Abstract

Optics offers unique opportunities for reducing energy in information processing and communications while simultaneously resolving the problem of interconnect bandwidth density inside machines. Such energy dissipation overall is now at environmentally significant levels; the source of that dissipation is progressively shifting from logic operations to interconnect energies. Without the prospect of substantial reduction in energy per bit communicated, we cannot continue the exponential growth of our use of information. The physics of optics and optoelectronics fundamentally addresses both interconnect energy and bandwidth density, and optics may be the only scalable solution to such problems. Here we summarize the corresponding background, status, opportunities, and research directions for optoelectronic technology and novel optics, including subfemtojoule devices in waveguide and novel two-dimensional (2-D) array optical systems. We compare different approaches to low-energy optoelectronic output devices and their scaling, including lasers, modulators and LEDs, optical confinement approaches (such as resonators) to enhance effects, and the benefits of different material choices, including 2-D materials and other quantum-confined structures. With such optoelectronic energy reductions, and the elimination of line charging dissipation by the use optical connections, the next major interconnect dissipations are in the electronic circuits for receiver amplifiers, timing recovery, and multiplexing. We show we can address these through the integration of photodetectors to reduce or eliminate receiver circuit energies, free-space optics to eliminate the need for timing and multiplexing circuits (while also solving bandwidth density problems), and using optics generally to save power by running large synchronous systems. One target concept is interconnects from ∼1 cm to ∼10 m that have the same energy (∼10 fJ/bit) and simplicity as local electrical wires on chip.

© 2017 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Trends in worldwide ICT electricity consumption from 2007 to 2012,” Comput. Commun., vol. 50, pp. 64–76, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2014.02.008
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE, vol. 97, no. 7, pp. 1166–1185, 2009.
  3. M. M. Waldrop, “More than Moore,” Nature, vol. 530, pp. 144–147, 16, 2016, doi: .
    [Crossref]
  4. D. J. Frank, W. Haensch, G. Shahidi, and O. Dokumaci, “Optimizing CMOS technology for maximum performance,” IBM J. Res. Develop., vol. 50, no. 4.5, pp. 419–431, 2006.
  5. S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011.
  6. “International technology roadmap for semiconductors 2.0 2015 edition.” [Online]. Available: http://www.itrs2.net/itrs-reports.html, Downloaded: Aug. 3, 2016.
  7. I. L. Markov, “Limits on fundamental limits to computation,” Nature, vol. 512, pp. 147–154, 142014, doi: .
    [Crossref]
  8. J. Baliga, R. Ayre, K. Hinton, and R. S. Tucker, “Energy consumption in wired and wireless access networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 70–77, 7, 2011.
  9. R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and W. V. Sorin, “Evolution of WDM optical IP networks: A cost and energy perspective,” J. Lightw. Technol., vol. 27, no. 3, pp. 243–252, 2009.
  10. E. Agrellet al., “Roadmap of optical communications,” J. Opt., vol. 18, 2016, Art. no. 063002. [Online]. Available: http://dx.doi.org/10.1088/2040-8978/18/6/063002
  11. P. J. Winzer, “Spatial multiplexing in fiber optics: The 10X scaling of metro/core capacities,” Bell Labs Tech. J., vol. 19, pp. 22–30, 2014, doi: .
    [Crossref]
  12. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, pp. 354–362, 2013, doi: .
    [Crossref]
  13. A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Proc. Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf., 2011, Paper OTuH2, doi: .
  14. D. Liang, M. Fiorentino, and R. G. Beausoleil, “VLSI photonics for high-performance data centers,” Chapter 18 in Silicon Photonics III (Series Topics in Applied Physics, vol. 122), L. Pavesi and D. J. Lockwood, Eds.New York, NY, USA: Springer-Verlag, 2016, pp. 489–516.
  15. K. Bergman, J. Shalf, and T. Hausken, “Optical interconnects and extreme computing,” Opt. Photon. News, vol. 27, no. 4, pp. 32–39, 2016, doi: .
    [Crossref]
  16. S. Rumley, R. P. Polster, K. Bergman, S. Hammond, and A. F. Rodrigues, “End-to-end modeling and optimization of power consumption in HPC interconnects,” 2016 45th Int. Conf. Parallel Processing Workshops (ICPPW), 16–19, 2016, pp. 133–140, doi: .
    [Crossref]
  17. A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015, doi: .
    [Crossref]
  18. J. Proesel, C. Schow, and A. Rylyakov, “Ultra low power 10- to 25-Gb/s CMOS-driven VCSEL links,” in Proc. Opt. Fiber Commun. Conf., 2012, Paper OW4I.3, doi: .
  19. J. Li, X. Zheng, A. V. Krishnamoorthy, and J. F. Buckwalter, “Scaling trends for picojoule-per-bit WDM photonic interconnects in CMOS SOI and FinFET processes,” J. Lightw. Technol., vol. 34, no. 11, pp. 2730–2742, 2016, doi: .
    [Crossref]
  20. R. Beausoleil, M. McLaren, and N. Jouppi, “Photonic architectures for high-performance data centers,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, 2013, Art. no. 3700109, doi: .
    [Crossref]
  21. D. A. B. Miller, “Optics for low-energy communication inside digital processors: Quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett., vol. 14, pp. 146–148, 1989.
  22. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, 1997.
  23. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE, vol. 88, no. 6, pp. 728–749, 2000.
  24. Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. Very Large Scale Integr. Syst., vol. 22, no. 10, pp. 2081–2092, 2014.
  25. D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput., vol. 41, pp. 42–52, 1997.
  26. M. Hilbert and P. Lopez, “The world's technological capacity to store, communicate, and compute information,” Science, vol. 332, no. 6025, pp. 60–65, 2011.
  27. Cisco Systems, Inc., “The Zettabyte era: trends and analysis,” [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf, Downloaded: Jun. 20, 2016.
  28. G. Astfalk, “Why optical data communications and why now?” Appl. Phys. A., vol. 95, pp. 933–940, 2009.
  29. A. Singhet al., “Jupiter rising: A decade of clos topologies and centralized control in google's datacenter network,” in Proc. SIGCOMM, London, U.K., Aug. 17–21, 2015, pp. 183–197, doi: .
  30. K. Aingaranet al., “M7: Oracle's next-generation SPARC processor,” IEEE Micro, vol. 35, no. 2, pp. 36–45, 2015, doi: .
    [Crossref]
  31. N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in mobile phones: A measurement study and implications for network applications,” in Proc. 9th ACM SIGCOMM Conf. Internet Meas., Chicago, IL, USA, Nov. 4–6, 2009.
  32. K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the internet,” IEEE Network, vol. 25, no. 2, pp. 6–12, 2011.
  33. K. Kim, “From the future Si technology perspective: Challenges and opportunities,” in Proc. 2010 IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, Dec. 6–8, 2010, pp. 1.1.1–1.1.9, doi: .
  34. D. A. B. Miller, “Are optical transistors the next logical step?” Nature Photon., 2010, vol. 4, pp. 3–5, doi: .
    [Crossref]
  35. A. Pandeyet al., “Effect of load capacitance and input transition time on FinFET inverter capacitances,” IEEE Trans. Electron Dev., vol. 61, no. 1, pp. 30–36, 2014, doi: .
    [Crossref]
  36. R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.
  37. M. Bohr, “A 30 year retrospective on Dennard's MOSFET scaling paper,” IEEE Solid-State Circuits Soc. Newsletter, vol. 12, no. 1, 2007, pp. 11–13.
  38. S. Borkar, “The Exascale challenge,” in Proc. 2010 Int. Symp. VLSI Des., Autom. Test, 2010, pp. 2–3.
  39. D. Hisamotoet al., “FinFET—A Self-Aligned Double-Gate MOSFET Scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325, 2000.
  40. P. Wambacqet al., “The potential of FinFETs for analog and RF circuit applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 11, pp. 2541–2551, 2007, doi: .
    [Crossref]
  41. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express, vol. 20, pp. A293–A308, 2012.
  42. S. Rakheja, A. Ceyhan, and A. Naeemi, “Interconnect considerations,” in CMOS and Beyond, T.-J. K. Liu and K. Kuhn, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2015, pp. 381–412, doi: .
  43. M. Raj, S. Saeedi, and A Emami, “A 4-to-11GHz injection-locked quarter-rate clocking for an adaptive 153fJ/b optical receiver in 28nm FDSOI CMOS,” in Proc. 2015 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2015, vol. 58, pp. 404–406.
  44. R. S. Shelar and M. Patyra, “Impact of local interconnects on timing and power in a high performance microprocessor,” in Proc. 19th Int. Symp. Phys. Des., 2010, pp. 145–152, doi: .
  45. C. Debaeset al., “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 400–409, 2003.
  46. S. Latif, S. E. Kocabas, L. Tang, C. Debaes, and D. A. B. Miller, “Low capacitance CMOS silicon photodetectors for optical clock injection,” Appl. Phys. A, Mater. Sci. Process., vol. 95, pp. 1129–1135, 2009.
  47. D. Thomsonet al., “Roadmap on silicon photonics,” J. Opt., vol. 18, 2016, Art. no. 073003, doi: .
    [Crossref]
  48. A. L. Lentineet al., “Silicon photonics platform for national security applications,” in Proc. IEEE Aerosp. Conf., 2015, pp. 1–9, doi: .
  49. H. Subbaramanet al., “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express, vol. 23, pp. 2487–2511, 2015, doi: .
    [Crossref]
  50. T. Komljenovicet al., “Heterogeneous silicon photonic integrated circuits,” J. Lightw. Technol., vol. 34, no. 1, pp. 20–35, 2016, doi: .
    [Crossref]
  51. T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Photonic integrated circuit components based on amorphous silicon-on-insulator technology,” Photon. Res., vol. 4, pp. 126–134, 2016, doi: .
    [Crossref]
  52. S. Zhu and G.-Q. Lo, “Vertically stacked multilayer photonics on bulk silicon toward three-dimensional integration,” J. Lightw. Technol., vol. 34, no. 2, pp. 386–392, 2016, doi: .
    [Crossref]
  53. Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photon. Res., vol. 3, pp. B10–B27, 2015, doi: .
    [Crossref]
  54. C. Sunet al., “A monolithically-integrated chip-to-chip optical link in bulk CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 828–844, 2015, doi: .
    [Crossref]
  55. P. De Dobbelaereet al., “Packaging of silicon photonics systems,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper W3I.2, doi: .
  56. M. J. R. Hecket al., “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, 2013, Art. no. 6100117, doi: .
    [Crossref]
  57. Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, 2013, Art. no. 8200207, doi: .
    [Crossref]
  58. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag., vol. 51, no. 3, pp. 72–77, 2013, doi: .
    [Crossref]
  59. J. S. Orcuttet al., “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express, vol. 20, pp. 12222–12232, 2012, doi: .
    [Crossref]
  60. D. Van Thourhoutet al., “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1363–1375, 2010, doi: .
    [Crossref]
  61. D. F. Welchet al., “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Lightw. Technol., vol. 24, no. 12, pp. 4674–4683, 2006, doi: .
    [Crossref]
  62. D. A. B. Miller, A. Bhatnagar, S. Palermo, A. Emami-Neyestanak, and M. A. Horowitz, “Opportunities for optics in integrated circuits applications,” in Proc. Int. Solid State Circuits Conf., 2005, Paper 4.6, pp. 86–87.
  63. G. A. Keeler, B. E. Nelson, D. Agarwal, and D. A. B. Miller, “Skew and jitter removal using short optical pulses for optical interconnection,” IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 714–716, 2000.
  64. G. A. Keeleret al., “The benefits of ultrashort optical pulses in optically-interconnected systems,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 477–485, 2003.
  65. D. A. B. Milleret al., “Bandedge electro-absorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett., vol. 53, pp. 2173–2177, 1984.
  66. D. A. B. Milleret al., “Electric field dependence of optical absorption near the bandgap of quantum well structures,” Phys. Rev., vol. B32, pp. 1043–1060, 1985.
  67. Y.-H. Kuoet al., “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature, vol. 437, pp. 1334–1336, 27, 2005, doi: .
    [Crossref]
  68. Y.-H. Kuoet al., “Quantum-confined Stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1503–1513,  2006.
  69. S. A. Claussen, E. Tasyurek, J. E. Roth, and D. A. B. Miller, “Measurement and modeling of ultrafast carrier dynamics and transport in germanium/silicon-germanium quantum wells,” Opt. Express, vol. 18, pp. 25596–25607, 2010.
  70. J. E. Rothet al., “Optical modulator on silicon employing germanium quantum wells,” Opt. Express, vol. 15, pp. 5851–5859, 2007. [Online]. Available: http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-9-5851
  71. J. E. Rothet al., “C-band side-entry Ge quantum-well electroabsorption modulator on SOI operating at 1 V swing,” Electron. Lett., vol. 44, pp. 49–50, 2008.
  72. R. K. Schaevitz, J. E. Roth, S. Ren, O. Fidaner, and D. A. B. Miller, “Material properties in Si-Ge/Ge quantum wells,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 4, pp. 1082–1089,  2008.
  73. S. Ren, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition,” Appl. Phys. Lett., vol. 98, 2011, Art. no. .
  74. S. Ren, T. I. Kamins, and D. A. B. Miller, “Thin dielectric spacer for the monolithic integration of bulk germanium quantum wells with silicon-on-insulator waveguides,” IEEE Photon. J., vol. 3, no. 4, pp. 739–747,  2011.
  75. R. M. Audet, E. H. Edwards, P. Wahl, and D. A. B. Miller, “Investigation of limits to the optical performance of asymmetric Fabry-Perot electroabsorption modulators,” IEEE J. Quantum Electron., vol. 48, no. 2, pp. 198–209,  2012, doi: .
    [Crossref]
  76. R. K. Schaevitzet al., “Simple electroabsorption calculator for designing 1310nm and 1550nm modulators using germanium quantum wells,” IEEE J. Quantum Electron., vol. 48, no. 2, pp. 187–197,  2012, doi: .
    [Crossref]
  77. R. K. Schaevitz, D. S. Ly-Gagnon, J. E. Roth, E. H. Edwards, and D. A. B. Miller, “Indirect absorption in germanium quantum wells,” AIP Adv., vol. 1, 2011, Art. no. .
  78. S. Renet al., “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated with SOI Waveguides,” IEEE Photon. Technol. Lett., vol. 24, no. 6, pp. 461–463,  2012, doi: .
    [Crossref]
  79. R. M. Audetet al., “Surface-normal Ge/SiGe asymmetric Fabry-Perot optical modulators fabricated on silicon substrates,” J. Lightw. Technol., vol. 31, no. 24, pp. 3995–4003,  2013.
  80. S. A. Claussen, K. C. Balram, E. T. Fei, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective area growth of germanium and germanium/silicon-germanium quantum wells in silicon waveguides for on-chip optical interconnect applications,” Opt. Mater. Express, vol. 2, pp. 1336–1342, 2012.
  81. E. H. Edwardset al., “Ge/SiGe asymmetric Fabry-Perot quantum well electroabsorption modulators,” Opt. Express, vol. 20, pp. 29164–29173, 2012. [Online]. Available: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29164
  82. E. H. Edwardset al., “Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon,” Opt. Express, vol. 21, pp. 867–876, 2013.
  83. P. Chaisakulet al., “23 GHz Ge/SiGe multiple quantum well electro-absorption modulator,” Opt. Express, vol. 20, pp. 3219–3224, 2012.
  84. D. A. B. Miller, Quantum Mechanics for Scientists and Engineers. Cambridge, U.K.: Cambridge Univ. Press, 2008.
  85. D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic Impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 6, 1473–1478,  2008, doi: .
    [Crossref]
  86. D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics, vol. 1, pp. 9–16, 2012, doi: .
    [Crossref]
  87. C. Haffneret al., “Plasmonic organic hybrid modulators—Scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379,  2016, doi: .
    [Crossref]
  88. C. Haffneret al., “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nature Photon., vol. 9, pp. 525–528, 2015, doi: .
    [Crossref]
  89. P. Moseret al., “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett., vol. 48, p. 1292–1294, 2012.
  90. S. Matsuoet al., “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nature Photon., vol. 4, pp. 648–654, 2010, doi: .
    [Crossref]
  91. B. Elliset al., “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nature Photon., vol. 5, pp. 297–300, 2011.
  92. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nature Phys., vol. 6, pp. 279–283, 2010, doi: .
    [Crossref]
  93. J. Wu and P. Jin, “Self-assembly of InAs quantum dots on GaAs(001) by molecular beam epitaxy,” Front. Phys., vol. 10, 2015, Art. no. 108101, doi: .
    [Crossref]
  94. R. G. Beausoleil, “Large scale integrated photonics for twenty-first century information technologies—A “Moore's Law” for optics,” Found. Phys., vol. 44, pp. 856–872, 2014, doi: .
    [Crossref]
  95. D. M. Cutrer and K. Y. Lau, “Ultralow power optical interconnect with zero-biased, ultralow threshold laser-how low a threshold is low enough?” IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 4–6,  1995.
  96. K. L. Tsakmakidis, R. W. Boyd, E. Yablonovitch, and X. Zhang, “Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers,” Opt. Express, vol. 24, pp. 17916–17927, 2016, doi: .
    [Crossref]
  97. M. T. Hill and M. C. Gather, “Advances in small lasers,” Nature Photon., vol. 8, pp. 908–918, 2014, doi: .
    [Crossref]
  98. M. T. Hillet al., “Lasing in metallic-coated nanocavities,” Nature Photon., vol. 1, pp. 589–594, 2007, doi: .
    [Crossref]
  99. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B, vol. 247, no. 4, pp. 774–788, 2010.
  100. O. Chenet al., “Compact high-quality CdSe/CdS core/shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nature Mater., vol. 12, no. 5, pp. 445–451, 2013, doi: .
    [Crossref]
  101. G. Shambatet al., “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nature Communications, vol. 2, 2011, Art. no. 539, doi: .
    [Crossref]
  102. M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” PNAS, vol. 112, no. 6, pp. 1704–1709, 2015, doi: .
    [Crossref]
  103. K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon., vol. 8, pp. 244–249, 2014, doi: .
    [Crossref]
  104. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express, vol. 15, pp. 17106–17113, 2007, doi: .
    [Crossref]
  105. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. 4008, doi: .
    [Crossref]
  106. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron, vol. 23, no. 1, pp. 123–129,  1987.
  107. W. Bogaertset al., “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012. doi: .
    [Crossref]
  108. G. Liet al., “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6,  2013, Art. no. 3401819, doi: .
    [Crossref]
  109. C. Kooset al., “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightw. Technol., vol. 34, no. 2, pp. 256–268,  2016, doi: .
    [Crossref]
  110. R. G. Smith and S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for Optical Communication. New York, NY, USA: Springer-Verlag, 1982, pp. 89–160.
  111. A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st Century: A technology roadmap,” IEEE J. Sel. Topics Quantum Electron., vol. 2, no. 1, pp. 55–76,  1996.
  112. S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933,  2015, doi: .
    [Crossref]
  113. C. T. DeRoseet al., “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express, vol. 19, pp. 24897–24904, 2011, doi: .
    [Crossref]
  114. K. Nozakiet al., “Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier,” Optica, vol. 3, pp. 483–492, 2016, doi: .
    [Crossref]
  115. Z. Huanget al., “25 Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica, vol. 3, pp. 793–798, 2016, doi: .
    [Crossref]
  116. N. J. D. Martinezet al., “High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes,” Opt. Express, vol. 24, pp. 19072–19081, 2016, doi: .
    [Crossref]
  117. L. C. Chuanget al., “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett., vol. 11, pp. 385–390, 2011.
  118. P. Senanayakeet al., “Thin 3D multiplication regions in plasmonically enhanced nanopillar avalanche detectors,” Nano Lett., vol. 12, no. 12, pp. 6448–6452, 2012, doi: .
    [Crossref]
  119. X. Dai, M. Tchernycheva, and C. Soci, “Compound semiconductor nanowire photodetectors,” Semicond. Semimetals, vol. 94, pp. 75–107, 2016. [Online]. Available: http://dx.doi.org/10.1016/bs.semsem.2015.08.001
  120. K. C. Balram, R. M. Audet, and D. A. B. Miller, “Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths,” Opt. Express, vol. 21, pp. 10228–10233, 2013. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10228
  121. L. Tanget al., “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photon., vol. 2, pp. 226–229, 2008, doi: .
    [Crossref]
  122. Z. Wang and B. Nabet, “Nanowire optoelectronics,” Nanophotonics, vol. 4, pp. 491–502, 2015, doi: .
    [Crossref]
  123. P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nature Mater., vol. 13, pp. 471–475, 2014, doi: .
    [Crossref]
  124. R. Chenet al., “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nature Commun., vol. 5, 2014, Art. no. 4325, doi: .
    [Crossref]
  125. D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express, vol. 20, pp. 23985–23993, 2012. [Online]. Available: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23985
  126. D. A. B. Miller, “Communicating with waves between volumes—Evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt., vol. 39, pp. 1681–1699, 2000.
  127. D. A. B. Miller, “Sorting out light,” Science, vol. 347, pp. 1423–1424, 2015, doi: .
    [Crossref]
  128. Y. Jiao, S. H. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization by low rank adjustments: an extremely compact mode separator,” Opt. Lett., vol. 30, no. 2, pp. 141–143,  2005. [Online]. Available: http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-2-141
  129. V. Liu, D. A. B. Miller, and S. H. Fan, “Highly tailored computational electromagnetics methods for nanophotonic design and discovery,” Proc. IEEE, vol. 101, no. 2, pp. 484–493,  2013, doi: .
  130. J. Lu and J. Vučković, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express, vol. 20, pp. 7221–7236, 2012, doi: .
    [Crossref]
  131. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev., vol. 5, pp. 308–321, 2011, doi: .
    [Crossref]
  132. C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express, vol. 21, pp. 21693–21701, 2013. [Online]. Available: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21693
  133. D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express, vol. 21, pp. 6360–6370, 2013. [Online]. Avaialble: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6360
  134. D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res., vol. 1, pp. 1–15, 2013. [Online]. Available: http://www.opticsinfobase.org/prj/abstract.cfm?URI=prj-1-1-1http://dx.doi.org/10.1364/PRJ.1.000001
  135. D. A. B. Miller, “Perfect optics with imperfect components,” Optica, vol. 2, pp. 747–750, 2015, doi: .
    [Crossref]
  136. F. B. McCormicket al., “Six-stage digital free-space optical switching network using symmetric self-electro-optic-effect devices,” Appl. Opt., vol. 32, pp. 5153–5171, 1993.
  137. E. A. De Souza, M. C. Nuss, W. H. Knox, and D. A. B. Miller, “Wavelength-division multiplexing with femtosecond pulses,” Opt. Lett., vol. 20, pp. 1166–1168, 1995.
  138. B. E. Nelson, G. A. Keeler, D. Agarwal, N. C. Helman, and D. A. B. Miller, “Wavelength division multiplexed optical interconnect using short pulses,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 486–491,  2003.
  139. H. D. Thackeret al., “An all-solid-state, WDM silicon photonic digital link for chip-to-chip communications,” Opt. Express, vol. 23, pp. 12808–12822, 2015, doi: .
    [Crossref]
  140. A. L. Lentine and C. T. DeRose, “Challenges in the implementation of dense wavelength division multiplexed (DWDM) optical interconnects using resonant silicon photonics,” in Proc. SPIE 9772, Broadband Access Commun. Technol. X, 12, 2016, Paper 977207, doi: .
  141. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett., vol. 41, pp. 801–802, 2005, doi: .
    [Crossref]
  142. M. Gerken and D. A. B. Miller, “Multilayer thin-film structures with high spatial dispersion,” Appl. Opt., vol. 42, pp. 1330–1345, 2003.
  143. V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett., vol. 36, pp. 591–593, 2011.
  144. A.Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nature Photon., vol. 9, pp. 374–377, 2015, doi: .
    [Crossref]
  145. G. T. Reed, G. Z. Mashanovich, W. R. Headley, S. P. Chan, B. D. Timotijevic, and F. Y. Gardes, “Silicon photonics: Are smaller devices always better?” Jpn. J. Appl. Phys., vol. 45, no. 8B, pp. 6609–6615, 2006, doi: .
    [Crossref]
  146. A. V. Krishnamoorthyet al., “Computer systems based on silicon photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361,  2009, doi: .
  147. L. Liet al., “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects,” J. Lightw. Technol., vol. 31, no. 24, pp. 4080–4086,  2013, doi: .
    [Crossref]
  148. R. S. Tucker, “Energy consumption in digital optical ICs with plasmon waveguide interconnects,” IEEE Photon. Technol. Lett., vol. 19, no. 24, pp. 2036–2038,  2007.
  149. R. G. H. van Udenet al., “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, pp. 865–870, 2014, doi: .
    [Crossref]
  150. P. J. Winzer, “Making spatial multiplexing a reality,” Nature Photon., vol. 8, pp. 345–348, 2014, doi: .
    [Crossref]
  151. S. O. Arık, K. -Po Ho, and J. M. Kahn, “Group delay management and multiinput multioutput signal processing in mode-division multiplexing systems,” J. Lightw. Technol., vol. 34, no. 11, pp. 2867–2880,  2016, doi: .
    [Crossref]
  152. R. Ryfet al., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO Processing,” J. Lightw. Technol., vol. 30, no. 4, pp. 521–531,  2012.
  153. F. Morichettiet al., “4-Channel All-Optical MIMO Demultiplexing on a Silicon Chip,” in Proc. Opt. Fibers Commun. Conf., Anaheim, CA, USA, Mar. 24, 2016, Paper ThE3.7.
  154. B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nature Photon., vol. 9, pp. 267–273, 2015, doi: .
    [Crossref]
  155. F. Chollet, “Devices based on Co-Integrated MEMS Actuators and optical waveguide: A Review,” Micromachines, vol. 7, no. 2, 2016, Art. no. 18, doi: .
    [Crossref]
  156. F. B. McCormicket al., “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt., vol. 33, pp. 1601–1618, 1994.
  157. H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, and F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE, vol. 82, no. 11, pp. 1632–1649,  1994, doi: .
    [Crossref]
  158. D. V. Plant and A. G. Kirk, “Optical interconnects at the chip and board level: challenges and solutions,” Proc. IEEE, vol. 88, no. 6, pp. 806–818,  2000.
  159. C. Debaeset al., “Low-cost microoptical modules for mcm level optical interconnections,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 518–530,  2003.
  160. M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 548–556,  2003.
  161. J. Jahns and A. Huang, “Planar integration of free-space optical components,” Appl. Opt., vol. 28, pp. 1602–1605, 1989.
  162. N. Streiblet al., “Digital optics,” Proc. IEEE, vol. 77, no. 12, pp. 1954–1969,  1989.
  163. R. L. Morrison, S. L. Walker, and T. J. Cloonan, “Beam array generation and holographic interconnections in a free-space optical switching network,” Appl. Opt., vol. 32, pp. 2512–2518, 1993, doi: .
    [Crossref]
  164. J. Jahns and S. Helfert, Introduction to Micro- and Nanooptics. Hoboken, NJ, USA: Wiley, 2012.
  165. K.-N. Chen, M. J. Kobrinsky, B. C. Barnett, and R. Reif, “Comparisons of conventional, 3-D, optical, and RF interconnects for on-chip clock distribution,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 233–239,  2004.
  166. L. Boivin, M. C. Nuss, J. Shah, D. A. B. Miller, and H. A. Haus, “Receiver sensitivity improvement by impulsive coding,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 684–686,  1997.
  167. A. L. Lentine and D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron., vol. 29, no. 2, pp. 655–669,  1993.
  168. A. L. Lentine, L. M. F. Chirovsky, and T. K. Woodward, “Optical energy considerations for diode-clamped smart pixel optical receivers,” IEEE J. Quantum Electron., vol. 30, no. 5, pp. 1167–1171,  1994.
  169. R. W. Going, J. Loo, T.-J. K. Liu, and M. C. Wu, “Germanium gate PhotoMOSFET integrated to silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4,  2014, Art. no. 8201607, doi: .
    [Crossref]
  170. A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller and K. C. Saraswat, “Silicon germanium CMOS optoelectronic switching device: Bringing light to latch,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3252–3259,  2007, doi: .
    [Crossref]
  171. G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express, vol. 24, pp. 16167–16174, 2016. [Online]. Available: http://dx.doi.org/10.1364/OE.24.016167
  172. A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express, vol. 20, pp. 22181–22187, 2012, doi: .
    [Crossref]
  173. H. Sun, F. Ren, K. W. Ng, T.-T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano, vol. 8, no. 7, pp. 6833–6839, 2014, doi: .
    [Crossref]
  174. R. Chenet al., “Nanolasers grown on silicon,” Nature Photon., vol. 5, pp. 170–175, 2011.
  175. F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express, vol. 20, pp. 12171–12176, 2012, doi: .
    [Crossref]
  176. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, pp. 1782–1802, 2010, doi: .
    [Crossref]
  177. K. Tanabe, K. Watanabe and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep., vol. 2, 2012, Art. no. , doi: .
    [Crossref]
  178. W. Franz, “Einfluß eines elektrischen Feldes auf eine optische Absorptionskante,” Z. Naturforschung, vol. 13a, pp. 484–489, 1958.
  179. L. V. Keldysh, “The effect of a strong electric field on the optical properties of insulating crystals,” J. Exp. Theoretical Phys., vol. 34, pp. 1138–1141,  1958 (translation: Soviet Physics JETP, vol. 34(7), no. 5, pp. 788–790, 1958).
  180. K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev., vol. 130, pp. 2204–2206, 1963.
  181. J. D. Dow and D. Redfield, “Electroabsorption in semiconductors: The excitonic absorption edge,” Phys. Rev. B, vol. 1, pp. 3358–3371, 1970.
  182. F. L. Lederman and J. D. Dow, “Theory of electroabsorption by anisotropic and layered semiconductors. I. Two-dimensional excitons in a uniform electric field,” Phys. Rev., vol. B13, pp. 1633–1642, 1976.
  183. D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Electroabsorption of highly confined systems: Theory of the quantum-confined Franz-Keldysh effect in semiconductor quantum wires and dots,” Appl. Phys. Lett., vol. 52, pp. 2154–2156, 1988.
  184. Y. Luoet al., “Strong electro-absorption in GeSi epitaxy on silicon-on-insulator (SOI),” Micromachines, vol. 3, no. 2, pp. 345–363, 2012, doi: .
    [Crossref]
  185. N.-N. Fenget al., “30 GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide,” Opt. Express, vol. 19, pp. 7062–7067, 2011.
  186. R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev., vol. 108, pp. 1384–1389, 1957.
  187. D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Amer., vol. B2, pp. 1155–1173, 1985.
  188. M. Shinada and S. Sugano, “Interband optical transitions in extremely anisotropic semiconductors. i. bound and unbound exciton absorption,” J. Phys. Soc. Jpn., vol. 21, pp. 1936–1946, 1966. [Online]. Available: http://dx.doi.org/10.1143/JPSJ.21.1936
  189. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron., vol. QE 20, no. 3, pp. 265–275,  1984.
  190. D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room-temperature optical nonlinearity in GaAs/Ga1-xAlxAs multiple quantum well structures,” Appl. Phys. Lett., vol. 41, pp. 679–681, 1982.
  191. S. Schmitt-Rink, D. S. Chemla, W. H. Knox, and D. A. B. Miller, “How fast is excitonic electroabsorption?”Opt. Lett., vol. 15, pp. 60–62, 1990.
  192. M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, “Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides,” Appl. Phys. Lett., vol. 50, pp. 1098–1100, 1987.
  193. K. W. Goossenet al., “Low field electroabsorption and self-biased self-electrooptics effect device using slightly asymmetric coupled quantum wells,” in Proc. Topical Meeting Quantum Optoelectron., Salt Lake City, Mar. 1991, Paper MB3.
  194. D. A. B. Miller, D. S. Chemla and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev., vol. B33, pp. 6976–6982, 1986.
  195. C. H. Henry, R. A. Logan, F. R. Merritt, and J. P. Luongo, “The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers,” IEEE J. Quantum Electron., vol. QE-19, no. 6, pp. 947–952,  1983.
  196. D. S. Chemlaet al., “Modulation of absorption in field-effect quantum well structures,” IEEE J. Quantum Electron., vol. 24, no. 8, pp. 1664–1676,  1988.
  197. D. S. Chemlaet al., “Optical reading of field-effect transistors by phase-space absorption quenching in a single InGaAs quantum well conducting channel,” Appl. Phys. Lett., vol. 50, pp. 585–587, 1987.
  198. S. J. Koester and M. Li, “Waveguide-coupled graphene optoelectronics,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 1,  2013, Art. no. 6000211, doi: .
    [Crossref]
  199. M. Kleinertet al., “Graphene-based electro-absorption modulator integrated in a passive polymer waveguide platform,” Opt. Mater. Express, vol. 6, pp. 1800–1807, 2016, doi: .
    [Crossref]
  200. M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express, vol. 22, pp. 15292–15297, 2014, doi: .
    [Crossref]
  201. M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett., vol. 12, no. 3, pp. 1482–1485, 2012, doi: .
    [Crossref]
  202. S. L. Chuang, Physics of Photonic Devices, 2nd ed.Hoboken, NJ, USA: Wiley, 2009.
  203. B. Chmielaket al., “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express, vol. 19, pp. 17212–17219, 2011, doi: . [Online]. Available: http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-10-1336
    [Crossref]
  204. P. Damaset al., “Wavelength dependence of Pockels effect in strained silicon waveguides,” Opt. Express, vol. 22, pp. 22095–22100, 2014, doi: .
    [Crossref]
  205. P. O. Weigelet al., “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep., vol. 6, 2016, Art. no. 22301, doi: .
    [Crossref]
  206. L. Chen, J. Nagy, and R. M. Reano, “Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon,” Opt. Mater. Express, vol. 6, pp. 2460–2467, 2016, doi: .
    [Crossref]
  207. D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater., vol. 26, no. 2, pp. 872–874, 2014, doi: .
    [Crossref]
  208. J. S. Weiner, D. A. B. Miller, and D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined stark effect in quantum wells,” Appl. Phys. Lett., vol. 50, pp. 842–844, 1987.
  209. J. E. Zucker, K. L. Jones, T. H. Chiu, B. Tell, and K. Brown-Goebeler, “Strained quantum wells for polarization-independent electrooptic waveguide switches,” J. Lightw. Technol., vol. 10, no. 12, pp. 1926–1930,  1992.
  210. P. W. Juodawlkiset al., “InGaAsP/InP quantum-well electrorefractive modulators with sub-volt Vpi,” in Proc. SPIE 5435, Enabling Photonic Technol. Aerosp. Appl. VI, pp. 53–63, 3, 2004, doi: .
  211. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon., vol. 4, no. 8, pp. 518–526, 2010, doi: .
    [Crossref]
  212. D. A. B. Miller, C. T. Seaton, M. E. Prise and S. D. Smith, “Bandgap resonant nonlinear refraction in III V semiconductors,” Phys. Rev. Lett., vol. 47, pp. 197–200, 1981.
  213. D. J. Bossert and D. Gallant, “Gain, refractive index, and a-Parameter in InGaAs-GaAs SQW Broad-Area Lasers,” IEEE Photon. Technol. Lett., vol. 8, no. 3, pp. 322–324,  1996.
  214. K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun., vol. 152, pp. 1341–1349, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.ssc.2012.04.064
  215. J. G. Kim, W. S. Yun, S. Jo, J. D. Lee, and C.-H. Cho, “Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals,” Sci. Rep., vol. 6, 2016, Art. no. 29813, doi: .
    [Crossref]
  216. J. Kleinet al., “Stark effect spectroscopy of mono- and few-layer MoS2,” Nano Lett., vol. 16, no. 3, pp. 1554–1559, 2016, doi: .
    [Crossref]
  217. B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express, vol. 5, pp. 447–455, 2015, doi: .
    [Crossref]
  218. Y. Liet al., “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B, vol. 90, 2014, Art. no. 205422, doi: .
    [Crossref]
  219. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,”Phys. Rev., vol. 69, p. 681, 1946.
  220. A. Shakouri, “Nano-scale thermal transport and microrefrigerators on a chip,” Proc. IEEE, vol. 94, no. 8, pp. 1613–1638,  2006, doi: .
    [Crossref]
  221. L. Luet al., “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express, vol. 21, pp. 9447–9456, 2013, doi: .
    [Crossref]
  222. F. Qiuet al., “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon., vol. 3, pp. 780–783, 2016, doi: .
    [Crossref]
  223. K. Shanget al., “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express, vol. 21, pp. 13958–13968, 2013, doi: .
    [Crossref]
  224. G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. Hoboken, NJ, USA: Wiley, 2010.
  225. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev., vol. 2, pp. 299–313, 2008.
  226. N. Bozinovicet al., “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science, vol. 340, pp. 1545–1548, 2013, doi: .
    [Crossref]
  227. N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nature Photon., vol. 9, pp. 822–826, 2015, doi: .
    [Crossref]

