Abstract

In this study, we present optical isolators and circulators fabricated by bonding cerium-substituted yttrium iron garnet (Ce:YIG) on silicon microring resonators. A novel integrated electromagnet is fabricated by depositing a metal micro-strip on the bonded chip. We experimentally prove that it can be efficiently used to control the magnetic field needed to induce the nonreciprocal phase shift effect in the Ce:YIG. The fabricated devices exhibit extremely small footprint (<70 μm) and can be packaged, eliminating the need of a large size permanent magnet. A large optical isolation of 32 dB and 11 dB is measured for the isolator and the circulator, respectively. Moreover, a two microring solution is also investigated to provide larger bandwidth and higher isolation. The proposed approach represents a promising solution for large-scale integration of nonreciprocal components in silicon photonics.

© 2016 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Zhang, S. Zhang, J. D. Peters, and J. E. Bowers, “8×8×40 Gbps fully integrated silicon photonic network on chip,” Optica, vol. 3, no. 7, pp. 785–786, 2016.
  2. K. Taiet al., “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett., vol. 13, no. 4, pp. 320–322, 2001.
  3. P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett., vol. 25, no. 20, pp. 1973–1976, 15, 2013.
  4. D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics, vol. 3, nos. 4/5, pp. 283–311, 2014.
  5. B. Lee and Y. Jeong, “Interrogation techniques for fiber grating sensors and the theory of fiber gratings,” in Fiber Optic Sensors, S. Yin, P. B. Ruffin, and F. T. S. Yu Eds. Boca Raton, FL, USA: CRC Press, 2008, pp. 253–331.
  6. L. Fanet al., “An all-silicon passive optical diode,” Science, vol. 335, no. 6067, pp. 447–450, 2012.
  7. D. Jalaset al., “What is—and what is not—an optical isolator,” Nat. Photon., vol. 7, no. 8, pp. 579–582, 2013.
  8. B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photon. J., vol. 6, no. 1, pp. 1–15, 2014.
  9. Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater., vol. 15, no. 1, p. 014602, 2014.
  10. C. G. Poultonet al., “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Exp., vol. 20, pp. 21235–21246, 2012.
  11. C. H. Donget al., “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. ID. .
  12. S. Huaet al., “Demonstration of a chip-based nonlinear optical isolator,” arXiv preprint arXiv:1606.04400, 2016.
  13. Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photon., vol. 9, no. 6, pp. 388–392, 2015.
  14. C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett., vol. 36, no. 21, pp. 4293–4295, 2011.
  15. C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Exp., vol. 22, no. 4, pp. 4493–4498, 2014.
  16. Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt., vol. 18, no. 1, p. 013001, 2015.
  17. R. L. Espinola, T. Izuhara, M. C. Tsai, R. M. Osgood, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett., vol. 29, no. 9, pp. 941–943, 2004.
  18. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, p. 071117, 2008.
  19. Y. Shoji, M. Ito, Y. Shirato, and T. Mizumoto, “MZI optical isolator with Si-wire waveguides by surface-activated direct bonding,” Opt. Exp., vol. 20, no. 16, pp. 18440–18448, 2012.
  20. K. Mitsuya, Y. Shoji, and T. Mizumoto, “Demonstration of a silicon waveguide optical circulator,” IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 721–723, 15, 2013.
  21. S. Ghoshet al. “Adhesively bonded Ce: YIG/SOI integrated optical circulator,” Opt. Lett., vol. 38, no. 6, pp. 965–967, 2013.
  22. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Exp., vol. 15, no. 12, pp. 7737–7751, 2007.
  23. D. Jalas, A. Petrov, M. Krause, J. Hampe, and M. Eich, “Resonance splitting in gyrotropic ring resonators,” Opt. Lett., vol. 35, no. 20, pp. 3438–3440, 2010.
  24. M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11740–11745, 2011.
  25. D. Huanget al., “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 1–8, 2016.
  26. T. Komljenovicet al., “Heterogeneous silicon photonic integrated circuits,” J. Lightw. Technol., vol. 34, no. 1, pp. 20–35, 1, 2016.
  27. M. J. R. Hecket al., “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, p. 6100117, 2013.
  28. P. Pintus, M.-C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite element method,” IEEE Photon. Technol. Lett., vol. 23, no. 22, pp. 1670–1672, 15, 2011.
  29. K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, p. 1699–1705, 15, 2016.
  30. P. Pintus, “Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides,” Opt. Exp., vol. 22, no. 13, pp. 15737–15756, 2014.
  31. P. Pintuset al., “Novel nonreciprocal devices with integrated electromagnet for silicon photonics,” in Proc. 42nd Eur. Conf. Opt. Commun., Düsseldorf, Germany, Sep. 18–22, 2016, paper W.3.F.3.
  32. P. Pintus, F. Di Pasquale, and J. E. Bowers. “Design of transverse electric ring isolators for ultra-low-loss Si3N4 waveguides based on the finite element method,” Opt. Lett., vol. 36, no. 23, pp. 4599–4601, 2011.
  33. P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Exp., vol. 21, no. 4, pp. 5041–5052, 2013.
  34. D. Jalas, A. Yu. Petrov, and M. Eich, “Optical three-port circulators made with ring resonators,” Opt. Lett., vol. 39, no. 6, pp. 1425–1428, 2014.
  35. D. Huanget al., “Dynamically reconfigurable integrated optical circulators,” Optica, vol. 4, no. 1, pp. 23–30, 2017.
  36. C. L. Manganelliet al., “Design of coupled micro-ring resonators for silicon photonic switching matrices,” in Proc. IEEE Opt. Interconnects Conf., San Diego, CA, USA, 2016, pp. 84–85.

