2012.

J.-X. Caiet al., “49.3 Tb/s transmission over 9100 km using C+L EDFA and 54 Tb/s transmission over 9150 km using hybrid-Raman EDFA,” J. Lightw. Technol., vol. 33, no. 13, pp. 2724–2734,  2015.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightw. Technol., vol. 34, no. 7, pp. 1599–1609,  2016.

P. J. Winzer and D. T. Neilson, “From scaling disparities to integrated parallelism: A decathlon for a decade,” J. Lightw. Technol., vol. 35, no. 5, pp. 1099–1115,  2017.

M. P. Yankovet al., “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightw. Technol., vol. 34, no. 22, pp. 5146–5156,  2016.

L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Rösener, and A. Leven, “Spatially coupled soft-decision error correction for future lightwave systems,” J. Lightw. Technol., vol. 33, no. 5, pp. 1109–1116,  2015.

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for ${M}$-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999,  2009.

T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightw. Technol., vol. 34, no. 21, pp. 5063–5073,  2016.

Opt. Express (1)

Opt. Lett. (1)

Other (22)

D. S. Millaret al., “A simplified dual-carrier DP-64QAM 1 Tb/s transceiver,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper M3D.2.

J.-X. Caiet al., “70.4 Tb/s capacity over 7,600 km in C+L band using coded modulation with hybrid constellation shaping and nonlinearity compensation,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5B.2.

K. Wang, Y. Lu, and L. Liu, “Dual-carrier 400G field trial submarine transmission over 6,577-km using 60-GBaud digital faster-than-Nyquist shaping PDM-QPSK modulation format,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper W3E.2.

S. Zhanget al., “Capacity-approaching transmission over 6375 km at spectral efficiency of 8.3 bit/s/Hz,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Th5C.2.

T. A. Eriksson, F. Buchali, W. Idler, L. Schmalen, and G. Charlet, “Electronically subcarrier multiplexed PM-32QAM with optimized FEC overheads,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W3J.4.

F. Buchali, W. Idler, L. Schmalen, and Q. Hu, “Flexible optical transmission close to the Shannon limit by probabilistically shaped QAM,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper M3C.3.

F. Buchali, W. Idler, L. Schmalen, G. Böcherer, P. Schulte, and F. Steiner, “Probabilistically shaped QAM for independent reach, spectral efficiency and bit-rate adaptation,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.1.C.1.

M. P. Yankovet al., “Experimental study of nonlinear phase noise and its impact on WDM systems with DP-256QAM,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.1.D.1.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.2.D.2.

S. Zhanget al., “50.962 Tb/s over 11185 km bi-directional C+L transmission using optimized 32QAM,” in Proc. Conf. Lasers Electro-Opt., 2017, Paper JTh5A.9.

Nokia Corporation, “Nokia 1830 PSS 500G muxponder.” [Online]. Available: https://resources.ext.nokia.com/asset/194076, Accessed on: 27, 2017.

Nokia Corporation, “Nokia 1830 PSS-24x.” [Online]. Available: https://resources.ext.nokia.com/asset/194070, Accessed on: 27, 2017.

Roshmere Inc., White Paper. [Online]. Available: http://roshmere.com/white-paper/, Accessed on: 27, 2017.

B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper PDP.3.1.

M. E. McCarthy, N. M. Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.5.7.

Y. Sverdlik, “Here are the submarine cables funded by cloud giants,”  2017. [Online]. Available: http://www.datacenterknowledge.com/archives/2017/03/03/here-are-the-sub marine-cables-funded-by-cloud-giants/

Aqua Comms Limited, “AEConnect—The newest, most secure Transatlantic cable system in existence.” [Online]. Available: http://www.aquacomms.com/networks/aec-america-europe-connect, Accessed on: 27, 2017.

A. Pilipetskii, “High capacity submarine transmission systems,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper W3G.5.

Nokia Corporation, “The photonic service engine 2.” [Online]. Available: https://resources.ext.nokia.com/asset/194079, Accessed on: 27, 2017.

S. Chandrasekharet al., “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper Th.3.C.1.

A. Ghazisaeidiet al., “65 Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper Th.3.C.4.

J. Choet al., “Trans-Atlantic field trial using probabilistically shaped 64-QAM at high spectral efficiencies and single-carrier real-time 250-Gb/s 16-QAM,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5B.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.