2016 (25)

M. M. Waldrop, “More than Moore,” Nature, vol. 530, pp. 144–147, 16, 2016, doi: .
[Crossref]

E. Agrellet al., “Roadmap of optical communications,” J. Opt., vol. 18, 2016, Art. no. 063002. [Online]. Available: http://dx.doi.org/10.1088/2040-8978/18/6/063002

K. Bergman, J. Shalf, and T. Hausken, “Optical interconnects and extreme computing,” Opt. Photon. News, vol. 27, no. 4, pp. 32–39, 2016, doi: .
[Crossref]

S. Rumley, R. P. Polster, K. Bergman, S. Hammond, and A. F. Rodrigues, “End-to-end modeling and optimization of power consumption in HPC interconnects,” 2016 45th Int. Conf. Parallel Processing Workshops (ICPPW), 16–19, 2016, pp. 133–140, doi: .
[Crossref]

J. Li, X. Zheng, A. V. Krishnamoorthy, and J. F. Buckwalter, “Scaling trends for picojoule-per-bit WDM photonic interconnects in CMOS SOI and FinFET processes,” J. Lightw. Technol., vol. 34, no. 11, pp. 2730–2742, 2016, doi: .
[Crossref]

T. Komljenovicet al., “Heterogeneous silicon photonic integrated circuits,” J. Lightw. Technol., vol. 34, no. 1, pp. 20–35, 2016, doi: .
[Crossref]

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Photonic integrated circuit components based on amorphous silicon-on-insulator technology,” Photon. Res., vol. 4, pp. 126–134, 2016, doi: .
[Crossref]

S. Zhu and G.-Q. Lo, “Vertically stacked multilayer photonics on bulk silicon toward three-dimensional integration,” J. Lightw. Technol., vol. 34, no. 2, pp. 386–392, 2016, doi: .
[Crossref]

D. Thomsonet al., “Roadmap on silicon photonics,” J. Opt., vol. 18, 2016, Art. no. 073003, doi: .
[Crossref]

C. Haffneret al., “Plasmonic organic hybrid modulators—Scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379,  2016, doi: .
[Crossref]

K. L. Tsakmakidis, R. W. Boyd, E. Yablonovitch, and X. Zhang, “Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers,” Opt. Express, vol. 24, pp. 17916–17927, 2016, doi: .
[Crossref]

C. Kooset al., “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightw. Technol., vol. 34, no. 2, pp. 256–268,  2016, doi: .
[Crossref]

K. Nozakiet al., “Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier,” Optica, vol. 3, pp. 483–492, 2016, doi: .
[Crossref]

Z. Huanget al., “25 Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica, vol. 3, pp. 793–798, 2016, doi: .
[Crossref]

N. J. D. Martinezet al., “High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes,” Opt. Express, vol. 24, pp. 19072–19081, 2016, doi: .
[Crossref]

X. Dai, M. Tchernycheva, and C. Soci, “Compound semiconductor nanowire photodetectors,” Semicond. Semimetals, vol. 94, pp. 75–107, 2016. [Online]. Available: http://dx.doi.org/10.1016/bs.semsem.2015.08.001

S. O. Arık, K. -Po Ho, and J. M. Kahn, “Group delay management and multiinput multioutput signal processing in mode-division multiplexing systems,” J. Lightw. Technol., vol. 34, no. 11, pp. 2867–2880,  2016, doi: .
[Crossref]

F. Chollet, “Devices based on Co-Integrated MEMS Actuators and optical waveguide: A Review,” Micromachines, vol. 7, no. 2, 2016, Art. no. 18, doi: .
[Crossref]

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express, vol. 24, pp. 16167–16174, 2016. [Online]. Available: http://dx.doi.org/10.1364/OE.24.016167

M. Kleinertet al., “Graphene-based electro-absorption modulator integrated in a passive polymer waveguide platform,” Opt. Mater. Express, vol. 6, pp. 1800–1807, 2016, doi: .
[Crossref]

P. O. Weigelet al., “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep., vol. 6, 2016, Art. no. 22301, doi: .
[Crossref]

L. Chen, J. Nagy, and R. M. Reano, “Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon,” Opt. Mater. Express, vol. 6, pp. 2460–2467, 2016, doi: .
[Crossref]

J. G. Kim, W. S. Yun, S. Jo, J. D. Lee, and C.-H. Cho, “Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals,” Sci. Rep., vol. 6, 2016, Art. no. 29813, doi: .
[Crossref]