2017 (1)

2016 (5)

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, p. 1699–1705, 15, 2016.

D. Huanget al., “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 1–8, 2016.

T. Komljenovicet al., “Heterogeneous silicon photonic integrated circuits,” J. Lightw. Technol., vol. 34, no. 1, pp. 20–35, 1, 2016.

C. Zhang, S. Zhang, J. D. Peters, and J. E. Bowers, “8×8×40 Gbps fully integrated silicon photonic network on chip,” Optica, vol. 3, no. 7, pp. 785–786, 2016.

S. Huaet al., “Demonstration of a chip-based nonlinear optical isolator,” arXiv preprint arXiv:1606.04400, 2016.

2015 (3)

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photon., vol. 9, no. 6, pp. 388–392, 2015.

C. H. Donget al., “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. ID. .

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt., vol. 18, no. 1, p. 013001, 2015.

2014 (6)

C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Exp., vol. 22, no. 4, pp. 4493–4498, 2014.

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics, vol. 3, nos. 4/5, pp. 283–311, 2014.

B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photon. J., vol. 6, no. 1, pp. 1–15, 2014.

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater., vol. 15, no. 1, p. 014602, 2014.

P. Pintus, “Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides,” Opt. Exp., vol. 22, no. 13, pp. 15737–15756, 2014.

D. Jalas, A. Yu. Petrov, and M. Eich, “Optical three-port circulators made with ring resonators,” Opt. Lett., vol. 39, no. 6, pp. 1425–1428, 2014.

2013 (6)

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Exp., vol. 21, no. 4, pp. 5041–5052, 2013.

M. J. R. Hecket al., “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, p. 6100117, 2013.

K. Mitsuya, Y. Shoji, and T. Mizumoto, “Demonstration of a silicon waveguide optical circulator,” IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 721–723, 15, 2013.

S. Ghoshet al. “Adhesively bonded Ce: YIG/SOI integrated optical circulator,” Opt. Lett., vol. 38, no. 6, pp. 965–967, 2013.

P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett., vol. 25, no. 20, pp. 1973–1976, 15, 2013.

D. Jalaset al., “What is—and what is not—an optical isolator,” Nat. Photon., vol. 7, no. 8, pp. 579–582, 2013.

2012 (3)

C. G. Poultonet al., “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Exp., vol. 20, pp. 21235–21246, 2012.

L. Fanet al., “An all-silicon passive optical diode,” Science, vol. 335, no. 6067, pp. 447–450, 2012.

Y. Shoji, M. Ito, Y. Shirato, and T. Mizumoto, “MZI optical isolator with Si-wire waveguides by surface-activated direct bonding,” Opt. Exp., vol. 20, no. 16, pp. 18440–18448, 2012.

2011 (4)

C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett., vol. 36, no. 21, pp. 4293–4295, 2011.

M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11740–11745, 2011.

P. Pintus, M.-C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite element method,” IEEE Photon. Technol. Lett., vol. 23, no. 22, pp. 1670–1672, 15, 2011.

P. Pintus, F. Di Pasquale, and J. E. Bowers. “Design of transverse electric ring isolators for ultra-low-loss Si3N4 waveguides based on the finite element method,” Opt. Lett., vol. 36, no. 23, pp. 4599–4601, 2011.

2010 (1)

2008 (1)

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, p. 071117, 2008.