J. Kleinet al., “Stark effect spectroscopy of mono- and few-layer MoS2,” Nano Lett., vol. 16, no. 3, pp. 1554–1559, 2016, doi: .
[Crossref]

F. Qiuet al., “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon., vol. 3, pp. 780–783, 2016, doi: .
[Crossref]

2015 (17)

N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nature Photon., vol. 9, pp. 822–826, 2015, doi: .
[Crossref]

B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express, vol. 5, pp. 447–455, 2015, doi: .
[Crossref]

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nature Photon., vol. 9, pp. 267–273, 2015, doi: .
[Crossref]

A.Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nature Photon., vol. 9, pp. 374–377, 2015, doi: .
[Crossref]

D. A. B. Miller, “Perfect optics with imperfect components,” Optica, vol. 2, pp. 747–750, 2015, doi: .
[Crossref]

H. D. Thackeret al., “An all-solid-state, WDM silicon photonic digital link for chip-to-chip communications,” Opt. Express, vol. 23, pp. 12808–12822, 2015, doi: .
[Crossref]

D. A. B. Miller, “Sorting out light,” Science, vol. 347, pp. 1423–1424, 2015, doi: .
[Crossref]

Z. Wang and B. Nabet, “Nanowire optoelectronics,” Nanophotonics, vol. 4, pp. 491–502, 2015, doi: .
[Crossref]

S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933,  2015, doi: .
[Crossref]

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” PNAS, vol. 112, no. 6, pp. 1704–1709, 2015, doi: .
[Crossref]

C. Haffneret al., “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nature Photon., vol. 9, pp. 525–528, 2015, doi: .
[Crossref]

J. Wu and P. Jin, “Self-assembly of InAs quantum dots on GaAs(001) by molecular beam epitaxy,” Front. Phys., vol. 10, 2015, Art. no. 108101, doi: .
[Crossref]

H. Subbaramanet al., “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express, vol. 23, pp. 2487–2511, 2015, doi: .
[Crossref]

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photon. Res., vol. 3, pp. B10–B27, 2015, doi: .
[Crossref]

C. Sunet al., “A monolithically-integrated chip-to-chip optical link in bulk CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 828–844, 2015, doi: .
[Crossref]

K. Aingaranet al., “M7: Oracle's next-generation SPARC processor,” IEEE Micro, vol. 35, no. 2, pp. 36–45, 2015, doi: .
[Crossref]

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015, doi: .
[Crossref]

2014 (19)

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. Very Large Scale Integr. Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

P. J. Winzer, “Spatial multiplexing in fiber optics: The 10X scaling of metro/core capacities,” Bell Labs Tech. J., vol. 19, pp. 22–30, 2014, doi: .
[Crossref]

I. L. Markov, “Limits on fundamental limits to computation,” Nature, vol. 512, pp. 147–154, 142014, doi: .
[Crossref]

W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Trends in worldwide ICT electricity consumption from 2007 to 2012,” Comput. Commun., vol. 50, pp. 64–76, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2014.02.008

A. Pandeyet al., “Effect of load capacitance and input transition time on FinFET inverter capacitances,” IEEE Trans. Electron Dev., vol. 61, no. 1, pp. 30–36, 2014, doi: .
[Crossref]

R. G. Beausoleil, “Large scale integrated photonics for twenty-first century information technologies—A “Moore's Law” for optics,” Found. Phys., vol. 44, pp. 856–872, 2014, doi: .
[Crossref]

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon., vol. 8, pp. 244–249, 2014, doi: .
[Crossref]

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nature Photon., vol. 8, pp. 908–918, 2014, doi: .
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. 4008, doi: .
[Crossref]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nature Mater., vol. 13, pp. 471–475, 2014, doi: .
[Crossref]

R. Chenet al., “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nature Commun., vol. 5, 2014, Art. no. 4325, doi: .
[Crossref]

R. G. H. van Udenet al., “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, pp. 865–870, 2014, doi: .
[Crossref]

P. J. Winzer, “Making spatial multiplexing a reality,” Nature Photon., vol. 8, pp. 345–348, 2014, doi: .
[Crossref]

R. W. Going, J. Loo, T.-J. K. Liu, and M. C. Wu, “Germanium gate PhotoMOSFET integrated to silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4,  2014, Art. no. 8201607, doi: .
[Crossref]

H. Sun, F. Ren, K. W. Ng, T.-T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano, vol. 8, no. 7, pp. 6833–6839, 2014, doi: .
[Crossref]

Y. Liet al., “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B, vol. 90, 2014, Art. no. 205422, doi: .
[Crossref]

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater., vol. 26, no. 2, pp. 872–874, 2014, doi: .
[Crossref]

P. Damaset al., “Wavelength dependence of Pockels effect in strained silicon waveguides,” Opt. Express, vol. 22, pp. 22095–22100, 2014, doi: .
[Crossref]

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express, vol. 22, pp. 15292–15297, 2014, doi: .
[Crossref]

2013 (18)

S. J. Koester and M. Li, “Waveguide-coupled graphene optoelectronics,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 1,  2013, Art. no. 6000211, doi: .
[Crossref]

L. Luet al., “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express, vol. 21, pp. 9447–9456, 2013, doi: .
[Crossref]

N. Bozinovicet al., “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science, vol. 340, pp. 1545–1548, 2013, doi: .
[Crossref]

K. Shanget al., “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express, vol. 21, pp. 13958–13968, 2013, doi: .
[Crossref]

L. Liet al., “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects,” J. Lightw. Technol., vol. 31, no. 24, pp. 4080–4086,  2013, doi: .
[Crossref]

K. C. Balram, R. M. Audet, and D. A. B. Miller, “Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths,” Opt. Express, vol. 21, pp. 10228–10233, 2013. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10228

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express, vol. 21, pp. 21693–21701, 2013. [Online]. Available: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21693

D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express, vol. 21, pp. 6360–6370, 2013. [Online]. Avaialble: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6360

D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res., vol. 1, pp. 1–15, 2013. [Online]. Available: http://www.opticsinfobase.org/prj/abstract.cfm?URI=prj-1-1-1http://dx.doi.org/10.1364/PRJ.1.000001

G. Liet al., “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6,  2013, Art. no. 3401819, doi: .
[Crossref]

O. Chenet al., “Compact high-quality CdSe/CdS core/shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nature Mater., vol. 12, no. 5, pp. 445–451, 2013, doi: .
[Crossref]

R. M. Audetet al., “Surface-normal Ge/SiGe asymmetric Fabry-Perot optical modulators fabricated on silicon substrates,” J. Lightw. Technol., vol. 31, no. 24, pp. 3995–4003,  2013.

E. H. Edwardset al., “Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon,” Opt. Express, vol. 21, pp. 867–876, 2013.

M. J. R. Hecket al., “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, 2013, Art. no. 6100117, doi: .
[Crossref]

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, 2013, Art. no. 8200207, doi: .
[Crossref]

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag., vol. 51, no. 3, pp. 72–77, 2013, doi: .
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, pp. 354–362, 2013, doi: .
[Crossref]

R. Beausoleil, M. McLaren, and N. Jouppi, “Photonic architectures for high-performance data centers,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, 2013, Art. no. 3700109, doi: .
[Crossref]

2012 (21)

J. S. Orcuttet al., “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express, vol. 20, pp. 12222–12232, 2012, doi: .
[Crossref]

P. Chaisakulet al., “23 GHz Ge/SiGe multiple quantum well electro-absorption modulator,” Opt. Express, vol. 20, pp. 3219–3224, 2012.

S. A. Claussen, K. C. Balram, E. T. Fei, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective area growth of germanium and germanium/silicon-germanium quantum wells in silicon waveguides for on-chip optical interconnect applications,” Opt. Mater. Express, vol. 2, pp. 1336–1342, 2012.

E. H. Edwardset al., “Ge/SiGe asymmetric Fabry-Perot quantum well electroabsorption modulators,” Opt. Express, vol. 20, pp. 29164–29173, 2012. [Online]. Available: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29164

R. M. Audet, E. H. Edwards, P. Wahl, and D. A. B. Miller, “Investigation of limits to the optical performance of asymmetric Fabry-Perot electroabsorption modulators,” IEEE J. Quantum Electron., vol. 48, no. 2, pp. 198–209,  2012, doi: .
[Crossref]

R. K. Schaevitzet al., “Simple electroabsorption calculator for designing 1310nm and 1550nm modulators using germanium quantum wells,” IEEE J. Quantum Electron., vol. 48, no. 2, pp. 187–197,  2012, doi: .
[Crossref]

S. Renet al., “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated with SOI Waveguides,” IEEE Photon. Technol. Lett., vol. 24, no. 6, pp. 461–463,  2012, doi: .
[Crossref]

P. Moseret al., “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett., vol. 48, p. 1292–1294, 2012.

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express, vol. 20, pp. A293–A308, 2012.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics, vol. 1, pp. 9–16, 2012, doi: .
[Crossref]

W. Bogaertset al., “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012. doi: .
[Crossref]

J. Lu and J. Vučković, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express, vol. 20, pp. 7221–7236, 2012, doi: .
[Crossref]

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express, vol. 20, pp. 23985–23993, 2012. [Online]. Available: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23985

R. Ryfet al., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO Processing,” J. Lightw. Technol., vol. 30, no. 4, pp. 521–531,  2012.

P. Senanayakeet al., “Thin 3D multiplication regions in plasmonically enhanced nanopillar avalanche detectors,” Nano Lett., vol. 12, no. 12, pp. 6448–6452, 2012, doi: .
[Crossref]

F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express, vol. 20, pp. 12171–12176, 2012, doi: .
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express, vol. 20, pp. 22181–22187, 2012, doi: .
[Crossref]

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun., vol. 152, pp. 1341–1349, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.ssc.2012.04.064

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett., vol. 12, no. 3, pp. 1482–1485, 2012, doi: .
[Crossref]

K. Tanabe, K. Watanabe and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep., vol. 2, 2012, Art. no. , doi: .
[Crossref]

Y. Luoet al., “Strong electro-absorption in GeSi epitaxy on silicon-on-insulator (SOI),” Micromachines, vol. 3, no. 2, pp. 345–363, 2012, doi: .
[Crossref]

2011 (16)

N.-N. Fenget al., “30 GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide,” Opt. Express, vol. 19, pp. 7062–7067, 2011.

B. Chmielaket al., “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express, vol. 19, pp. 17212–17219, 2011, doi: . [Online]. Available: http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-10-1336
[Crossref]

R. Chenet al., “Nanolasers grown on silicon,” Nature Photon., vol. 5, pp. 170–175, 2011.

V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett., vol. 36, pp. 591–593, 2011.

L. C. Chuanget al., “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett., vol. 11, pp. 385–390, 2011.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev., vol. 5, pp. 308–321, 2011, doi: .
[Crossref]

C. T. DeRoseet al., “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express, vol. 19, pp. 24897–24904, 2011, doi: .
[Crossref]

G. Shambatet al., “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nature Communications, vol. 2, 2011, Art. no. 539, doi: .
[Crossref]

S. Ren, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition,” Appl. Phys. Lett., vol. 98, 2011, Art. no. .

S. Ren, T. I. Kamins, and D. A. B. Miller, “Thin dielectric spacer for the monolithic integration of bulk germanium quantum wells with silicon-on-insulator waveguides,” IEEE Photon. J., vol. 3, no. 4, pp. 739–747,  2011.

B. Elliset al., “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nature Photon., vol. 5, pp. 297–300, 2011.

R. K. Schaevitz, D. S. Ly-Gagnon, J. E. Roth, E. H. Edwards, and D. A. B. Miller, “Indirect absorption in germanium quantum wells,” AIP Adv., vol. 1, 2011, Art. no. .

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the internet,” IEEE Network, vol. 25, no. 2, pp. 6–12, 2011.

M. Hilbert and P. Lopez, “The world's technological capacity to store, communicate, and compute information,” Science, vol. 332, no. 6025, pp. 60–65, 2011.

J. Baliga, R. Ayre, K. Hinton, and R. S. Tucker, “Energy consumption in wired and wireless access networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 70–77, 7, 2011.

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011.

2010 (8)

D. A. B. Miller, “Are optical transistors the next logical step?” Nature Photon., 2010, vol. 4, pp. 3–5, doi: .
[Crossref]

D. Van Thourhoutet al., “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1363–1375, 2010, doi: .
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nature Phys., vol. 6, pp. 279–283, 2010, doi: .
[Crossref]

S. Matsuoet al., “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nature Photon., vol. 4, pp. 648–654, 2010, doi: .
[Crossref]

S. A. Claussen, E. Tasyurek, J. E. Roth, and D. A. B. Miller, “Measurement and modeling of ultrafast carrier dynamics and transport in germanium/silicon-germanium quantum wells,” Opt. Express, vol. 18, pp. 25596–25607, 2010.

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B, vol. 247, no. 4, pp. 774–788, 2010.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, pp. 1782–1802, 2010, doi: .
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon., vol. 4, no. 8, pp. 518–526, 2010, doi: .
[Crossref]

2009 (3)

S. Latif, S. E. Kocabas, L. Tang, C. Debaes, and D. A. B. Miller, “Low capacitance CMOS silicon photodetectors for optical clock injection,” Appl. Phys. A, Mater. Sci. Process., vol. 95, pp. 1129–1135, 2009.

G. Astfalk, “Why optical data communications and why now?” Appl. Phys. A., vol. 95, pp. 933–940, 2009.

R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and W. V. Sorin, “Evolution of WDM optical IP networks: A cost and energy perspective,” J. Lightw. Technol., vol. 27, no. 3, pp. 243–252, 2009.

2008 (5)

J. E. Rothet al., “C-band side-entry Ge quantum-well electroabsorption modulator on SOI operating at 1 V swing,” Electron. Lett., vol. 44, pp. 49–50, 2008.

R. K. Schaevitz, J. E. Roth, S. Ren, O. Fidaner, and D. A. B. Miller, “Material properties in Si-Ge/Ge quantum wells,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 4, pp. 1082–1089,  2008.

D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic Impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 6, 1473–1478,  2008, doi: .
[Crossref]

L. Tanget al., “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photon., vol. 2, pp. 226–229, 2008, doi: .
[Crossref]

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev., vol. 2, pp. 299–313, 2008.

2007 (7)

M. T. Hillet al., “Lasing in metallic-coated nanocavities,” Nature Photon., vol. 1, pp. 589–594, 2007, doi: .
[Crossref]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express, vol. 15, pp. 17106–17113, 2007, doi: .
[Crossref]

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller and K. C. Saraswat, “Silicon germanium CMOS optoelectronic switching device: Bringing light to latch,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3252–3259,  2007, doi: .
[Crossref]

R. S. Tucker, “Energy consumption in digital optical ICs with plasmon waveguide interconnects,” IEEE Photon. Technol. Lett., vol. 19, no. 24, pp. 2036–2038,  2007.

J. E. Rothet al., “Optical modulator on silicon employing germanium quantum wells,” Opt. Express, vol. 15, pp. 5851–5859, 2007. [Online]. Available: http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-9-5851

P. Wambacqet al., “The potential of FinFETs for analog and RF circuit applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 11, pp. 2541–2551, 2007, doi: .
[Crossref]

M. Bohr, “A 30 year retrospective on Dennard's MOSFET scaling paper,” IEEE Solid-State Circuits Soc. Newsletter, vol. 12, no. 1, 2007, pp. 11–13.

2006 (5)

D. F. Welchet al., “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Lightw. Technol., vol. 24, no. 12, pp. 4674–4683, 2006, doi: .
[Crossref]

D. J. Frank, W. Haensch, G. Shahidi, and O. Dokumaci, “Optimizing CMOS technology for maximum performance,” IBM J. Res. Develop., vol. 50, no. 4.5, pp. 419–431, 2006.

Y.-H. Kuoet al., “Quantum-confined Stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1503–1513,  2006.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, S. P. Chan, B. D. Timotijevic, and F. Y. Gardes, “Silicon photonics: Are smaller devices always better?” Jpn. J. Appl. Phys., vol. 45, no. 8B, pp. 6609–6615, 2006, doi: .
[Crossref]

A. Shakouri, “Nano-scale thermal transport and microrefrigerators on a chip,” Proc. IEEE, vol. 94, no. 8, pp. 1613–1638,  2006, doi: .
[Crossref]

2005 (3)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett., vol. 41, pp. 801–802, 2005, doi: .
[Crossref]

Y. Jiao, S. H. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization by low rank adjustments: an extremely compact mode separator,” Opt. Lett., vol. 30, no. 2, pp. 141–143,  2005. [Online]. Available: http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-2-141

Y.-H. Kuoet al., “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature, vol. 437, pp. 1334–1336, 27, 2005, doi: .
[Crossref]

2004 (1)

K.-N. Chen, M. J. Kobrinsky, B. C. Barnett, and R. Reif, “Comparisons of conventional, 3-D, optical, and RF interconnects for on-chip clock distribution,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 233–239,  2004.

2003 (6)

C. Debaeset al., “Low-cost microoptical modules for mcm level optical interconnections,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 518–530,  2003.

M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 548–556,  2003.

M. Gerken and D. A. B. Miller, “Multilayer thin-film structures with high spatial dispersion,” Appl. Opt., vol. 42, pp. 1330–1345, 2003.

B. E. Nelson, G. A. Keeler, D. Agarwal, N. C. Helman, and D. A. B. Miller, “Wavelength division multiplexed optical interconnect using short pulses,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 486–491,  2003.

C. Debaeset al., “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 400–409, 2003.

G. A. Keeleret al., “The benefits of ultrashort optical pulses in optically-interconnected systems,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 477–485, 2003.

2000 (4)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE, vol. 88, no. 6, pp. 728–749, 2000.

G. A. Keeler, B. E. Nelson, D. Agarwal, and D. A. B. Miller, “Skew and jitter removal using short optical pulses for optical interconnection,” IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 714–716, 2000.

D. Hisamotoet al., “FinFET—A Self-Aligned Double-Gate MOSFET Scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325, 2000.

D. A. B. Miller, “Communicating with waves between volumes—Evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt., vol. 39, pp. 1681–1699, 2000.

1997 (3)

L. Boivin, M. C. Nuss, J. Shah, D. A. B. Miller, and H. A. Haus, “Receiver sensitivity improvement by impulsive coding,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 684–686,  1997.

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, 1997.

D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput., vol. 41, pp. 42–52, 1997.

1996 (2)

A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st Century: A technology roadmap,” IEEE J. Sel. Topics Quantum Electron., vol. 2, no. 1, pp. 55–76,  1996.

D. J. Bossert and D. Gallant, “Gain, refractive index, and a-Parameter in InGaAs-GaAs SQW Broad-Area Lasers,” IEEE Photon. Technol. Lett., vol. 8, no. 3, pp. 322–324,  1996.

1995 (2)

E. A. De Souza, M. C. Nuss, W. H. Knox, and D. A. B. Miller, “Wavelength-division multiplexing with femtosecond pulses,” Opt. Lett., vol. 20, pp. 1166–1168, 1995.

D. M. Cutrer and K. Y. Lau, “Ultralow power optical interconnect with zero-biased, ultralow threshold laser-how low a threshold is low enough?” IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 4–6,  1995.

1994 (3)

F. B. McCormicket al., “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt., vol. 33, pp. 1601–1618, 1994.

H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, and F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE, vol. 82, no. 11, pp. 1632–1649,  1994, doi: .
[Crossref]

A. L. Lentine, L. M. F. Chirovsky, and T. K. Woodward, “Optical energy considerations for diode-clamped smart pixel optical receivers,” IEEE J. Quantum Electron., vol. 30, no. 5, pp. 1167–1171,  1994.

1993 (3)

1992 (1)

J. E. Zucker, K. L. Jones, T. H. Chiu, B. Tell, and K. Brown-Goebeler, “Strained quantum wells for polarization-independent electrooptic waveguide switches,” J. Lightw. Technol., vol. 10, no. 12, pp. 1926–1930,  1992.

1990 (1)

1989 (2)

1988 (2)

D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Electroabsorption of highly confined systems: Theory of the quantum-confined Franz-Keldysh effect in semiconductor quantum wires and dots,” Appl. Phys. Lett., vol. 52, pp. 2154–2156, 1988.

D. S. Chemlaet al., “Modulation of absorption in field-effect quantum well structures,” IEEE J. Quantum Electron., vol. 24, no. 8, pp. 1664–1676,  1988.

1987 (4)

D. S. Chemlaet al., “Optical reading of field-effect transistors by phase-space absorption quenching in a single InGaAs quantum well conducting channel,” Appl. Phys. Lett., vol. 50, pp. 585–587, 1987.

J. S. Weiner, D. A. B. Miller, and D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined stark effect in quantum wells,” Appl. Phys. Lett., vol. 50, pp. 842–844, 1987.

M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, “Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides,” Appl. Phys. Lett., vol. 50, pp. 1098–1100, 1987.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron, vol. 23, no. 1, pp. 123–129,  1987.

1986 (1)

D. A. B. Miller, D. S. Chemla and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev., vol. B33, pp. 6976–6982, 1986.

1985 (2)

D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Amer., vol. B2, pp. 1155–1173, 1985.

D. A. B. Milleret al., “Electric field dependence of optical absorption near the bandgap of quantum well structures,” Phys. Rev., vol. B32, pp. 1043–1060, 1985.

1984 (2)

D. A. B. Milleret al., “Bandedge electro-absorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett., vol. 53, pp. 2173–2177, 1984.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron., vol. QE 20, no. 3, pp. 265–275,  1984.

1983 (1)

C. H. Henry, R. A. Logan, F. R. Merritt, and J. P. Luongo, “The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers,” IEEE J. Quantum Electron., vol. QE-19, no. 6, pp. 947–952,  1983.

1982 (1)

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room-temperature optical nonlinearity in GaAs/Ga1-xAlxAs multiple quantum well structures,” Appl. Phys. Lett., vol. 41, pp. 679–681, 1982.

1981 (1)

D. A. B. Miller, C. T. Seaton, M. E. Prise and S. D. Smith, “Bandgap resonant nonlinear refraction in III V semiconductors,” Phys. Rev. Lett., vol. 47, pp. 197–200, 1981.

1976 (1)

F. L. Lederman and J. D. Dow, “Theory of electroabsorption by anisotropic and layered semiconductors. I. Two-dimensional excitons in a uniform electric field,” Phys. Rev., vol. B13, pp. 1633–1642, 1976.

1974 (1)

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

1970 (1)

J. D. Dow and D. Redfield, “Electroabsorption in semiconductors: The excitonic absorption edge,” Phys. Rev. B, vol. 1, pp. 3358–3371, 1970.

1966 (1)

M. Shinada and S. Sugano, “Interband optical transitions in extremely anisotropic semiconductors. i. bound and unbound exciton absorption,” J. Phys. Soc. Jpn., vol. 21, pp. 1936–1946, 1966. [Online]. Available: http://dx.doi.org/10.1143/JPSJ.21.1936

1963 (1)

K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev., vol. 130, pp. 2204–2206, 1963.

1958 (2)

W. Franz, “Einfluß eines elektrischen Feldes auf eine optische Absorptionskante,” Z. Naturforschung, vol. 13a, pp. 484–489, 1958.

L. V. Keldysh, “The effect of a strong electric field on the optical properties of insulating crystals,” J. Exp. Theoretical Phys., vol. 34, pp. 1138–1141,  1958 (translation: Soviet Physics JETP, vol. 34(7), no. 5, pp. 788–790, 1958).

1957 (1)

R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev., vol. 108, pp. 1384–1389, 1957.

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,”Phys. Rev., vol. 69, p. 681, 1946.

Agarwal, D.

B. E. Nelson, G. A. Keeler, D. Agarwal, N. C. Helman, and D. A. B. Miller, “Wavelength division multiplexed optical interconnect using short pulses,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 486–491,  2003.

G. A. Keeler, B. E. Nelson, D. Agarwal, and D. A. B. Miller, “Skew and jitter removal using short optical pulses for optical interconnection,” IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 714–716, 2000.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. Hoboken, NJ, USA: Wiley, 2010.

Agrell, E.

E. Agrellet al., “Roadmap of optical communications,” J. Opt., vol. 18, 2016, Art. no. 063002. [Online]. Available: http://dx.doi.org/10.1088/2040-8978/18/6/063002

Aingaran, K.

K. Aingaranet al., “M7: Oracle's next-generation SPARC processor,” IEEE Micro, vol. 35, no. 2, pp. 36–45, 2015, doi: .
[Crossref]

Aksyuk, V. A.

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nature Photon., vol. 9, pp. 267–273, 2015, doi: .
[Crossref]

Allen, L.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev., vol. 2, pp. 299–313, 2008.

Amara, K. K.

Arakawa, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag., vol. 51, no. 3, pp. 72–77, 2013, doi: .
[Crossref]

K. Tanabe, K. Watanabe and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep., vol. 2, 2012, Art. no. , doi: .
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nature Phys., vol. 6, pp. 279–283, 2010, doi: .
[Crossref]

Arik, S. O.

S. O. Arık, K. -Po Ho, and J. M. Kahn, “Group delay management and multiinput multioutput signal processing in mode-division multiplexing systems,” J. Lightw. Technol., vol. 34, no. 11, pp. 2867–2880,  2016, doi: .
[Crossref]

Astfalk, G.

G. Astfalk, “Why optical data communications and why now?” Appl. Phys. A., vol. 95, pp. 933–940, 2009.

Audet, R. M.

R. M. Audetet al., “Surface-normal Ge/SiGe asymmetric Fabry-Perot optical modulators fabricated on silicon substrates,” J. Lightw. Technol., vol. 31, no. 24, pp. 3995–4003,  2013.

K. C. Balram, R. M. Audet, and D. A. B. Miller, “Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths,” Opt. Express, vol. 21, pp. 10228–10233, 2013. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10228

R. M. Audet, E. H. Edwards, P. Wahl, and D. A. B. Miller, “Investigation of limits to the optical performance of asymmetric Fabry-Perot electroabsorption modulators,” IEEE J. Quantum Electron., vol. 48, no. 2, pp. 198–209,  2012, doi: .
[Crossref]

Audzevich, Y.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. Very Large Scale Integr. Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

Ayre, R.

J. Baliga, R. Ayre, K. Hinton, and R. S. Tucker, “Energy consumption in wired and wireless access networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 70–77, 7, 2011.

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the internet,” IEEE Network, vol. 25, no. 2, pp. 6–12, 2011.

Ayre, R. W. A.

R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and W. V. Sorin, “Evolution of WDM optical IP networks: A cost and energy perspective,” J. Lightw. Technol., vol. 27, no. 3, pp. 243–252, 2009.

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett., vol. 41, pp. 801–802, 2005, doi: .
[Crossref]

Babinec, T. M.

A.Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nature Photon., vol. 9, pp. 374–377, 2015, doi: .
[Crossref]

Baets, R.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, pp. 1782–1802, 2010, doi: .
[Crossref]

Balasubramanian, A.

N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in mobile phones: A measurement study and implications for network applications,” in Proc. 9th ACM SIGCOMM Conf. Internet Meas., Chicago, IL, USA, Nov. 4–6, 2009.

Balasubramanian, N.

N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in mobile phones: A measurement study and implications for network applications,” in Proc. 9th ACM SIGCOMM Conf. Internet Meas., Chicago, IL, USA, Nov. 4–6, 2009.

Baliga, J.

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the internet,” IEEE Network, vol. 25, no. 2, pp. 6–12, 2011.

J. Baliga, R. Ayre, K. Hinton, and R. S. Tucker, “Energy consumption in wired and wireless access networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 70–77, 7, 2011.

R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and W. V. Sorin, “Evolution of WDM optical IP networks: A cost and energy perspective,” J. Lightw. Technol., vol. 27, no. 3, pp. 243–252, 2009.

Balram, K. C.

Barnett, B. C.

K.-N. Chen, M. J. Kobrinsky, B. C. Barnett, and R. Reif, “Comparisons of conventional, 3-D, optical, and RF interconnects for on-chip clock distribution,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 233–239,  2004.

Bassous, E.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

Beausoleil, R.

R. Beausoleil, M. McLaren, and N. Jouppi, “Photonic architectures for high-performance data centers,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, 2013, Art. no. 3700109, doi: .
[Crossref]

Beausoleil, R. G.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express, vol. 24, pp. 16167–16174, 2016. [Online]. Available: http://dx.doi.org/10.1364/OE.24.016167

R. G. Beausoleil, “Large scale integrated photonics for twenty-first century information technologies—A “Moore's Law” for optics,” Found. Phys., vol. 44, pp. 856–872, 2014, doi: .
[Crossref]

D. Liang, M. Fiorentino, and R. G. Beausoleil, “VLSI photonics for high-performance data centers,” Chapter 18 in Silicon Photonics III (Series Topics in Applied Physics, vol. 122), L. Pavesi and D. J. Lockwood, Eds.New York, NY, USA: Springer-Verlag, 2016, pp. 489–516.

Benight, S. J.

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater., vol. 26, no. 2, pp. 872–874, 2014, doi: .
[Crossref]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron, vol. 23, no. 1, pp. 123–129,  1987.

Bergman, K.

K. Bergman, J. Shalf, and T. Hausken, “Optical interconnects and extreme computing,” Opt. Photon. News, vol. 27, no. 4, pp. 32–39, 2016, doi: .
[Crossref]

S. Rumley, R. P. Polster, K. Bergman, S. Hammond, and A. F. Rodrigues, “End-to-end modeling and optimization of power consumption in HPC interconnects,” 2016 45th Int. Conf. Parallel Processing Workshops (ICPPW), 16–19, 2016, pp. 133–140, doi: .
[Crossref]

Bhargava, S.

Bhatnagar, A.

D. A. B. Miller, A. Bhatnagar, S. Palermo, A. Emami-Neyestanak, and M. A. Horowitz, “Opportunities for optics in integrated circuits applications,” in Proc. Int. Solid State Circuits Conf., 2005, Paper 4.6, pp. 86–87.

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. 4008, doi: .
[Crossref]

Blumberg, G.

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nature Photon., vol. 9, pp. 267–273, 2015, doi: .
[Crossref]

Bogaerts, W.

W. Bogaertset al., “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012. doi: .
[Crossref]

Bohr, M.

M. Bohr, “A 30 year retrospective on Dennard's MOSFET scaling paper,” IEEE Solid-State Circuits Soc. Newsletter, vol. 12, no. 1, 2007, pp. 11–13.

Boivin, L.

L. Boivin, M. C. Nuss, J. Shah, D. A. B. Miller, and H. A. Haus, “Receiver sensitivity improvement by impulsive coding,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 684–686,  1997.

Borkar, S.

S. Borkar, “The Exascale challenge,” in Proc. 2010 Int. Symp. VLSI Des., Autom. Test, 2010, pp. 2–3.

Bossert, D. J.

D. J. Bossert and D. Gallant, “Gain, refractive index, and a-Parameter in InGaAs-GaAs SQW Broad-Area Lasers,” IEEE Photon. Technol. Lett., vol. 8, no. 3, pp. 322–324,  1996.

Bowers, J. E.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, pp. 1782–1802, 2010, doi: .
[Crossref]

Boyd, R. W.

Bozinovic, N.

N. Bozinovicet al., “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science, vol. 340, pp. 1545–1548, 2013, doi: .
[Crossref]

Brongersma, M. L.

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon., vol. 8, pp. 244–249, 2014, doi: .
[Crossref]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nature Mater., vol. 13, pp. 471–475, 2014, doi: .
[Crossref]

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics, vol. 1, pp. 9–16, 2012, doi: .
[Crossref]

Brown-Goebeler, K.

J. E. Zucker, K. L. Jones, T. H. Chiu, B. Tell, and K. Brown-Goebeler, “Strained quantum wells for polarization-independent electrooptic waveguide switches,” J. Lightw. Technol., vol. 10, no. 12, pp. 1926–1930,  1992.

Buckwalter, J. F.

J. Li, X. Zheng, A. V. Krishnamoorthy, and J. F. Buckwalter, “Scaling trends for picojoule-per-bit WDM photonic interconnects in CMOS SOI and FinFET processes,” J. Lightw. Technol., vol. 34, no. 11, pp. 2730–2742, 2016, doi: .
[Crossref]

Ceyhan, A.

S. Rakheja, A. Ceyhan, and A. Naeemi, “Interconnect considerations,” in CMOS and Beyond, T.-J. K. Liu and K. Kuhn, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2015, pp. 381–412, doi: .

Chaisakul, P.

Chan, S. P.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, S. P. Chan, B. D. Timotijevic, and F. Y. Gardes, “Silicon photonics: Are smaller devices always better?” Jpn. J. Appl. Phys., vol. 45, no. 8B, pp. 6609–6615, 2006, doi: .
[Crossref]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

H. Sun, F. Ren, K. W. Ng, T.-T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano, vol. 8, no. 7, pp. 6833–6839, 2014, doi: .
[Crossref]

Chemla, D. S.

S. Schmitt-Rink, D. S. Chemla, W. H. Knox, and D. A. B. Miller, “How fast is excitonic electroabsorption?”Opt. Lett., vol. 15, pp. 60–62, 1990.

D. S. Chemlaet al., “Modulation of absorption in field-effect quantum well structures,” IEEE J. Quantum Electron., vol. 24, no. 8, pp. 1664–1676,  1988.

D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Electroabsorption of highly confined systems: Theory of the quantum-confined Franz-Keldysh effect in semiconductor quantum wires and dots,” Appl. Phys. Lett., vol. 52, pp. 2154–2156, 1988.

D. S. Chemlaet al., “Optical reading of field-effect transistors by phase-space absorption quenching in a single InGaAs quantum well conducting channel,” Appl. Phys. Lett., vol. 50, pp. 585–587, 1987.

M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, “Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides,” Appl. Phys. Lett., vol. 50, pp. 1098–1100, 1987.

J. S. Weiner, D. A. B. Miller, and D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined stark effect in quantum wells,” Appl. Phys. Lett., vol. 50, pp. 842–844, 1987.

D. A. B. Miller, D. S. Chemla and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev., vol. B33, pp. 6976–6982, 1986.

D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Amer., vol. B2, pp. 1155–1173, 1985.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron., vol. QE 20, no. 3, pp. 265–275,  1984.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room-temperature optical nonlinearity in GaAs/Ga1-xAlxAs multiple quantum well structures,” Appl. Phys. Lett., vol. 41, pp. 679–681, 1982.

Chen, K.-N.

K.-N. Chen, M. J. Kobrinsky, B. C. Barnett, and R. Reif, “Comparisons of conventional, 3-D, optical, and RF interconnects for on-chip clock distribution,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 233–239,  2004.

Chen, L.

Chen, O.

O. Chenet al., “Compact high-quality CdSe/CdS core/shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nature Mater., vol. 12, no. 5, pp. 445–451, 2013, doi: .
[Crossref]

Chen, R.

R. Chenet al., “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nature Commun., vol. 5, 2014, Art. no. 4325, doi: .
[Crossref]

F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express, vol. 20, pp. 12171–12176, 2012, doi: .
[Crossref]

R. Chenet al., “Nanolasers grown on silicon,” Nature Photon., vol. 5, pp. 170–175, 2011.

Chirovsky, L. M. F.

A. L. Lentine, L. M. F. Chirovsky, and T. K. Woodward, “Optical energy considerations for diode-clamped smart pixel optical receivers,” IEEE J. Quantum Electron., vol. 30, no. 5, pp. 1167–1171,  1994.

Chiu, T. H.

J. E. Zucker, K. L. Jones, T. H. Chiu, B. Tell, and K. Brown-Goebeler, “Strained quantum wells for polarization-independent electrooptic waveguide switches,” J. Lightw. Technol., vol. 10, no. 12, pp. 1926–1930,  1992.

Chmielak, B.

Cho, C.-H.

J. G. Kim, W. S. Yun, S. Jo, J. D. Lee, and C.-H. Cho, “Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals,” Sci. Rep., vol. 6, 2016, Art. no. 29813, doi: .
[Crossref]

Chollet, F.

F. Chollet, “Devices based on Co-Integrated MEMS Actuators and optical waveguide: A Review,” Micromachines, vol. 7, no. 2, 2016, Art. no. 18, doi: .
[Crossref]

Christensen, M. P.

M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 548–556,  2003.

Chuang, L. C.

L. C. Chuanget al., “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett., vol. 11, pp. 385–390, 2011.

Chuang, S. L.

S. L. Chuang, Physics of Photonic Devices, 2nd ed.Hoboken, NJ, USA: Wiley, 2009.

Claussen, S. A.

Cloonan, T. J.

H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, and F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE, vol. 82, no. 11, pp. 1632–1649,  1994, doi: .
[Crossref]

R. L. Morrison, S. L. Walker, and T. J. Cloonan, “Beam array generation and holographic interconnections in a free-space optical switching network,” Appl. Opt., vol. 32, pp. 2512–2518, 1993, doi: .
[Crossref]

Colle, D.

W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Trends in worldwide ICT electricity consumption from 2007 to 2012,” Comput. Commun., vol. 50, pp. 64–76, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2014.02.008

Cutrer, D. M.

D. M. Cutrer and K. Y. Lau, “Ultralow power optical interconnect with zero-biased, ultralow threshold laser-how low a threshold is low enough?” IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 4–6,  1995.

Czaplewski, D. A.

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nature Photon., vol. 9, pp. 267–273, 2015, doi: .
[Crossref]

Dai, X.

X. Dai, M. Tchernycheva, and C. Soci, “Compound semiconductor nanowire photodetectors,” Semicond. Semimetals, vol. 94, pp. 75–107, 2016. [Online]. Available: http://dx.doi.org/10.1016/bs.semsem.2015.08.001

Dally, W. J.

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011.

Dalton, L. R.

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater., vol. 26, no. 2, pp. 872–874, 2014, doi: .
[Crossref]

Damas, P.

De Dobbelaere, P.

P. De Dobbelaereet al., “Packaging of silicon photonics systems,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper W3I.2, doi: .

De Souza, E. A.

Debaes, C.

S. Latif, S. E. Kocabas, L. Tang, C. Debaes, and D. A. B. Miller, “Low capacitance CMOS silicon photodetectors for optical clock injection,” Appl. Phys. A, Mater. Sci. Process., vol. 95, pp. 1129–1135, 2009.

C. Debaeset al., “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 400–409, 2003.

C. Debaeset al., “Low-cost microoptical modules for mcm level optical interconnections,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 518–530,  2003.

Demeester, P.

W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Trends in worldwide ICT electricity consumption from 2007 to 2012,” Comput. Commun., vol. 50, pp. 64–76, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2014.02.008

Dennard, R. H.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

Dennis, B. S.

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nature Photon., vol. 9, pp. 267–273, 2015, doi: .
[Crossref]

DeRose, C. T.

C. T. DeRoseet al., “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express, vol. 19, pp. 24897–24904, 2011, doi: .
[Crossref]

A. L. Lentine and C. T. DeRose, “Challenges in the implementation of dense wavelength division multiplexed (DWDM) optical interconnects using resonant silicon photonics,” in Proc. SPIE 9772, Broadband Access Commun. Technol. X, 12, 2016, Paper 977207, doi: .

Dokumaci, O.

D. J. Frank, W. Haensch, G. Shahidi, and O. Dokumaci, “Optimizing CMOS technology for maximum performance,” IBM J. Res. Develop., vol. 50, no. 4.5, pp. 419–431, 2006.

Dow, J. D.

F. L. Lederman and J. D. Dow, “Theory of electroabsorption by anisotropic and layered semiconductors. I. Two-dimensional excitons in a uniform electric field,” Phys. Rev., vol. B13, pp. 1633–1642, 1976.

J. D. Dow and D. Redfield, “Electroabsorption in semiconductors: The excitonic absorption edge,” Phys. Rev. B, vol. 1, pp. 3358–3371, 1970.

Eda, G.

Edwards, E. H.

E. H. Edwardset al., “Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon,” Opt. Express, vol. 21, pp. 867–876, 2013.

E. H. Edwardset al., “Ge/SiGe asymmetric Fabry-Perot quantum well electroabsorption modulators,” Opt. Express, vol. 20, pp. 29164–29173, 2012. [Online]. Available: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29164

R. M. Audet, E. H. Edwards, P. Wahl, and D. A. B. Miller, “Investigation of limits to the optical performance of asymmetric Fabry-Perot electroabsorption modulators,” IEEE J. Quantum Electron., vol. 48, no. 2, pp. 198–209,  2012, doi: .
[Crossref]

R. K. Schaevitz, D. S. Ly-Gagnon, J. E. Roth, E. H. Edwards, and D. A. B. Miller, “Indirect absorption in germanium quantum wells,” AIP Adv., vol. 1, 2011, Art. no. .

Eggleston, M. S.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” PNAS, vol. 112, no. 6, pp. 1704–1709, 2015, doi: .
[Crossref]

Eilenberger, D. J.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room-temperature optical nonlinearity in GaAs/Ga1-xAlxAs multiple quantum well structures,” Appl. Phys. Lett., vol. 41, pp. 679–681, 1982.

Elder, D. L.

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater., vol. 26, no. 2, pp. 872–874, 2014, doi: .
[Crossref]

Elliott, R. J.

R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev., vol. 108, pp. 1384–1389, 1957.

Ellis, B.