2007 (1)

N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Exp., vol. 15, no. 12, pp. 7737–7751, 2007.

2004 (1)

2001 (1)

K. Taiet al., “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett., vol. 13, no. 4, pp. 320–322, 2001.

Andriolli, N.

P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett., vol. 25, no. 20, pp. 1973–1976, 15, 2013.

Bowers, J. E.

C. Zhang, S. Zhang, J. D. Peters, and J. E. Bowers, “8×8×40 Gbps fully integrated silicon photonic network on chip,” Optica, vol. 3, no. 7, pp. 785–786, 2016.

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics, vol. 3, nos. 4/5, pp. 283–311, 2014.

P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett., vol. 25, no. 20, pp. 1973–1976, 15, 2013.

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Exp., vol. 21, no. 4, pp. 5041–5052, 2013.

P. Pintus, F. Di Pasquale, and J. E. Bowers. “Design of transverse electric ring isolators for ultra-low-loss Si3N4 waveguides based on the finite element method,” Opt. Lett., vol. 36, no. 23, pp. 4599–4601, 2011.

P. Pintus, M.-C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite element method,” IEEE Photon. Technol. Lett., vol. 23, no. 22, pp. 1670–1672, 15, 2011.

M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11740–11745, 2011.

Chen, L.

C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Exp., vol. 22, no. 4, pp. 4493–4498, 2014.

Dai, D.

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics, vol. 3, nos. 4/5, pp. 283–311, 2014.

Di Pasquale, F.

P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett., vol. 25, no. 20, pp. 1973–1976, 15, 2013.

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Exp., vol. 21, no. 4, pp. 5041–5052, 2013.

P. Pintus, F. Di Pasquale, and J. E. Bowers. “Design of transverse electric ring isolators for ultra-low-loss Si3N4 waveguides based on the finite element method,” Opt. Lett., vol. 36, no. 23, pp. 4599–4601, 2011.

Doerr, C. R.

C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Exp., vol. 22, no. 4, pp. 4493–4498, 2014.

C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett., vol. 36, no. 21, pp. 4293–4295, 2011.

Dong, C. H.

C. H. Donget al., “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. ID. .

Dötsch, H.

Dupuis, N.

Eich, M.

Espinola, R. L.

Fan, L.

L. Fanet al., “An all-silicon passive optical diode,” Science, vol. 335, no. 6067, pp. 447–450, 2012.

Fan, S.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photon., vol. 9, no. 6, pp. 388–392, 2015.

Furuya, K.

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, p. 1699–1705, 15, 2016.

Ghosh, S.

Hampe, J.

Heck, M. J. R.

M. J. R. Hecket al., “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, p. 6100117, 2013.

Hseih, I. W.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, p. 071117, 2008.

Hua, S.

S. Huaet al., “Demonstration of a chip-based nonlinear optical isolator,” arXiv preprint arXiv:1606.04400, 2016.

Huang, D.

D. Huanget al., “Dynamically reconfigurable integrated optical circulators,” Optica, vol. 4, no. 1, pp. 23–30, 2017.

D. Huanget al., “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 1–8, 2016.

Ito, M.

Y. Shoji, M. Ito, Y. Shirato, and T. Mizumoto, “MZI optical isolator with Si-wire waveguides by surface-activated direct bonding,” Opt. Exp., vol. 20, no. 16, pp. 18440–18448, 2012.

Izuhara, T.

Jalas, D.

Jeong, Y.

B. Lee and Y. Jeong, “Interrogation techniques for fiber grating sensors and the theory of fiber gratings,” in Fiber Optic Sensors, S. Yin, P. B. Ruffin, and F. T. S. Yu Eds. Boca Raton, FL, USA: CRC Press, 2008, pp. 253–331.

Kakihara, K.

N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Exp., vol. 15, no. 12, pp. 7737–7751, 2007.

Kato, K.

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, p. 1699–1705, 15, 2016.

Komljenovic, T.

T. Komljenovicet al., “Heterogeneous silicon photonic integrated circuits,” J. Lightw. Technol., vol. 34, no. 1, pp. 20–35, 1, 2016.

Kono, N.

N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Exp., vol. 15, no. 12, pp. 7737–7751, 2007.

Koshiba, M.

N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Exp., vol. 15, no. 12, pp. 7737–7751, 2007.

Krause, M.

Kroemer, H.

M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11740–11745, 2011.

Lee, B.

B. Lee and Y. Jeong, “Interrogation techniques for fiber grating sensors and the theory of fiber gratings,” in Fiber Optic Sensors, S. Yin, P. B. Ruffin, and F. T. S. Yu Eds. Boca Raton, FL, USA: CRC Press, 2008, pp. 253–331.

Manganelli, C. L.

C. L. Manganelliet al., “Design of coupled micro-ring resonators for silicon photonic switching matrices,” in Proc. IEEE Opt. Interconnects Conf., San Diego, CA, USA, 2016, pp. 84–85.

Mitsuya, K.

K. Mitsuya, Y. Shoji, and T. Mizumoto, “Demonstration of a silicon waveguide optical circulator,” IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 721–723, 15, 2013.

Miura, K.

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt., vol. 18, no. 1, p. 013001, 2015.

Mizumoto, T.

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, p. 1699–1705, 15, 2016.

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt., vol. 18, no. 1, p. 013001, 2015.

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater., vol. 15, no. 1, p. 014602, 2014.

B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photon. J., vol. 6, no. 1, pp. 1–15, 2014.

K. Mitsuya, Y. Shoji, and T. Mizumoto, “Demonstration of a silicon waveguide optical circulator,” IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 721–723, 15, 2013.

Y. Shoji, M. Ito, Y. Shirato, and T. Mizumoto, “MZI optical isolator with Si-wire waveguides by surface-activated direct bonding,” Opt. Exp., vol. 20, no. 16, pp. 18440–18448, 2012.

M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11740–11745, 2011.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, p. 071117, 2008.

Nemoto, T.

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, p. 1699–1705, 15, 2016.

Osgood, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, p. 071117, 2008.

R. L. Espinola, T. Izuhara, M. C. Tsai, R. M. Osgood, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett., vol. 29, no. 9, pp. 941–943, 2004.

Peters, J. D.

Petrov, A.

Petrov, A. Yu.

Pintus, P.

P. Pintus, “Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides,” Opt. Exp., vol. 22, no. 13, pp. 15737–15756, 2014.

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Exp., vol. 21, no. 4, pp. 5041–5052, 2013.

P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett., vol. 25, no. 20, pp. 1973–1976, 15, 2013.

M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11740–11745, 2011.

P. Pintus, M.-C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite element method,” IEEE Photon. Technol. Lett., vol. 23, no. 22, pp. 1670–1672, 15, 2011.

P. Pintus, F. Di Pasquale, and J. E. Bowers. “Design of transverse electric ring isolators for ultra-low-loss Si3N4 waveguides based on the finite element method,” Opt. Lett., vol. 36, no. 23, pp. 4599–4601, 2011.

P. Pintuset al., “Novel nonreciprocal devices with integrated electromagnet for silicon photonics,” in Proc. 42nd Eur. Conf. Opt. Commun., Düsseldorf, Germany, Sep. 18–22, 2016, paper W.3.F.3.

Poulton, C. G.

C. G. Poultonet al., “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Exp., vol. 20, pp. 21235–21246, 2012.

Saitoh, K.

N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Exp., vol. 15, no. 12, pp. 7737–7751, 2007.

Shi, Y.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photon., vol. 9, no. 6, pp. 388–392, 2015.

Shirato, Y.

Y. Shoji, M. Ito, Y. Shirato, and T. Mizumoto, “MZI optical isolator with Si-wire waveguides by surface-activated direct bonding,” Opt. Exp., vol. 20, no. 16, pp. 18440–18448, 2012.

Shoji, Y.

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, p. 1699–1705, 15, 2016.

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt., vol. 18, no. 1, p. 013001, 2015.

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater., vol. 15, no. 1, p. 014602, 2014.

K. Mitsuya, Y. Shoji, and T. Mizumoto, “Demonstration of a silicon waveguide optical circulator,” IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 721–723, 15, 2013.

Y. Shoji, M. Ito, Y. Shirato, and T. Mizumoto, “MZI optical isolator with Si-wire waveguides by surface-activated direct bonding,” Opt. Exp., vol. 20, no. 16, pp. 18440–18448, 2012.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, p. 071117, 2008.

Stadler, B. J.

B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photon. J., vol. 6, no. 1, pp. 1–15, 2014.

Tai, K.

K. Taiet al., “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett., vol. 13, no. 4, pp. 320–322, 2001.

Tien, M. C.

M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11740–11745, 2011.

Tien, M.-C.

P. Pintus, M.-C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite element method,” IEEE Photon. Technol. Lett., vol. 23, no. 22, pp. 1670–1672, 15, 2011.

Tsai, M. C.

Vermeulen, D.