B. Elliset al., “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nature Photon., vol. 5, pp. 297–300, 2011.

Emami, A

M. Raj, S. Saeedi, and A Emami, “A 4-to-11GHz injection-locked quarter-rate clocking for an adaptive 153fJ/b optical receiver in 28nm FDSOI CMOS,” in Proc. 2015 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2015, vol. 58, pp. 404–406.

Emami, A.

S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933,  2015, doi: .
[Crossref]

Emami-Neyestanak, A.

D. A. B. Miller, A. Bhatnagar, S. Palermo, A. Emami-Neyestanak, and M. A. Horowitz, “Opportunities for optics in integrated circuits applications,” in Proc. Int. Solid State Circuits Conf., 2005, Paper 4.6, pp. 86–87.

English, J. H.

M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, “Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides,” Appl. Phys. Lett., vol. 50, pp. 1098–1100, 1987.

Fan, P.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nature Mater., vol. 13, pp. 471–475, 2014, doi: .
[Crossref]

Fan, S.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nature Mater., vol. 13, pp. 471–475, 2014, doi: .
[Crossref]

V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett., vol. 36, pp. 591–593, 2011.

Fan, S. H.

Fei, E. T.

Feng, M.

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the internet,” IEEE Network, vol. 25, no. 2, pp. 6–12, 2011.

Feng, N.-N.

Fidaner, O.

R. K. Schaevitz, J. E. Roth, S. Ren, O. Fidaner, and D. A. B. Miller, “Material properties in Si-Ge/Ge quantum wells,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 4, pp. 1082–1089,  2008.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, pp. 354–362, 2013, doi: .
[Crossref]

Fiorentino, M.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express, vol. 24, pp. 16167–16174, 2016. [Online]. Available: http://dx.doi.org/10.1364/OE.24.016167

D. Liang, M. Fiorentino, and R. G. Beausoleil, “VLSI photonics for high-performance data centers,” Chapter 18 in Silicon Photonics III (Series Topics in Applied Physics, vol. 122), L. Pavesi and D. J. Lockwood, Eds.New York, NY, USA: Springer-Verlag, 2016, pp. 489–516.

Frank, D. J.

D. J. Frank, W. Haensch, G. Shahidi, and O. Dokumaci, “Optimizing CMOS technology for maximum performance,” IBM J. Res. Develop., vol. 50, no. 4.5, pp. 419–431, 2006.

Franke-Arnold, S.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev., vol. 2, pp. 299–313, 2008.

Franz, W.

W. Franz, “Einfluß eines elektrischen Feldes auf eine optische Absorptionskante,” Z. Naturforschung, vol. 13a, pp. 484–489, 1958.

Fujita, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag., vol. 51, no. 3, pp. 72–77, 2013, doi: .
[Crossref]

Gaensslen, F. H.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

Gallant, D.

D. J. Bossert and D. Gallant, “Gain, refractive index, and a-Parameter in InGaAs-GaAs SQW Broad-Area Lasers,” IEEE Photon. Technol. Lett., vol. 8, no. 3, pp. 322–324,  1996.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon., vol. 4, no. 8, pp. 518–526, 2010, doi: .
[Crossref]

G. T. Reed, G. Z. Mashanovich, W. R. Headley, S. P. Chan, B. D. Timotijevic, and F. Y. Gardes, “Silicon photonics: Are smaller devices always better?” Jpn. J. Appl. Phys., vol. 45, no. 8B, pp. 6609–6615, 2006, doi: .
[Crossref]

Garland, M.

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011.

Gather, M. C.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nature Photon., vol. 8, pp. 908–918, 2014, doi: .
[Crossref]

Gerken, M.

Glasco, D.

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011.

Going, R. W.

R. W. Going, J. Loo, T.-J. K. Liu, and M. C. Wu, “Germanium gate PhotoMOSFET integrated to silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4,  2014, Art. no. 8201607, doi: .
[Crossref]

Goossen, K. W.

K. W. Goossenet al., “Low field electroabsorption and self-biased self-electrooptics effect device using slightly asymmetric coupled quantum wells,” in Proc. Topical Meeting Quantum Optoelectron., Salt Lake City, Mar. 1991, Paper MB3.

Gossard, A. C.

M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, “Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides,” Appl. Phys. Lett., vol. 50, pp. 1098–1100, 1987.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron., vol. QE 20, no. 3, pp. 265–275,  1984.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room-temperature optical nonlinearity in GaAs/Ga1-xAlxAs multiple quantum well structures,” Appl. Phys. Lett., vol. 41, pp. 679–681, 1982.

Green, W. M. J.

Gunlycke, D.

Haensch, W.

D. J. Frank, W. Haensch, G. Shahidi, and O. Dokumaci, “Optimizing CMOS technology for maximum performance,” IBM J. Res. Develop., vol. 50, no. 4.5, pp. 419–431, 2006.

Haffner, C.

C. Haffneret al., “Plasmonic organic hybrid modulators—Scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379,  2016, doi: .
[Crossref]

C. Haffneret al., “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nature Photon., vol. 9, pp. 525–528, 2015, doi: .
[Crossref]

Haftel, M. I.

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nature Photon., vol. 9, pp. 267–273, 2015, doi: .
[Crossref]

Hammond, S.

S. Rumley, R. P. Polster, K. Bergman, S. Hammond, and A. F. Rodrigues, “End-to-end modeling and optimization of power consumption in HPC interconnects,” 2016 45th Int. Conf. Parallel Processing Workshops (ICPPW), 16–19, 2016, pp. 133–140, doi: .
[Crossref]

Haney, M. W.

M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 548–556,  2003.

Harris, J. S.

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon., vol. 8, pp. 244–249, 2014, doi: .
[Crossref]

S. A. Claussen, K. C. Balram, E. T. Fei, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective area growth of germanium and germanium/silicon-germanium quantum wells in silicon waveguides for on-chip optical interconnect applications,” Opt. Mater. Express, vol. 2, pp. 1336–1342, 2012.

S. Ren, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition,” Appl. Phys. Lett., vol. 98, 2011, Art. no. .

Haus, H. A.

L. Boivin, M. C. Nuss, J. Shah, D. A. B. Miller, and H. A. Haus, “Receiver sensitivity improvement by impulsive coding,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 684–686,  1997.

Hausken, T.

K. Bergman, J. Shalf, and T. Hausken, “Optical interconnects and extreme computing,” Opt. Photon. News, vol. 27, no. 4, pp. 32–39, 2016, doi: .
[Crossref]

Headley, W. R.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, S. P. Chan, B. D. Timotijevic, and F. Y. Gardes, “Silicon photonics: Are smaller devices always better?” Jpn. J. Appl. Phys., vol. 45, no. 8B, pp. 6609–6615, 2006, doi: .
[Crossref]

Heck, M. J. R.

M. J. R. Hecket al., “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, 2013, Art. no. 6100117, doi: .
[Crossref]

Heinz, T. F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun., vol. 152, pp. 1341–1349, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.ssc.2012.04.064

Helfert, S.

J. Jahns and S. Helfert, Introduction to Micro- and Nanooptics. Hoboken, NJ, USA: Wiley, 2012.

Helman, N. C.

B. E. Nelson, G. A. Keeler, D. Agarwal, N. C. Helman, and D. A. B. Miller, “Wavelength division multiplexed optical interconnect using short pulses,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 486–491,  2003.

Henry, C. H.

C. H. Henry, R. A. Logan, F. R. Merritt, and J. P. Luongo, “The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers,” IEEE J. Quantum Electron., vol. QE-19, no. 6, pp. 947–952,  1983.

Hilbert, M.

M. Hilbert and P. Lopez, “The world's technological capacity to store, communicate, and compute information,” Science, vol. 332, no. 6025, pp. 60–65, 2011.

Hill, M. T.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nature Photon., vol. 8, pp. 908–918, 2014, doi: .
[Crossref]

M. T. Hillet al., “Lasing in metallic-coated nanocavities,” Nature Photon., vol. 1, pp. 589–594, 2007, doi: .
[Crossref]

Hillman, R. L.

M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, “Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides,” Appl. Phys. Lett., vol. 50, pp. 1098–1100, 1987.

Hinton, H. S.

H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, and F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE, vol. 82, no. 11, pp. 1632–1649,  1994, doi: .
[Crossref]

Hinton, K.

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the internet,” IEEE Network, vol. 25, no. 2, pp. 6–12, 2011.

J. Baliga, R. Ayre, K. Hinton, and R. S. Tucker, “Energy consumption in wired and wireless access networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 70–77, 7, 2011.

R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and W. V. Sorin, “Evolution of WDM optical IP networks: A cost and energy perspective,” J. Lightw. Technol., vol. 27, no. 3, pp. 243–252, 2009.

Hisamoto, D.

D. Hisamotoet al., “FinFET—A Self-Aligned Double-Gate MOSFET Scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325, 2000.

Ho, R.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015, doi: .
[Crossref]

Horowitz, M. A.

D. A. B. Miller, A. Bhatnagar, S. Palermo, A. Emami-Neyestanak, and M. A. Horowitz, “Opportunities for optics in integrated circuits applications,” in Proc. Int. Solid State Circuits Conf., 2005, Paper 4.6, pp. 86–87.

Hosseini, E. S.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. 4008, doi: .
[Crossref]

Huang, A.

Huang, K. C. Y.

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon., vol. 8, pp. 244–249, 2014, doi: .
[Crossref]

Huang, Z.

Huo, Y.

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon., vol. 8, pp. 244–249, 2014, doi: .
[Crossref]

Islam, M. N.

M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, “Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides,” Appl. Phys. Lett., vol. 50, pp. 1098–1100, 1987.

Iwamoto, S.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nature Phys., vol. 6, pp. 279–283, 2010, doi: .
[Crossref]

Jahns, J.

J. Jahns and A. Huang, “Planar integration of free-space optical components,” Appl. Opt., vol. 28, pp. 1602–1605, 1989.

J. Jahns and S. Helfert, Introduction to Micro- and Nanooptics. Hoboken, NJ, USA: Wiley, 2012.

Jensen, J. S.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev., vol. 5, pp. 308–321, 2011, doi: .
[Crossref]

Jiang, Q.

Jiao, Y.

Jin, P.

J. Wu and P. Jin, “Self-assembly of InAs quantum dots on GaAs(001) by molecular beam epitaxy,” Front. Phys., vol. 10, 2015, Art. no. 108101, doi: .
[Crossref]

Jo, S.

J. G. Kim, W. S. Yun, S. Jo, J. D. Lee, and C.-H. Cho, “Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals,” Sci. Rep., vol. 6, 2016, Art. no. 29813, doi: .
[Crossref]

Johnson, C.

A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Proc. Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf., 2011, Paper OTuH2, doi: .

Jones, K. L.

J. E. Zucker, K. L. Jones, T. H. Chiu, B. Tell, and K. Brown-Goebeler, “Strained quantum wells for polarization-independent electrooptic waveguide switches,” J. Lightw. Technol., vol. 10, no. 12, pp. 1926–1930,  1992.

Jouppi, N.

R. Beausoleil, M. McLaren, and N. Jouppi, “Photonic architectures for high-performance data centers,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, 2013, Art. no. 3700109, doi: .
[Crossref]

Ju, L.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun., vol. 152, pp. 1341–1349, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.ssc.2012.04.064

Juodawlkis, P. W.

P. W. Juodawlkiset al., “InGaAsP/InP quantum-well electrorefractive modulators with sub-volt Vpi,” in Proc. SPIE 5435, Enabling Photonic Technol. Aerosp. Appl. VI, pp. 53–63, 3, 2004, doi: .

Kahn, J. M.

S. O. Arık, K. -Po Ho, and J. M. Kahn, “Group delay management and multiinput multioutput signal processing in mode-division multiplexing systems,” J. Lightw. Technol., vol. 34, no. 11, pp. 2867–2880,  2016, doi: .
[Crossref]

N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nature Photon., vol. 9, pp. 822–826, 2015, doi: .
[Crossref]

Kamins, T. I.

S. A. Claussen, K. C. Balram, E. T. Fei, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective area growth of germanium and germanium/silicon-germanium quantum wells in silicon waveguides for on-chip optical interconnect applications,” Opt. Mater. Express, vol. 2, pp. 1336–1342, 2012.

S. Ren, T. I. Kamins, and D. A. B. Miller, “Thin dielectric spacer for the monolithic integration of bulk germanium quantum wells with silicon-on-insulator waveguides,” IEEE Photon. J., vol. 3, no. 4, pp. 739–747,  2011.

S. Ren, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition,” Appl. Phys. Lett., vol. 98, 2011, Art. no. .

Keckler, S. W.

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011.

Keeler, G. A.

G. A. Keeleret al., “The benefits of ultrashort optical pulses in optically-interconnected systems,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 477–485, 2003.

B. E. Nelson, G. A. Keeler, D. Agarwal, N. C. Helman, and D. A. B. Miller, “Wavelength division multiplexed optical interconnect using short pulses,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 486–491,  2003.

G. A. Keeler, B. E. Nelson, D. Agarwal, and D. A. B. Miller, “Skew and jitter removal using short optical pulses for optical interconnection,” IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 714–716, 2000.

Keldysh, L. V.

L. V. Keldysh, “The effect of a strong electric field on the optical properties of insulating crystals,” J. Exp. Theoretical Phys., vol. 34, pp. 1138–1141,  1958 (translation: Soviet Physics JETP, vol. 34(7), no. 5, pp. 788–790, 1958).

Khailany, B.

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011.

Kim, J. G.

J. G. Kim, W. S. Yun, S. Jo, J. D. Lee, and C.-H. Cho, “Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals,” Sci. Rep., vol. 6, 2016, Art. no. 29813, doi: .
[Crossref]

Kim, K.

K. Kim, “From the future Si technology perspective: Challenges and opportunities,” in Proc. 2010 IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, Dec. 6–8, 2010, pp. 1.1.1–1.1.9, doi: .

Kirk, A. G.

D. V. Plant and A. G. Kirk, “Optical interconnects at the chip and board level: challenges and solutions,” Proc. IEEE, vol. 88, no. 6, pp. 806–818,  2000.

Klein, J.

J. Kleinet al., “Stark effect spectroscopy of mono- and few-layer MoS2,” Nano Lett., vol. 16, no. 3, pp. 1554–1559, 2016, doi: .
[Crossref]

Kleinert, M.

Knox, W. H.

Ko, W. S.

Kobrinsky, M. J.

K.-N. Chen, M. J. Kobrinsky, B. C. Barnett, and R. Reif, “Comparisons of conventional, 3-D, optical, and RF interconnects for on-chip clock distribution,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 233–239,  2004.

Kocabas, S. E.

S. Latif, S. E. Kocabas, L. Tang, C. Debaes, and D. A. B. Miller, “Low capacitance CMOS silicon photodetectors for optical clock injection,” Appl. Phys. A, Mater. Sci. Process., vol. 95, pp. 1129–1135, 2009.

D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic Impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 6, 1473–1478,  2008, doi: .
[Crossref]

Koester, S. J.

S. J. Koester and M. Li, “Waveguide-coupled graphene optoelectronics,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 1,  2013, Art. no. 6000211, doi: .
[Crossref]

Komljenovic, T.

T. Komljenovicet al., “Heterogeneous silicon photonic integrated circuits,” J. Lightw. Technol., vol. 34, no. 1, pp. 20–35, 2016, doi: .
[Crossref]

Koos, C.

C. Kooset al., “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightw. Technol., vol. 34, no. 2, pp. 256–268,  2016, doi: .
[Crossref]

Krishnamoorthy, A. V.

J. Li, X. Zheng, A. V. Krishnamoorthy, and J. F. Buckwalter, “Scaling trends for picojoule-per-bit WDM photonic interconnects in CMOS SOI and FinFET processes,” J. Lightw. Technol., vol. 34, no. 11, pp. 2730–2742, 2016, doi: .
[Crossref]

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015, doi: .
[Crossref]

A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st Century: A technology roadmap,” IEEE J. Sel. Topics Quantum Electron., vol. 2, no. 1, pp. 55–76,  1996.

A. V. Krishnamoorthyet al., “Computer systems based on silicon photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361,  2009, doi: .

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nature Phys., vol. 6, pp. 279–283, 2010, doi: .
[Crossref]

Kuo, Y.-H.

Y.-H. Kuoet al., “Quantum-confined Stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1503–1513,  2006.

Y.-H. Kuoet al., “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature, vol. 437, pp. 1334–1336, 27, 2005, doi: .
[Crossref]

Kurczveil, G.

Kurz, H.

Kuzum, D.

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller and K. C. Saraswat, “Silicon germanium CMOS optoelectronic switching device: Bringing light to latch,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3252–3259,  2007, doi: .
[Crossref]

Lagoudakis, K. G.

A.Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nature Photon., vol. 9, pp. 374–377, 2015, doi: .
[Crossref]

Lalau-Keraly, C. M.

Lambert, S.

W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Trends in worldwide ICT electricity consumption from 2007 to 2012,” Comput. Commun., vol. 50, pp. 64–76, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2014.02.008

Lannoo, B.

W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Trends in worldwide ICT electricity consumption from 2007 to 2012,” Comput. Commun., vol. 50, pp. 64–76, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2014.02.008

Latif, S.

S. Latif, S. E. Kocabas, L. Tang, C. Debaes, and D. A. B. Miller, “Low capacitance CMOS silicon photodetectors for optical clock injection,” Appl. Phys. A, Mater. Sci. Process., vol. 95, pp. 1129–1135, 2009.

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller and K. C. Saraswat, “Silicon germanium CMOS optoelectronic switching device: Bringing light to latch,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3252–3259,  2007, doi: .
[Crossref]

Lau, K. Y.

D. M. Cutrer and K. Y. Lau, “Ultralow power optical interconnect with zero-biased, ultralow threshold laser-how low a threshold is low enough?” IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 4–6,  1995.

LeBlanc, A. R.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

Lederman, F. L.

F. L. Lederman and J. D. Dow, “Theory of electroabsorption by anisotropic and layered semiconductors. I. Two-dimensional excitons in a uniform electric field,” Phys. Rev., vol. B13, pp. 1633–1642, 1976.

Lee, A.

Lee, J. D.

J. G. Kim, W. S. Yun, S. Jo, J. D. Lee, and C.-H. Cho, “Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals,” Sci. Rep., vol. 6, 2016, Art. no. 29813, doi: .
[Crossref]

Lee, Y. H. D.

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, 2013, Art. no. 8200207, doi: .
[Crossref]

Lentine, A. L.

A. L. Lentine, L. M. F. Chirovsky, and T. K. Woodward, “Optical energy considerations for diode-clamped smart pixel optical receivers,” IEEE J. Quantum Electron., vol. 30, no. 5, pp. 1167–1171,  1994.

H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, and F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE, vol. 82, no. 11, pp. 1632–1649,  1994, doi: .
[Crossref]

A. L. Lentine and D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron., vol. 29, no. 2, pp. 655–669,  1993.

A. L. Lentine and C. T. DeRose, “Challenges in the implementation of dense wavelength division multiplexed (DWDM) optical interconnects using resonant silicon photonics,” in Proc. SPIE 9772, Broadband Access Commun. Technol. X, 12, 2016, Paper 977207, doi: .

A. L. Lentineet al., “Silicon photonics platform for national security applications,” in Proc. IEEE Aerosp. Conf., 2015, pp. 1–9, doi: .

Li, G.

N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nature Photon., vol. 9, pp. 822–826, 2015, doi: .
[Crossref]

G. Liet al., “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6,  2013, Art. no. 3401819, doi: .
[Crossref]

Li, J.

J. Li, X. Zheng, A. V. Krishnamoorthy, and J. F. Buckwalter, “Scaling trends for picojoule-per-bit WDM photonic interconnects in CMOS SOI and FinFET processes,” J. Lightw. Technol., vol. 34, no. 11, pp. 2730–2742, 2016, doi: .
[Crossref]

Li, K.

H. Sun, F. Ren, K. W. Ng, T.-T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano, vol. 8, no. 7, pp. 6833–6839, 2014, doi: .
[Crossref]

Li, L.

L. Liet al., “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects,” J. Lightw. Technol., vol. 31, no. 24, pp. 4080–4086,  2013, doi: .
[Crossref]

Li, M.

S. J. Koester and M. Li, “Waveguide-coupled graphene optoelectronics,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 1,  2013, Art. no. 6000211, doi: .
[Crossref]

Li, X.

N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nature Photon., vol. 9, pp. 822–826, 2015, doi: .
[Crossref]

Li, Y.

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photon. Res., vol. 3, pp. B10–B27, 2015, doi: .
[Crossref]

Y. Liet al., “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B, vol. 90, 2014, Art. no. 205422, doi: .
[Crossref]

Liang, D.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express, vol. 24, pp. 16167–16174, 2016. [Online]. Available: http://dx.doi.org/10.1364/OE.24.016167

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, pp. 1782–1802, 2010, doi: .
[Crossref]

D. Liang, M. Fiorentino, and R. G. Beausoleil, “VLSI photonics for high-performance data centers,” Chapter 18 in Silicon Photonics III (Series Topics in Applied Physics, vol. 122), L. Pavesi and D. J. Lockwood, Eds.New York, NY, USA: Springer-Verlag, 2016, pp. 489–516.

Lipka, T.

Lipson, M.

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, 2013, Art. no. 8200207, doi: .
[Crossref]

Liu, H.

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express, vol. 20, pp. 22181–22187, 2012, doi: .
[Crossref]

A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Proc. Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf., 2011, Paper OTuH2, doi: .

Liu, M.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett., vol. 12, no. 3, pp. 1482–1485, 2012, doi: .
[Crossref]

Liu, T.-J. K.

R. W. Going, J. Loo, T.-J. K. Liu, and M. C. Wu, “Germanium gate PhotoMOSFET integrated to silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4,  2014, Art. no. 8201607, doi: .
[Crossref]

Liu, V.

V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett., vol. 36, pp. 591–593, 2011.

V. Liu, D. A. B. Miller, and S. H. Fan, “Highly tailored computational electromagnetics methods for nanophotonic design and discovery,” Proc. IEEE, vol. 101, no. 2, pp. 484–493,  2013, doi: .

Lo, G.-Q.

S. Zhu and G.-Q. Lo, “Vertically stacked multilayer photonics on bulk silicon toward three-dimensional integration,” J. Lightw. Technol., vol. 34, no. 2, pp. 386–392, 2016, doi: .
[Crossref]

Logan, R. A.

C. H. Henry, R. A. Logan, F. R. Merritt, and J. P. Luongo, “The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers,” IEEE J. Quantum Electron., vol. QE-19, no. 6, pp. 947–952,  1983.

Loo, J.

R. W. Going, J. Loo, T.-J. K. Liu, and M. C. Wu, “Germanium gate PhotoMOSFET integrated to silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4,  2014, Art. no. 8201607, doi: .
[Crossref]

Lopez, D.

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nature Photon., vol. 9, pp. 267–273, 2015, doi: .
[Crossref]

Lopez, P.

M. Hilbert and P. Lopez, “The world's technological capacity to store, communicate, and compute information,” Science, vol. 332, no. 6025, pp. 60–65, 2011.

Lu, F.

Lu, J.

A.Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nature Photon., vol. 9, pp. 374–377, 2015, doi: .
[Crossref]

J. Lu and J. Vučković, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express, vol. 20, pp. 7221–7236, 2012, doi: .
[Crossref]

Lu, L.

Luo, Y.

Y. Luoet al., “Strong electro-absorption in GeSi epitaxy on silicon-on-insulator (SOI),” Micromachines, vol. 3, no. 2, pp. 345–363, 2012, doi: .
[Crossref]

Luongo, J. P.

C. H. Henry, R. A. Logan, F. R. Merritt, and J. P. Luongo, “The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers,” IEEE J. Quantum Electron., vol. QE-19, no. 6, pp. 947–952,  1983.

Ly-Gagnon, D. S.

R. K. Schaevitz, D. S. Ly-Gagnon, J. E. Roth, E. H. Edwards, and D. A. B. Miller, “Indirect absorption in germanium quantum wells,” AIP Adv., vol. 1, 2011, Art. no. .

Ly-Gagnon, D.-S.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics, vol. 1, pp. 9–16, 2012, doi: .
[Crossref]

D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic Impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 6, 1473–1478,  2008, doi: .
[Crossref]

Mak, K. F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun., vol. 152, pp. 1341–1349, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.ssc.2012.04.064

Markov, I. L.

I. L. Markov, “Limits on fundamental limits to computation,” Nature, vol. 512, pp. 147–154, 142014, doi: .
[Crossref]

Martinez, N. J. D.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon., vol. 4, no. 8, pp. 518–526, 2010, doi: .
[Crossref]

Mashanovich, G. Z.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, S. P. Chan, B. D. Timotijevic, and F. Y. Gardes, “Silicon photonics: Are smaller devices always better?” Jpn. J. Appl. Phys., vol. 45, no. 8B, pp. 6609–6615, 2006, doi: .
[Crossref]

Matsuo, S.

S. Matsuoet al., “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nature Photon., vol. 4, pp. 648–654, 2010, doi: .
[Crossref]

McCormick, F. B.

McFadden, M. J.

M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 548–556,  2003.

McLaren, M.

R. Beausoleil, M. McLaren, and N. Jouppi, “Photonic architectures for high-performance data centers,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, 2013, Art. no. 3700109, doi: .
[Crossref]

Menezo, S.

S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933,  2015, doi: .
[Crossref]

Merritt, F. R.

C. H. Henry, R. A. Logan, F. R. Merritt, and J. P. Luongo, “The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers,” IEEE J. Quantum Electron., vol. QE-19, no. 6, pp. 947–952,  1983.

Messer, K.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” PNAS, vol. 112, no. 6, pp. 1704–1709, 2015, doi: .
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Perfect optics with imperfect components,” Optica, vol. 2, pp. 747–750, 2015, doi: .
[Crossref]

D. A. B. Miller, “Sorting out light,” Science, vol. 347, pp. 1423–1424, 2015, doi: .
[Crossref]

D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express, vol. 21, pp. 6360–6370, 2013. [Online]. Avaialble: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6360

D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res., vol. 1, pp. 1–15, 2013. [Online]. Available: http://www.opticsinfobase.org/prj/abstract.cfm?URI=prj-1-1-1http://dx.doi.org/10.1364/PRJ.1.000001

K. C. Balram, R. M. Audet, and D. A. B. Miller, “Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths,” Opt. Express, vol. 21, pp. 10228–10233, 2013. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10228

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express, vol. 20, pp. 23985–23993, 2012. [Online]. Available: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23985

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics, vol. 1, pp. 9–16, 2012, doi: .
[Crossref]

S. A. Claussen, K. C. Balram, E. T. Fei, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective area growth of germanium and germanium/silicon-germanium quantum wells in silicon waveguides for on-chip optical interconnect applications,” Opt. Mater. Express, vol. 2, pp. 1336–1342, 2012.

R. M. Audet, E. H. Edwards, P. Wahl, and D. A. B. Miller, “Investigation of limits to the optical performance of asymmetric Fabry-Perot electroabsorption modulators,” IEEE J. Quantum Electron., vol. 48, no. 2, pp. 198–209,  2012, doi: .
[Crossref]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express, vol. 20, pp. A293–A308, 2012.

S. Ren, T. I. Kamins, and D. A. B. Miller, “Thin dielectric spacer for the monolithic integration of bulk germanium quantum wells with silicon-on-insulator waveguides,” IEEE Photon. J., vol. 3, no. 4, pp. 739–747,  2011.

S. Ren, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition,” Appl. Phys. Lett., vol. 98, 2011, Art. no. .

R. K. Schaevitz, D. S. Ly-Gagnon, J. E. Roth, E. H. Edwards, and D. A. B. Miller, “Indirect absorption in germanium quantum wells,” AIP Adv., vol. 1, 2011, Art. no. .

V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett., vol. 36, pp. 591–593, 2011.

S. A. Claussen, E. Tasyurek, J. E. Roth, and D. A. B. Miller, “Measurement and modeling of ultrafast carrier dynamics and transport in germanium/silicon-germanium quantum wells,” Opt. Express, vol. 18, pp. 25596–25607, 2010.

D. A. B. Miller, “Are optical transistors the next logical step?” Nature Photon., 2010, vol. 4, pp. 3–5, doi: .
[Crossref]

S. Latif, S. E. Kocabas, L. Tang, C. Debaes, and D. A. B. Miller, “Low capacitance CMOS silicon photodetectors for optical clock injection,” Appl. Phys. A, Mater. Sci. Process., vol. 95, pp. 1129–1135, 2009.

R. K. Schaevitz, J. E. Roth, S. Ren, O. Fidaner, and D. A. B. Miller, “Material properties in Si-Ge/Ge quantum wells,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 4, pp. 1082–1089,  2008.

D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic Impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 6, 1473–1478,  2008, doi: .
[Crossref]

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller and K. C. Saraswat, “Silicon germanium CMOS optoelectronic switching device: Bringing light to latch,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3252–3259,  2007, doi: .
[Crossref]

Y. Jiao, S. H. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization by low rank adjustments: an extremely compact mode separator,” Opt. Lett., vol. 30, no. 2, pp. 141–143,  2005. [Online]. Available: http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-2-141

B. E. Nelson, G. A. Keeler, D. Agarwal, N. C. Helman, and D. A. B. Miller, “Wavelength division multiplexed optical interconnect using short pulses,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 486–491,  2003.

M. Gerken and D. A. B. Miller, “Multilayer thin-film structures with high spatial dispersion,” Appl. Opt., vol. 42, pp. 1330–1345, 2003.

G. A. Keeler, B. E. Nelson, D. Agarwal, and D. A. B. Miller, “Skew and jitter removal using short optical pulses for optical interconnection,” IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 714–716, 2000.

D. A. B. Miller, “Communicating with waves between volumes—Evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt., vol. 39, pp. 1681–1699, 2000.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE, vol. 88, no. 6, pp. 728–749, 2000.

D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput., vol. 41, pp. 42–52, 1997.

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, 1997.

L. Boivin, M. C. Nuss, J. Shah, D. A. B. Miller, and H. A. Haus, “Receiver sensitivity improvement by impulsive coding,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 684–686,  1997.

A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st Century: A technology roadmap,” IEEE J. Sel. Topics Quantum Electron., vol. 2, no. 1, pp. 55–76,  1996.

E. A. De Souza, M. C. Nuss, W. H. Knox, and D. A. B. Miller, “Wavelength-division multiplexing with femtosecond pulses,” Opt. Lett., vol. 20, pp. 1166–1168, 1995.

A. L. Lentine and D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron., vol. 29, no. 2, pp. 655–669,  1993.

S. Schmitt-Rink, D. S. Chemla, W. H. Knox, and D. A. B. Miller, “How fast is excitonic electroabsorption?”Opt. Lett., vol. 15, pp. 60–62, 1990.

D. A. B. Miller, “Optics for low-energy communication inside digital processors: Quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett., vol. 14, pp. 146–148, 1989.

D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Electroabsorption of highly confined systems: Theory of the quantum-confined Franz-Keldysh effect in semiconductor quantum wires and dots,” Appl. Phys. Lett., vol. 52, pp. 2154–2156, 1988.

M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, “Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides,” Appl. Phys. Lett., vol. 50, pp. 1098–1100, 1987.

J. S. Weiner, D. A. B. Miller, and D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined stark effect in quantum wells,” Appl. Phys. Lett., vol. 50, pp. 842–844, 1987.

D. A. B. Miller, D. S. Chemla and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev., vol. B33, pp. 6976–6982, 1986.

D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Amer., vol. B2, pp. 1155–1173, 1985.

D. A. B. Milleret al., “Electric field dependence of optical absorption near the bandgap of quantum well structures,” Phys. Rev., vol. B32, pp. 1043–1060, 1985.

D. A. B. Milleret al., “Bandedge electro-absorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett., vol. 53, pp. 2173–2177, 1984.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron., vol. QE 20, no. 3, pp. 265–275,  1984.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room-temperature optical nonlinearity in GaAs/Ga1-xAlxAs multiple quantum well structures,” Appl. Phys. Lett., vol. 41, pp. 679–681, 1982.

D. A. B. Miller, C. T. Seaton, M. E. Prise and S. D. Smith, “Bandgap resonant nonlinear refraction in III V semiconductors,” Phys. Rev. Lett., vol. 47, pp. 197–200, 1981.

V. Liu, D. A. B. Miller, and S. H. Fan, “Highly tailored computational electromagnetics methods for nanophotonic design and discovery,” Proc. IEEE, vol. 101, no. 2, pp. 484–493,  2013, doi: .

D. A. B. Miller, A. Bhatnagar, S. Palermo, A. Emami-Neyestanak, and M. A. Horowitz, “Opportunities for optics in integrated circuits applications,” in Proc. Int. Solid State Circuits Conf., 2005, Paper 4.6, pp. 86–87.

D. A. B. Miller, Quantum Mechanics for Scientists and Engineers. Cambridge, U.K.: Cambridge Univ. Press, 2008.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE, vol. 97, no. 7, pp. 1166–1185, 2009.

Miller, O. D.

Milojkovic, P.

M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 548–556,  2003.

Mohsin, M.

Moldenhauer, L.

Moore, A. W.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. Very Large Scale Integr. Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

Moore, S. W.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. Very Large Scale Integr. Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

Morichetti, F.

F. Morichettiet al., “4-Channel All-Optical MIMO Demultiplexing on a Silicon Chip,” in Proc. Opt. Fibers Commun. Conf., Anaheim, CA, USA, Mar. 24, 2016, Paper ThE3.7.

Morrison, R. L.

Moser, P.

P. Moseret al., “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett., vol. 48, p. 1292–1294, 2012.

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett., vol. 41, pp. 801–802, 2005, doi: .
[Crossref]

Mujumdar, A.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. Very Large Scale Integr. Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

Mukherjee, B.

Müller, J.

Nabet, B.

Z. Wang and B. Nabet, “Nanowire optoelectronics,” Nanophotonics, vol. 4, pp. 491–502, 2015, doi: .
[Crossref]

Naeemi, A.

S. Rakheja, A. Ceyhan, and A. Naeemi, “Interconnect considerations,” in CMOS and Beyond, T.-J. K. Liu and K. Kuhn, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2015, pp. 381–412, doi: .

Nagy, J.

Nakamura, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag., vol. 51, no. 3, pp. 72–77, 2013, doi: .
[Crossref]

Nelson, B. E.

B. E. Nelson, G. A. Keeler, D. Agarwal, N. C. Helman, and D. A. B. Miller, “Wavelength division multiplexed optical interconnect using short pulses,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 486–491,  2003.

G. A. Keeler, B. E. Nelson, D. Agarwal, and D. A. B. Miller, “Skew and jitter removal using short optical pulses for optical interconnection,” IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 714–716, 2000.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, pp. 354–362, 2013, doi: .
[Crossref]

Neumaier, D.

Ng, K. W.

H. Sun, F. Ren, K. W. Ng, T.-T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano, vol. 8, no. 7, pp. 6833–6839, 2014, doi: .
[Crossref]

F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express, vol. 20, pp. 12171–12176, 2012, doi: .
[Crossref]

Ning, C. Z.

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B, vol. 247, no. 4, pp. 774–788, 2010.

Noculak, A.

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nature Phys., vol. 6, pp. 279–283, 2010, doi: .
[Crossref]

Nozaki, K.

Nuss, M. C.

L. Boivin, M. C. Nuss, J. Shah, D. A. B. Miller, and H. A. Haus, “Receiver sensitivity improvement by impulsive coding,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 684–686,  1997.

E. A. De Souza, M. C. Nuss, W. H. Knox, and D. A. B. Miller, “Wavelength-division multiplexing with femtosecond pulses,” Opt. Lett., vol. 20, pp. 1166–1168, 1995.

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett., vol. 41, pp. 801–802, 2005, doi: .
[Crossref]

Okyay, A. K.

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller and K. C. Saraswat, “Silicon germanium CMOS optoelectronic switching device: Bringing light to latch,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3252–3259,  2007, doi: .
[Crossref]

Orcutt, J. S.

Ota, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nature Phys., vol. 6, pp. 279–283, 2010, doi: .
[Crossref]

Otto, M.

Ozaktas, H. M.

D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput., vol. 41, pp. 42–52, 1997.

Padgett, M.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev., vol. 2, pp. 299–313, 2008.

Palermo, S.

D. A. B. Miller, A. Bhatnagar, S. Palermo, A. Emami-Neyestanak, and M. A. Horowitz, “Opportunities for optics in integrated circuits applications,” in Proc. Int. Solid State Circuits Conf., 2005, Paper 4.6, pp. 86–87.

Pandey, A.

A. Pandeyet al., “Effect of load capacitance and input transition time on FinFET inverter capacitances,” IEEE Trans. Electron Dev., vol. 61, no. 1, pp. 30–36, 2014, doi: .
[Crossref]

Pares, G.

S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933,  2015, doi: .
[Crossref]

Parthiban, R.

R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and W. V. Sorin, “Evolution of WDM optical IP networks: A cost and energy perspective,” J. Lightw. Technol., vol. 27, no. 3, pp. 243–252, 2009.

Patyra, M.

R. S. Shelar and M. Patyra, “Impact of local interconnects on timing and power in a high performance microprocessor,” in Proc. 19th Int. Symp. Phys. Des., 2010, pp. 145–152, doi: .

Personick, S. D.

R. G. Smith and S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for Optical Communication. New York, NY, USA: Springer-Verlag, 1982, pp. 89–160.

Petykiewicz, J.

A.Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nature Photon., vol. 9, pp. 374–377, 2015, doi: .
[Crossref]

Pickavet, M.

W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Trends in worldwide ICT electricity consumption from 2007 to 2012,” Comput. Commun., vol. 50, pp. 64–76, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2014.02.008

Piggott, A.Y.

A.Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nature Photon., vol. 9, pp. 374–377, 2015, doi: .
[Crossref]

Plant, D. V.

D. V. Plant and A. G. Kirk, “Optical interconnects at the chip and board level: challenges and solutions,” Proc. IEEE, vol. 88, no. 6, pp. 806–818,  2000.

-Po Ho, K.

S. O. Arık, K. -Po Ho, and J. M. Kahn, “Group delay management and multiinput multioutput signal processing in mode-division multiplexing systems,” J. Lightw. Technol., vol. 34, no. 11, pp. 2867–2880,  2016, doi: .
[Crossref]

Polster, R. P.

S. Rumley, R. P. Polster, K. Bergman, S. Hammond, and A. F. Rodrigues, “End-to-end modeling and optimization of power consumption in HPC interconnects,” 2016 45th Int. Conf. Parallel Processing Workshops (ICPPW), 16–19, 2016, pp. 133–140, doi: .
[Crossref]

Poon, A. W.

Prise, M. E.

D. A. B. Miller, C. T. Seaton, M. E. Prise and S. D. Smith, “Bandgap resonant nonlinear refraction in III V semiconductors,” Phys. Rev. Lett., vol. 47, pp. 197–200, 1981.

Proesel, J.

J. Proesel, C. Schow, and A. Rylyakov, “Ultra low power 10- to 25-Gb/s CMOS-driven VCSEL links,” in Proc. Opt. Fiber Commun. Conf., 2012, Paper OW4I.3, doi: .

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,”Phys. Rev., vol. 69, p. 681, 1946.

Qiu, F.

F. Qiuet al., “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon., vol. 3, pp. 780–783, 2016, doi: .
[Crossref]

Raj, M.

M. Raj, S. Saeedi, and A Emami, “A 4-to-11GHz injection-locked quarter-rate clocking for an adaptive 153fJ/b optical receiver in 28nm FDSOI CMOS,” in Proc. 2015 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2015, vol. 58, pp. 404–406.

Rakheja, S.

S. Rakheja, A. Ceyhan, and A. Naeemi, “Interconnect considerations,” in CMOS and Beyond, T.-J. K. Liu and K. Kuhn, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2015, pp. 381–412, doi: .

Reano, R. M.

Redfield, D.

J. D. Dow and D. Redfield, “Electroabsorption in semiconductors: The excitonic absorption edge,” Phys. Rev. B, vol. 1, pp. 3358–3371, 1970.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon., vol. 4, no. 8, pp. 518–526, 2010, doi: .
[Crossref]

G. T. Reed, G. Z. Mashanovich, W. R. Headley, S. P. Chan, B. D. Timotijevic, and F. Y. Gardes, “Silicon photonics: Are smaller devices always better?” Jpn. J. Appl. Phys., vol. 45, no. 8B, pp. 6609–6615, 2006, doi: .
[Crossref]

Reif, R.

K.-N. Chen, M. J. Kobrinsky, B. C. Barnett, and R. Reif, “Comparisons of conventional, 3-D, optical, and RF interconnects for on-chip clock distribution,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 233–239,  2004.

Ren, F.

H. Sun, F. Ren, K. W. Ng, T.-T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano, vol. 8, no. 7, pp. 6833–6839, 2014, doi: .
[Crossref]

Ren, S.

S. Renet al., “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated with SOI Waveguides,” IEEE Photon. Technol. Lett., vol. 24, no. 6, pp. 461–463,  2012, doi: .
[Crossref]

S. Ren, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition,” Appl. Phys. Lett., vol. 98, 2011, Art. no. .

S. Ren, T. I. Kamins, and D. A. B. Miller, “Thin dielectric spacer for the monolithic integration of bulk germanium quantum wells with silicon-on-insulator waveguides,” IEEE Photon. J., vol. 3, no. 4, pp. 739–747,  2011.