C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Exp., vol. 22, no. 4, pp. 4493–4498, 2014.

Yokoi, H.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, p. 071117, 2008.

Yu, Z.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photon., vol. 9, no. 6, pp. 388–392, 2015.

Zhang, C.

Zhang, L.

Zhang, S.

Appl. Phys. Lett. (1)

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hseih, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett., vol. 92, no. 7, p. 071117, 2008.

IEEE J. Sel. Topics Quantum Electron. (2)

M. J. R. Hecket al., “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, p. 6100117, 2013.

D. Huanget al., “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, pp. 1–8, 2016.

IEEE Photon. J. (1)

B. J. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: A review,” IEEE Photon. J., vol. 6, no. 1, pp. 1–15, 2014.

IEEE Photon. Technol. Lett. (4)

K. Taiet al., “Wavelength-interleaving bidirectional circulators,” IEEE Photon. Technol. Lett., vol. 13, no. 4, pp. 320–322, 2001.

P. Pintus, N. Andriolli, F. Di Pasquale, and J. E. Bowers, “Bidirectional crosstalk and back-reflection free WDM active optical interconnects,” IEEE Photon. Technol. Lett., vol. 25, no. 20, pp. 1973–1976, 15, 2013.

P. Pintus, M.-C. Tien, and J. E. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite element method,” IEEE Photon. Technol. Lett., vol. 23, no. 22, pp. 1670–1672, 15, 2011.

K. Mitsuya, Y. Shoji, and T. Mizumoto, “Demonstration of a silicon waveguide optical circulator,” IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 721–723, 15, 2013.

J. Lightw. Technol. (2)

K. Furuya, T. Nemoto, K. Kato, Y. Shoji, and T. Mizumoto, “Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer,” J. Lightw. Technol., vol. 34, no. 8, p. 1699–1705, 15, 2016.

T. Komljenovicet al., “Heterogeneous silicon photonic integrated circuits,” J. Lightw. Technol., vol. 34, no. 1, pp. 20–35, 1, 2016.

J. Opt. (1)

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt., vol. 18, no. 1, p. 013001, 2015.

Nanophotonics (1)

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics, vol. 3, nos. 4/5, pp. 283–311, 2014.

Nat. Commun. (1)

C. H. Donget al., “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. ID. .

Nat. Photon. (2)

D. Jalaset al., “What is—and what is not—an optical isolator,” Nat. Photon., vol. 7, no. 8, pp. 579–582, 2013.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photon., vol. 9, no. 6, pp. 388–392, 2015.

Opt. Exp. (7)

C. G. Poultonet al., “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Exp., vol. 20, pp. 21235–21246, 2012.

P. Pintus, “Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides,” Opt. Exp., vol. 22, no. 13, pp. 15737–15756, 2014.

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Exp., vol. 21, no. 4, pp. 5041–5052, 2013.

Y. Shoji, M. Ito, Y. Shirato, and T. Mizumoto, “MZI optical isolator with Si-wire waveguides by surface-activated direct bonding,” Opt. Exp., vol. 20, no. 16, pp. 18440–18448, 2012.

N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Exp., vol. 15, no. 12, pp. 7737–7751, 2007.

C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Exp., vol. 22, no. 4, pp. 4493–4498, 2014.

M. C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Exp., vol. 19, no. 12, pp. 11740–11745, 2011.

Opt. Lett. (6)

Optica (2)

Sci. Technol. Adv. Mater. (1)

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater., vol. 15, no. 1, p. 014602, 2014.

Science (1)

L. Fanet al., “An all-silicon passive optical diode,” Science, vol. 335, no. 6067, pp. 447–450, 2012.

Other (4)

B. Lee and Y. Jeong, “Interrogation techniques for fiber grating sensors and the theory of fiber gratings,” in Fiber Optic Sensors, S. Yin, P. B. Ruffin, and F. T. S. Yu Eds. Boca Raton, FL, USA: CRC Press, 2008, pp. 253–331.

S. Huaet al., “Demonstration of a chip-based nonlinear optical isolator,” arXiv preprint arXiv:1606.04400, 2016.

C. L. Manganelliet al., “Design of coupled micro-ring resonators for silicon photonic switching matrices,” in Proc. IEEE Opt. Interconnects Conf., San Diego, CA, USA, 2016, pp. 84–85.

P. Pintuset al., “Novel nonreciprocal devices with integrated electromagnet for silicon photonics,” in Proc. 42nd Eur. Conf. Opt. Commun., Düsseldorf, Germany, Sep. 18–22, 2016, paper W.3.F.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.