R. K. Schaevitz, J. E. Roth, S. Ren, O. Fidaner, and D. A. B. Miller, “Material properties in Si-Ge/Ge quantum wells,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 4, pp. 1082–1089,  2008.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, pp. 354–362, 2013, doi: .
[Crossref]

Rideout, V. L.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

Robinson, B. H.

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater., vol. 26, no. 2, pp. 872–874, 2014, doi: .
[Crossref]

Rodrigues, A. F.

S. Rumley, R. P. Polster, K. Bergman, S. Hammond, and A. F. Rodrigues, “End-to-end modeling and optimization of power consumption in HPC interconnects,” 2016 45th Int. Conf. Parallel Processing Workshops (ICPPW), 16–19, 2016, pp. 133–140, doi: .
[Crossref]

Roelkens, G.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, pp. 1782–1802, 2010, doi: .
[Crossref]

Rong, Y.

S. Ren, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition,” Appl. Phys. Lett., vol. 98, 2011, Art. no. .

Rooks, M. J.

Roth, J. E.

R. K. Schaevitz, D. S. Ly-Gagnon, J. E. Roth, E. H. Edwards, and D. A. B. Miller, “Indirect absorption in germanium quantum wells,” AIP Adv., vol. 1, 2011, Art. no. .

S. A. Claussen, E. Tasyurek, J. E. Roth, and D. A. B. Miller, “Measurement and modeling of ultrafast carrier dynamics and transport in germanium/silicon-germanium quantum wells,” Opt. Express, vol. 18, pp. 25596–25607, 2010.

R. K. Schaevitz, J. E. Roth, S. Ren, O. Fidaner, and D. A. B. Miller, “Material properties in Si-Ge/Ge quantum wells,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 4, pp. 1082–1089,  2008.

J. E. Rothet al., “C-band side-entry Ge quantum-well electroabsorption modulator on SOI operating at 1 V swing,” Electron. Lett., vol. 44, pp. 49–50, 2008.

J. E. Rothet al., “Optical modulator on silicon employing germanium quantum wells,” Opt. Express, vol. 15, pp. 5851–5859, 2007. [Online]. Available: http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-9-5851

Rumley, S.

S. Rumley, R. P. Polster, K. Bergman, S. Hammond, and A. F. Rodrigues, “End-to-end modeling and optimization of power consumption in HPC interconnects,” 2016 45th Int. Conf. Parallel Processing Workshops (ICPPW), 16–19, 2016, pp. 133–140, doi: .
[Crossref]

Ryf, R.

R. Ryfet al., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO Processing,” J. Lightw. Technol., vol. 30, no. 4, pp. 521–531,  2012.

Rylyakov, A.

J. Proesel, C. Schow, and A. Rylyakov, “Ultra low power 10- to 25-Gb/s CMOS-driven VCSEL links,” in Proc. Opt. Fiber Commun. Conf., 2012, Paper OW4I.3, doi: .

Saeedi, S.

S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933,  2015, doi: .
[Crossref]

M. Raj, S. Saeedi, and A Emami, “A 4-to-11GHz injection-locked quarter-rate clocking for an adaptive 153fJ/b optical receiver in 28nm FDSOI CMOS,” in Proc. 2015 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2015, vol. 58, pp. 404–406.

Saraswat, K. C.

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller and K. C. Saraswat, “Silicon germanium CMOS optoelectronic switching device: Bringing light to latch,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3252–3259,  2007, doi: .
[Crossref]

Sarmiento, T.

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon., vol. 8, pp. 244–249, 2014, doi: .
[Crossref]

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett., vol. 41, pp. 801–802, 2005, doi: .
[Crossref]

Schaevitz, R. K.

R. K. Schaevitzet al., “Simple electroabsorption calculator for designing 1310nm and 1550nm modulators using germanium quantum wells,” IEEE J. Quantum Electron., vol. 48, no. 2, pp. 187–197,  2012, doi: .
[Crossref]

R. K. Schaevitz, D. S. Ly-Gagnon, J. E. Roth, E. H. Edwards, and D. A. B. Miller, “Indirect absorption in germanium quantum wells,” AIP Adv., vol. 1, 2011, Art. no. .

R. K. Schaevitz, J. E. Roth, S. Ren, O. Fidaner, and D. A. B. Miller, “Material properties in Si-Ge/Ge quantum wells,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 4, pp. 1082–1089,  2008.

Schall, D.

Schmitt-Rink, S.

S. Schmitt-Rink, D. S. Chemla, W. H. Knox, and D. A. B. Miller, “How fast is excitonic electroabsorption?”Opt. Lett., vol. 15, pp. 60–62, 1990.

D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Electroabsorption of highly confined systems: Theory of the quantum-confined Franz-Keldysh effect in semiconductor quantum wires and dots,” Appl. Phys. Lett., vol. 52, pp. 2154–2156, 1988.

D. A. B. Miller, D. S. Chemla and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev., vol. B33, pp. 6976–6982, 1986.

Schow, C.

J. Proesel, C. Schow, and A. Rylyakov, “Ultra low power 10- to 25-Gb/s CMOS-driven VCSEL links,” in Proc. Opt. Fiber Commun. Conf., 2012, Paper OW4I.3, doi: .

Schwetman, H.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015, doi: .
[Crossref]

Seaton, C. T.

D. A. B. Miller, C. T. Seaton, M. E. Prise and S. D. Smith, “Bandgap resonant nonlinear refraction in III V semiconductors,” Phys. Rev. Lett., vol. 47, pp. 197–200, 1981.

Seeds, A.

Sekaric, L.

Senanayake, P.

P. Senanayakeet al., “Thin 3D multiplication regions in plasmonically enhanced nanopillar avalanche detectors,” Nano Lett., vol. 12, no. 12, pp. 6448–6452, 2012, doi: .
[Crossref]

Seo, M.-K.

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon., vol. 8, pp. 244–249, 2014, doi: .
[Crossref]

Shah, J.

L. Boivin, M. C. Nuss, J. Shah, D. A. B. Miller, and H. A. Haus, “Receiver sensitivity improvement by impulsive coding,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 684–686,  1997.

Shahidi, G.

D. J. Frank, W. Haensch, G. Shahidi, and O. Dokumaci, “Optimizing CMOS technology for maximum performance,” IBM J. Res. Develop., vol. 50, no. 4.5, pp. 419–431, 2006.

Shakouri, A.

A. Shakouri, “Nano-scale thermal transport and microrefrigerators on a chip,” Proc. IEEE, vol. 94, no. 8, pp. 1613–1638,  2006, doi: .
[Crossref]

Shalf, J.

K. Bergman, J. Shalf, and T. Hausken, “Optical interconnects and extreme computing,” Opt. Photon. News, vol. 27, no. 4, pp. 32–39, 2016, doi: .
[Crossref]

Shambat, G.

G. Shambatet al., “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nature Communications, vol. 2, 2011, Art. no. 539, doi: .
[Crossref]

Shang, K.

Shelar, R. S.

R. S. Shelar and M. Patyra, “Impact of local interconnects on timing and power in a high performance microprocessor,” in Proc. 19th Int. Symp. Phys. Des., 2010, pp. 145–152, doi: .

Shinada, M.

M. Shinada and S. Sugano, “Interband optical transitions in extremely anisotropic semiconductors. i. bound and unbound exciton absorption,” J. Phys. Soc. Jpn., vol. 21, pp. 1936–1946, 1966. [Online]. Available: http://dx.doi.org/10.1143/JPSJ.21.1936

Sigmund, O.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev., vol. 5, pp. 308–321, 2011, doi: .
[Crossref]

Simsek, E.

Singh, A.

A. Singhet al., “Jupiter rising: A decade of clos topologies and centralized control in google's datacenter network,” in Proc. SIGCOMM, London, U.K., Aug. 17–21, 2015, pp. 183–197, doi: .

Smith, P. W.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron., vol. QE 20, no. 3, pp. 265–275,  1984.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room-temperature optical nonlinearity in GaAs/Ga1-xAlxAs multiple quantum well structures,” Appl. Phys. Lett., vol. 41, pp. 679–681, 1982.

Smith, R. G.

R. G. Smith and S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for Optical Communication. New York, NY, USA: Springer-Verlag, 1982, pp. 89–160.

Smith, S. D.

D. A. B. Miller, C. T. Seaton, M. E. Prise and S. D. Smith, “Bandgap resonant nonlinear refraction in III V semiconductors,” Phys. Rev. Lett., vol. 47, pp. 197–200, 1981.

Soci, C.

X. Dai, M. Tchernycheva, and C. Soci, “Compound semiconductor nanowire photodetectors,” Semicond. Semimetals, vol. 94, pp. 75–107, 2016. [Online]. Available: http://dx.doi.org/10.1016/bs.semsem.2015.08.001

Song, J.

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater., vol. 26, no. 2, pp. 872–874, 2014, doi: .
[Crossref]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. 4008, doi: .
[Crossref]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron, vol. 23, no. 1, pp. 123–129,  1987.

Sorin, W. V.

R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and W. V. Sorin, “Evolution of WDM optical IP networks: A cost and energy perspective,” J. Lightw. Technol., vol. 27, no. 3, pp. 243–252, 2009.

Streibl, N.

N. Streiblet al., “Digital optics,” Proc. IEEE, vol. 77, no. 12, pp. 1954–1969,  1989.

Subbaraman, H.

Sugano, S.

M. Shinada and S. Sugano, “Interband optical transitions in extremely anisotropic semiconductors. i. bound and unbound exciton absorption,” J. Phys. Soc. Jpn., vol. 21, pp. 1936–1946, 1966. [Online]. Available: http://dx.doi.org/10.1143/JPSJ.21.1936

Sun, C.

C. Sunet al., “A monolithically-integrated chip-to-chip optical link in bulk CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 828–844, 2015, doi: .
[Crossref]

Sun, H.

H. Sun, F. Ren, K. W. Ng, T.-T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano, vol. 8, no. 7, pp. 6833–6839, 2014, doi: .
[Crossref]

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. 4008, doi: .
[Crossref]

Tanabe, K.

K. Tanabe, K. Watanabe and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep., vol. 2, 2012, Art. no. , doi: .
[Crossref]

Tang, L.

S. Latif, S. E. Kocabas, L. Tang, C. Debaes, and D. A. B. Miller, “Low capacitance CMOS silicon photodetectors for optical clock injection,” Appl. Phys. A, Mater. Sci. Process., vol. 95, pp. 1129–1135, 2009.

L. Tanget al., “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photon., vol. 2, pp. 226–229, 2008, doi: .
[Crossref]

Tang, M.

Tasyurek, E.

Tchernycheva, M.

X. Dai, M. Tchernycheva, and C. Soci, “Compound semiconductor nanowire photodetectors,” Semicond. Semimetals, vol. 94, pp. 75–107, 2016. [Online]. Available: http://dx.doi.org/10.1016/bs.semsem.2015.08.001

Tell, B.

J. E. Zucker, K. L. Jones, T. H. Chiu, B. Tell, and K. Brown-Goebeler, “Strained quantum wells for polarization-independent electrooptic waveguide switches,” J. Lightw. Technol., vol. 10, no. 12, pp. 1926–1930,  1992.

Thacker, H. D.

Tharmalingam, K.

K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev., vol. 130, pp. 2204–2206, 1963.

Thomson, D.

D. Thomsonet al., “Roadmap on silicon photonics,” J. Opt., vol. 18, 2016, Art. no. 073003, doi: .
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon., vol. 4, no. 8, pp. 518–526, 2010, doi: .
[Crossref]

Timotijevic, B. D.

G. T. Reed, G. Z. Mashanovich, W. R. Headley, S. P. Chan, B. D. Timotijevic, and F. Y. Gardes, “Silicon photonics: Are smaller devices always better?” Jpn. J. Appl. Phys., vol. 45, no. 8B, pp. 6609–6615, 2006, doi: .
[Crossref]

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. 4008, doi: .
[Crossref]

Tooley, F. A. P.

H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, and F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE, vol. 82, no. 11, pp. 1632–1649,  1994, doi: .
[Crossref]

Tran, T.-T. D.

H. Sun, F. Ren, K. W. Ng, T.-T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano, vol. 8, no. 7, pp. 6833–6839, 2014, doi: .
[Crossref]

F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express, vol. 20, pp. 12171–12176, 2012, doi: .
[Crossref]

Trieu, H. K.

Tsakmakidis, K. L.

Tsang, W. T.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room-temperature optical nonlinearity in GaAs/Ga1-xAlxAs multiple quantum well structures,” Appl. Phys. Lett., vol. 41, pp. 679–681, 1982.

Tseng, F.

Tucker, R. S.

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the internet,” IEEE Network, vol. 25, no. 2, pp. 6–12, 2011.

J. Baliga, R. Ayre, K. Hinton, and R. S. Tucker, “Energy consumption in wired and wireless access networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 70–77, 7, 2011.

R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and W. V. Sorin, “Evolution of WDM optical IP networks: A cost and energy perspective,” J. Lightw. Technol., vol. 27, no. 3, pp. 243–252, 2009.

R. S. Tucker, “Energy consumption in digital optical ICs with plasmon waveguide interconnects,” IEEE Photon. Technol. Lett., vol. 19, no. 24, pp. 2036–2038,  2007.

Urino, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag., vol. 51, no. 3, pp. 72–77, 2013, doi: .
[Crossref]

Vahdat, A.

A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Proc. Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf., 2011, Paper OTuH2, doi: .

Van Heddeghem, W.

W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Trends in worldwide ICT electricity consumption from 2007 to 2012,” Comput. Commun., vol. 50, pp. 64–76, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2014.02.008

Van Thourhout, D.

D. Van Thourhoutet al., “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1363–1375, 2010, doi: .
[Crossref]

van Uden, R. G. H.

R. G. H. van Udenet al., “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, pp. 865–870, 2014, doi: .
[Crossref]

Venkataramani, A.

N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in mobile phones: A measurement study and implications for network applications,” in Proc. 9th ACM SIGCOMM Conf. Internet Meas., Chicago, IL, USA, Nov. 4–6, 2009.

Vlasov, Y. A.

Vuckovic, J.

A.Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nature Photon., vol. 9, pp. 374–377, 2015, doi: .
[Crossref]

J. Lu and J. Vučković, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express, vol. 20, pp. 7221–7236, 2012, doi: .
[Crossref]

Wahl, P.

R. M. Audet, E. H. Edwards, P. Wahl, and D. A. B. Miller, “Investigation of limits to the optical performance of asymmetric Fabry-Perot electroabsorption modulators,” IEEE J. Quantum Electron., vol. 48, no. 2, pp. 198–209,  2012, doi: .
[Crossref]

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics, vol. 1, pp. 9–16, 2012, doi: .
[Crossref]

Waldrop, M. M.

M. M. Waldrop, “More than Moore,” Nature, vol. 530, pp. 144–147, 16, 2016, doi: .
[Crossref]

Walker, S. L.

Wambacq, P.

P. Wambacqet al., “The potential of FinFETs for analog and RF circuit applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 11, pp. 2541–2551, 2007, doi: .
[Crossref]

Wang, F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun., vol. 152, pp. 1341–1349, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.ssc.2012.04.064

Wang, Z.

Z. Wang and B. Nabet, “Nanowire optoelectronics,” Nanophotonics, vol. 4, pp. 491–502, 2015, doi: .
[Crossref]

Watanabe, K.

K. Tanabe, K. Watanabe and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep., vol. 2, 2012, Art. no. , doi: .
[Crossref]

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. 4008, doi: .
[Crossref]

Watts, P. M.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. Very Large Scale Integr. Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

Weigel, P. O.

P. O. Weigelet al., “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep., vol. 6, 2016, Art. no. 22301, doi: .
[Crossref]

Weiner, J. S.

J. S. Weiner, D. A. B. Miller, and D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined stark effect in quantum wells,” Appl. Phys. Lett., vol. 50, pp. 842–844, 1987.

Welch, D. F.

D. F. Welchet al., “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Lightw. Technol., vol. 24, no. 12, pp. 4674–4683, 2006, doi: .
[Crossref]

West, A.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. Very Large Scale Integr. Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

White, J. S.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics, vol. 1, pp. 9–16, 2012, doi: .
[Crossref]

Wiegmann, W.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron., vol. QE 20, no. 3, pp. 265–275,  1984.

Winzer, P. J.

P. J. Winzer, “Making spatial multiplexing a reality,” Nature Photon., vol. 8, pp. 345–348, 2014, doi: .
[Crossref]

P. J. Winzer, “Spatial multiplexing in fiber optics: The 10X scaling of metro/core capacities,” Bell Labs Tech. J., vol. 19, pp. 22–30, 2014, doi: .
[Crossref]

Woodward, T. K.

A. L. Lentine, L. M. F. Chirovsky, and T. K. Woodward, “Optical energy considerations for diode-clamped smart pixel optical receivers,” IEEE J. Quantum Electron., vol. 30, no. 5, pp. 1167–1171,  1994.

Wu, J.

J. Wu and P. Jin, “Self-assembly of InAs quantum dots on GaAs(001) by molecular beam epitaxy,” Front. Phys., vol. 10, 2015, Art. no. 108101, doi: .
[Crossref]

Wu, M. C.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” PNAS, vol. 112, no. 6, pp. 1704–1709, 2015, doi: .
[Crossref]

R. W. Going, J. Loo, T.-J. K. Liu, and M. C. Wu, “Germanium gate PhotoMOSFET integrated to silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4,  2014, Art. no. 8201607, doi: .
[Crossref]

Yablonovitch, E.

Yin, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett., vol. 12, no. 3, pp. 1482–1485, 2012, doi: .
[Crossref]

Yu, Z.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nature Mater., vol. 13, pp. 471–475, 2014, doi: .
[Crossref]

Yun, W. S.

J. G. Kim, W. S. Yun, S. Jo, J. D. Lee, and C.-H. Cho, “Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals,” Sci. Rep., vol. 6, 2016, Art. no. 29813, doi: .
[Crossref]

Zhang, L.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” PNAS, vol. 112, no. 6, pp. 1704–1709, 2015, doi: .
[Crossref]

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photon. Res., vol. 3, pp. B10–B27, 2015, doi: .
[Crossref]

Zhang, X.

Zhang, Y.

Zhao, N.

N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nature Photon., vol. 9, pp. 822–826, 2015, doi: .
[Crossref]

Zhao, X.

A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Proc. Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf., 2011, Paper OTuH2, doi: .

Zheng, X.

J. Li, X. Zheng, A. V. Krishnamoorthy, and J. F. Buckwalter, “Scaling trends for picojoule-per-bit WDM photonic interconnects in CMOS SOI and FinFET processes,” J. Lightw. Technol., vol. 34, no. 11, pp. 2730–2742, 2016, doi: .
[Crossref]

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015, doi: .
[Crossref]

Zhu, S.

S. Zhu and G.-Q. Lo, “Vertically stacked multilayer photonics on bulk silicon toward three-dimensional integration,” J. Lightw. Technol., vol. 34, no. 2, pp. 386–392, 2016, doi: .
[Crossref]

Zucker, J. E.

J. E. Zucker, K. L. Jones, T. H. Chiu, B. Tell, and K. Brown-Goebeler, “Strained quantum wells for polarization-independent electrooptic waveguide switches,” J. Lightw. Technol., vol. 10, no. 12, pp. 1926–1930,  1992.

2016 45th Int. Conf. Parallel Processing Workshops (ICPPW) (1)

S. Rumley, R. P. Polster, K. Bergman, S. Hammond, and A. F. Rodrigues, “End-to-end modeling and optimization of power consumption in HPC interconnects,” 2016 45th Int. Conf. Parallel Processing Workshops (ICPPW), 16–19, 2016, pp. 133–140, doi: .
[Crossref]

ACS Nano (1)

H. Sun, F. Ren, K. W. Ng, T.-T. D. Tran, K. Li, and C. J. Chang-Hasnain, “Nanopillar lasers directly grown on silicon with heterostructure surface passivation,” ACS Nano, vol. 8, no. 7, pp. 6833–6839, 2014, doi: .
[Crossref]

ACS Photon. (1)

F. Qiuet al., “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon., vol. 3, pp. 780–783, 2016, doi: .
[Crossref]

AIP Adv. (1)

R. K. Schaevitz, D. S. Ly-Gagnon, J. E. Roth, E. H. Edwards, and D. A. B. Miller, “Indirect absorption in germanium quantum wells,” AIP Adv., vol. 1, 2011, Art. no. .

Appl. Opt. (6)

Appl. Phys. A, Mater. Sci. Process. (1)

S. Latif, S. E. Kocabas, L. Tang, C. Debaes, and D. A. B. Miller, “Low capacitance CMOS silicon photodetectors for optical clock injection,” Appl. Phys. A, Mater. Sci. Process., vol. 95, pp. 1129–1135, 2009.

Appl. Phys. A. (1)

G. Astfalk, “Why optical data communications and why now?” Appl. Phys. A., vol. 95, pp. 933–940, 2009.

Appl. Phys. Lett. (6)

S. Ren, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition,” Appl. Phys. Lett., vol. 98, 2011, Art. no. .

D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Electroabsorption of highly confined systems: Theory of the quantum-confined Franz-Keldysh effect in semiconductor quantum wires and dots,” Appl. Phys. Lett., vol. 52, pp. 2154–2156, 1988.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room-temperature optical nonlinearity in GaAs/Ga1-xAlxAs multiple quantum well structures,” Appl. Phys. Lett., vol. 41, pp. 679–681, 1982.

M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, “Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides,” Appl. Phys. Lett., vol. 50, pp. 1098–1100, 1987.

D. S. Chemlaet al., “Optical reading of field-effect transistors by phase-space absorption quenching in a single InGaAs quantum well conducting channel,” Appl. Phys. Lett., vol. 50, pp. 585–587, 1987.

J. S. Weiner, D. A. B. Miller, and D. S. Chemla, “Quadratic electro-optic effect due to the quantum-confined stark effect in quantum wells,” Appl. Phys. Lett., vol. 50, pp. 842–844, 1987.

Bell Labs Tech. J. (1)

P. J. Winzer, “Spatial multiplexing in fiber optics: The 10X scaling of metro/core capacities,” Bell Labs Tech. J., vol. 19, pp. 22–30, 2014, doi: .
[Crossref]

Chem. Mater. (1)

D. L. Elder, S. J. Benight, J. Song, B. H. Robinson, and L. R. Dalton, “Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores,” Chem. Mater., vol. 26, no. 2, pp. 872–874, 2014, doi: .
[Crossref]

Comput. Commun. (1)

W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Trends in worldwide ICT electricity consumption from 2007 to 2012,” Comput. Commun., vol. 50, pp. 64–76, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2014.02.008

Electron. Lett. (3)

J. E. Rothet al., “C-band side-entry Ge quantum-well electroabsorption modulator on SOI operating at 1 V swing,” Electron. Lett., vol. 44, pp. 49–50, 2008.

P. Moseret al., “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s,” Electron. Lett., vol. 48, p. 1292–1294, 2012.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett., vol. 41, pp. 801–802, 2005, doi: .
[Crossref]

Found. Phys. (1)

R. G. Beausoleil, “Large scale integrated photonics for twenty-first century information technologies—A “Moore's Law” for optics,” Found. Phys., vol. 44, pp. 856–872, 2014, doi: .
[Crossref]

Front. Phys. (1)

J. Wu and P. Jin, “Self-assembly of InAs quantum dots on GaAs(001) by molecular beam epitaxy,” Front. Phys., vol. 10, 2015, Art. no. 108101, doi: .
[Crossref]

IBM J. Res. Develop. (1)

D. J. Frank, W. Haensch, G. Shahidi, and O. Dokumaci, “Optimizing CMOS technology for maximum performance,” IBM J. Res. Develop., vol. 50, no. 4.5, pp. 419–431, 2006.

IEEE Commun. Mag. (2)

J. Baliga, R. Ayre, K. Hinton, and R. S. Tucker, “Energy consumption in wired and wireless access networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 70–77, 7, 2011.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag., vol. 51, no. 3, pp. 72–77, 2013, doi: .
[Crossref]

IEEE J. Quantum Electron (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron, vol. 23, no. 1, pp. 123–129,  1987.

IEEE J. Quantum Electron. (7)

R. M. Audet, E. H. Edwards, P. Wahl, and D. A. B. Miller, “Investigation of limits to the optical performance of asymmetric Fabry-Perot electroabsorption modulators,” IEEE J. Quantum Electron., vol. 48, no. 2, pp. 198–209,  2012, doi: .
[Crossref]

R. K. Schaevitzet al., “Simple electroabsorption calculator for designing 1310nm and 1550nm modulators using germanium quantum wells,” IEEE J. Quantum Electron., vol. 48, no. 2, pp. 187–197,  2012, doi: .
[Crossref]

C. H. Henry, R. A. Logan, F. R. Merritt, and J. P. Luongo, “The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers,” IEEE J. Quantum Electron., vol. QE-19, no. 6, pp. 947–952,  1983.

D. S. Chemlaet al., “Modulation of absorption in field-effect quantum well structures,” IEEE J. Quantum Electron., vol. 24, no. 8, pp. 1664–1676,  1988.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron., vol. QE 20, no. 3, pp. 265–275,  1984.

A. L. Lentine and D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron., vol. 29, no. 2, pp. 655–669,  1993.

A. L. Lentine, L. M. F. Chirovsky, and T. K. Woodward, “Optical energy considerations for diode-clamped smart pixel optical receivers,” IEEE J. Quantum Electron., vol. 30, no. 5, pp. 1167–1171,  1994.

IEEE J. Sel. Topics Quantum Electron. (15)

R. W. Going, J. Loo, T.-J. K. Liu, and M. C. Wu, “Germanium gate PhotoMOSFET integrated to silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4,  2014, Art. no. 8201607, doi: .
[Crossref]

C. Debaeset al., “Low-cost microoptical modules for mcm level optical interconnections,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 518–530,  2003.

M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 548–556,  2003.

S. J. Koester and M. Li, “Waveguide-coupled graphene optoelectronics,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 1,  2013, Art. no. 6000211, doi: .
[Crossref]

D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic Impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 6, 1473–1478,  2008, doi: .
[Crossref]

A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st Century: A technology roadmap,” IEEE J. Sel. Topics Quantum Electron., vol. 2, no. 1, pp. 55–76,  1996.

G. Liet al., “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6,  2013, Art. no. 3401819, doi: .
[Crossref]

M. J. R. Hecket al., “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, 2013, Art. no. 6100117, doi: .
[Crossref]

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, 2013, Art. no. 8200207, doi: .
[Crossref]

D. Van Thourhoutet al., “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1363–1375, 2010, doi: .
[Crossref]

R. K. Schaevitz, J. E. Roth, S. Ren, O. Fidaner, and D. A. B. Miller, “Material properties in Si-Ge/Ge quantum wells,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 4, pp. 1082–1089,  2008.

Y.-H. Kuoet al., “Quantum-confined Stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1503–1513,  2006.

G. A. Keeleret al., “The benefits of ultrashort optical pulses in optically-interconnected systems,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 477–485, 2003.

C. Debaeset al., “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 400–409, 2003.

R. Beausoleil, M. McLaren, and N. Jouppi, “Photonic architectures for high-performance data centers,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, 2013, Art. no. 3700109, doi: .
[Crossref]

IEEE J. Sel. Topics Quantum Electron., (1)

B. E. Nelson, G. A. Keeler, D. Agarwal, N. C. Helman, and D. A. B. Miller, “Wavelength division multiplexed optical interconnect using short pulses,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 486–491,  2003.

IEEE J. Solid-State Circuits (2)

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

C. Sunet al., “A monolithically-integrated chip-to-chip optical link in bulk CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 828–844, 2015, doi: .
[Crossref]

IEEE Micro (2)

K. Aingaranet al., “M7: Oracle's next-generation SPARC processor,” IEEE Micro, vol. 35, no. 2, pp. 36–45, 2015, doi: .
[Crossref]

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011.

IEEE Network (1)

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the internet,” IEEE Network, vol. 25, no. 2, pp. 6–12, 2011.

IEEE Photon. J. (1)

S. Ren, T. I. Kamins, and D. A. B. Miller, “Thin dielectric spacer for the monolithic integration of bulk germanium quantum wells with silicon-on-insulator waveguides,” IEEE Photon. J., vol. 3, no. 4, pp. 739–747,  2011.

IEEE Photon. Technol. Lett. (6)

S. Renet al., “Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated with SOI Waveguides,” IEEE Photon. Technol. Lett., vol. 24, no. 6, pp. 461–463,  2012, doi: .
[Crossref]

D. M. Cutrer and K. Y. Lau, “Ultralow power optical interconnect with zero-biased, ultralow threshold laser-how low a threshold is low enough?” IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 4–6,  1995.

G. A. Keeler, B. E. Nelson, D. Agarwal, and D. A. B. Miller, “Skew and jitter removal using short optical pulses for optical interconnection,” IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 714–716, 2000.

D. J. Bossert and D. Gallant, “Gain, refractive index, and a-Parameter in InGaAs-GaAs SQW Broad-Area Lasers,” IEEE Photon. Technol. Lett., vol. 8, no. 3, pp. 322–324,  1996.

R. S. Tucker, “Energy consumption in digital optical ICs with plasmon waveguide interconnects,” IEEE Photon. Technol. Lett., vol. 19, no. 24, pp. 2036–2038,  2007.

L. Boivin, M. C. Nuss, J. Shah, D. A. B. Miller, and H. A. Haus, “Receiver sensitivity improvement by impulsive coding,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 684–686,  1997.

IEEE Solid-State Circuits Soc. Newsletter (1)

M. Bohr, “A 30 year retrospective on Dennard's MOSFET scaling paper,” IEEE Solid-State Circuits Soc. Newsletter, vol. 12, no. 1, 2007, pp. 11–13.

IEEE Trans. Circuits Syst. I, Reg. Papers (1)

P. Wambacqet al., “The potential of FinFETs for analog and RF circuit applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 11, pp. 2541–2551, 2007, doi: .
[Crossref]

IEEE Trans. Electron Dev. (1)

A. Pandeyet al., “Effect of load capacitance and input transition time on FinFET inverter capacitances,” IEEE Trans. Electron Dev., vol. 61, no. 1, pp. 30–36, 2014, doi: .
[Crossref]

IEEE Trans. Electron Devices (3)

D. Hisamotoet al., “FinFET—A Self-Aligned Double-Gate MOSFET Scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325, 2000.

K.-N. Chen, M. J. Kobrinsky, B. C. Barnett, and R. Reif, “Comparisons of conventional, 3-D, optical, and RF interconnects for on-chip clock distribution,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 233–239,  2004.

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller and K. C. Saraswat, “Silicon germanium CMOS optoelectronic switching device: Bringing light to latch,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3252–3259,  2007, doi: .
[Crossref]

IEEE Trans. Very Large Scale Integr. Syst. (1)

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. Very Large Scale Integr. Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

Int. J. Optoelectron. (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, 1997.

J. Exp. Theoretical Phys. (1)

L. V. Keldysh, “The effect of a strong electric field on the optical properties of insulating crystals,” J. Exp. Theoretical Phys., vol. 34, pp. 1138–1141,  1958 (translation: Soviet Physics JETP, vol. 34(7), no. 5, pp. 788–790, 1958).

J. Lightw. Technol. (13)

J. E. Zucker, K. L. Jones, T. H. Chiu, B. Tell, and K. Brown-Goebeler, “Strained quantum wells for polarization-independent electrooptic waveguide switches,” J. Lightw. Technol., vol. 10, no. 12, pp. 1926–1930,  1992.

S. O. Arık, K. -Po Ho, and J. M. Kahn, “Group delay management and multiinput multioutput signal processing in mode-division multiplexing systems,” J. Lightw. Technol., vol. 34, no. 11, pp. 2867–2880,  2016, doi: .
[Crossref]

R. Ryfet al., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO Processing,” J. Lightw. Technol., vol. 30, no. 4, pp. 521–531,  2012.

L. Liet al., “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects,” J. Lightw. Technol., vol. 31, no. 24, pp. 4080–4086,  2013, doi: .
[Crossref]

R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and W. V. Sorin, “Evolution of WDM optical IP networks: A cost and energy perspective,” J. Lightw. Technol., vol. 27, no. 3, pp. 243–252, 2009.

A. V. Krishnamoorthy, H. Schwetman, X. Zheng, and R. Ho, “Energy-efficient photonics in future high-connectivity computing systems,” J. Lightw. Technol., vol. 33, no. 4, pp. 889–900, 2015, doi: .
[Crossref]

J. Li, X. Zheng, A. V. Krishnamoorthy, and J. F. Buckwalter, “Scaling trends for picojoule-per-bit WDM photonic interconnects in CMOS SOI and FinFET processes,” J. Lightw. Technol., vol. 34, no. 11, pp. 2730–2742, 2016, doi: .
[Crossref]

S. Zhu and G.-Q. Lo, “Vertically stacked multilayer photonics on bulk silicon toward three-dimensional integration,” J. Lightw. Technol., vol. 34, no. 2, pp. 386–392, 2016, doi: .
[Crossref]

T. Komljenovicet al., “Heterogeneous silicon photonic integrated circuits,” J. Lightw. Technol., vol. 34, no. 1, pp. 20–35, 2016, doi: .
[Crossref]

D. F. Welchet al., “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Lightw. Technol., vol. 24, no. 12, pp. 4674–4683, 2006, doi: .
[Crossref]

R. M. Audetet al., “Surface-normal Ge/SiGe asymmetric Fabry-Perot optical modulators fabricated on silicon substrates,” J. Lightw. Technol., vol. 31, no. 24, pp. 3995–4003,  2013.

C. Kooset al., “Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration,” J. Lightw. Technol., vol. 34, no. 2, pp. 256–268,  2016, doi: .
[Crossref]

S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933,  2015, doi: .
[Crossref]

J. Opt. (2)

D. Thomsonet al., “Roadmap on silicon photonics,” J. Opt., vol. 18, 2016, Art. no. 073003, doi: .
[Crossref]

E. Agrellet al., “Roadmap of optical communications,” J. Opt., vol. 18, 2016, Art. no. 063002. [Online]. Available: http://dx.doi.org/10.1088/2040-8978/18/6/063002

J. Opt. Soc. Amer. (1)

D. S. Chemla and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Amer., vol. B2, pp. 1155–1173, 1985.

J. Parallel Distrib. Comput. (1)

D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput., vol. 41, pp. 42–52, 1997.

J. Phys. Soc. Jpn. (1)

M. Shinada and S. Sugano, “Interband optical transitions in extremely anisotropic semiconductors. i. bound and unbound exciton absorption,” J. Phys. Soc. Jpn., vol. 21, pp. 1936–1946, 1966. [Online]. Available: http://dx.doi.org/10.1143/JPSJ.21.1936

Jpn. J. Appl. Phys. (1)

G. T. Reed, G. Z. Mashanovich, W. R. Headley, S. P. Chan, B. D. Timotijevic, and F. Y. Gardes, “Silicon photonics: Are smaller devices always better?” Jpn. J. Appl. Phys., vol. 45, no. 8B, pp. 6609–6615, 2006, doi: .
[Crossref]

Laser Photon. Rev. (3)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev., vol. 2, pp. 299–313, 2008.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev., vol. 5, pp. 308–321, 2011, doi: .
[Crossref]

W. Bogaertset al., “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012. doi: .
[Crossref]

Materials (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, pp. 1782–1802, 2010, doi: .
[Crossref]

Micromachines (2)

Y. Luoet al., “Strong electro-absorption in GeSi epitaxy on silicon-on-insulator (SOI),” Micromachines, vol. 3, no. 2, pp. 345–363, 2012, doi: .
[Crossref]

F. Chollet, “Devices based on Co-Integrated MEMS Actuators and optical waveguide: A Review,” Micromachines, vol. 7, no. 2, 2016, Art. no. 18, doi: .
[Crossref]

Nano Lett. (4)

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett., vol. 12, no. 3, pp. 1482–1485, 2012, doi: .
[Crossref]

J. Kleinet al., “Stark effect spectroscopy of mono- and few-layer MoS2,” Nano Lett., vol. 16, no. 3, pp. 1554–1559, 2016, doi: .
[Crossref]

L. C. Chuanget al., “GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate,” Nano Lett., vol. 11, pp. 385–390, 2011.

P. Senanayakeet al., “Thin 3D multiplication regions in plasmonically enhanced nanopillar avalanche detectors,” Nano Lett., vol. 12, no. 12, pp. 6448–6452, 2012, doi: .
[Crossref]

Nanophotonics (2)

Z. Wang and B. Nabet, “Nanowire optoelectronics,” Nanophotonics, vol. 4, pp. 491–502, 2015, doi: .
[Crossref]

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics, vol. 1, pp. 9–16, 2012, doi: .
[Crossref]

Nature (3)

M. M. Waldrop, “More than Moore,” Nature, vol. 530, pp. 144–147, 16, 2016, doi: .
[Crossref]

I. L. Markov, “Limits on fundamental limits to computation,” Nature, vol. 512, pp. 147–154, 142014, doi: .
[Crossref]

Y.-H. Kuoet al., “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature, vol. 437, pp. 1334–1336, 27, 2005, doi: .
[Crossref]

Nature Commun. (2)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, 2014, Art. no. 4008, doi: .
[Crossref]

R. Chenet al., “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nature Commun., vol. 5, 2014, Art. no. 4325, doi: .
[Crossref]

Nature Communications (1)

G. Shambatet al., “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nature Communications, vol. 2, 2011, Art. no. 539, doi: .
[Crossref]

Nature Mater. (2)

O. Chenet al., “Compact high-quality CdSe/CdS core/shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nature Mater., vol. 12, no. 5, pp. 445–451, 2013, doi: .
[Crossref]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nature Mater., vol. 13, pp. 471–475, 2014, doi: .
[Crossref]

Nature Photon. (16)

L. Tanget al., “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photon., vol. 2, pp. 226–229, 2008, doi: .
[Crossref]

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon., vol. 8, pp. 244–249, 2014, doi: .
[Crossref]

C. Haffneret al., “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nature Photon., vol. 9, pp. 525–528, 2015, doi: .
[Crossref]

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nature Photon., vol. 8, pp. 908–918, 2014, doi: .
[Crossref]

M. T. Hillet al., “Lasing in metallic-coated nanocavities,” Nature Photon., vol. 1, pp. 589–594, 2007, doi: .
[Crossref]

S. Matsuoet al., “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nature Photon., vol. 4, pp. 648–654, 2010, doi: .
[Crossref]

B. Elliset al., “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nature Photon., vol. 5, pp. 297–300, 2011.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, pp. 354–362, 2013, doi: .
[Crossref]

D. A. B. Miller, “Are optical transistors the next logical step?” Nature Photon., 2010, vol. 4, pp. 3–5, doi: .
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon., vol. 4, no. 8, pp. 518–526, 2010, doi: .
[Crossref]

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nature Photon., vol. 9, pp. 267–273, 2015, doi: .
[Crossref]

A.Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nature Photon., vol. 9, pp. 374–377, 2015, doi: .
[Crossref]

R. G. H. van Udenet al., “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, pp. 865–870, 2014, doi: .
[Crossref]

P. J. Winzer, “Making spatial multiplexing a reality,” Nature Photon., vol. 8, pp. 345–348, 2014, doi: .
[Crossref]

R. Chenet al., “Nanolasers grown on silicon,” Nature Photon., vol. 5, pp. 170–175, 2011.

N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nature Photon., vol. 9, pp. 822–826, 2015, doi: .
[Crossref]

Nature Phys. (1)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nature Phys., vol. 6, pp. 279–283, 2010, doi: .
[Crossref]

Opt. Express (27)

E. H. Edwardset al., “Ge/SiGe asymmetric Fabry-Perot quantum well electroabsorption modulators,” Opt. Express, vol. 20, pp. 29164–29173, 2012. [Online]. Available: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29164

E. H. Edwardset al., “Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon,” Opt. Express, vol. 21, pp. 867–876, 2013.

P. Chaisakulet al., “23 GHz Ge/SiGe multiple quantum well electro-absorption modulator,” Opt. Express, vol. 20, pp. 3219–3224, 2012.

K. L. Tsakmakidis, R. W. Boyd, E. Yablonovitch, and X. Zhang, “Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers,” Opt. Express, vol. 24, pp. 17916–17927, 2016, doi: .
[Crossref]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express, vol. 15, pp. 17106–17113, 2007, doi: .
[Crossref]

J. Lu and J. Vučković, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express, vol. 20, pp. 7221–7236, 2012, doi: .
[Crossref]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express, vol. 21, pp. 21693–21701, 2013. [Online]. Available: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21693

D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express, vol. 21, pp. 6360–6370, 2013. [Online]. Avaialble: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6360

H. D. Thackeret al., “An all-solid-state, WDM silicon photonic digital link for chip-to-chip communications,” Opt. Express, vol. 23, pp. 12808–12822, 2015, doi: .
[Crossref]

N. J. D. Martinezet al., “High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes,” Opt. Express, vol. 24, pp. 19072–19081, 2016, doi: .
[Crossref]

K. C. Balram, R. M. Audet, and D. A. B. Miller, “Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths,” Opt. Express, vol. 21, pp. 10228–10233, 2013. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-10228

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express, vol. 20, pp. 23985–23993, 2012. [Online]. Available: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23985

C. T. DeRoseet al., “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express, vol. 19, pp. 24897–24904, 2011, doi: .
[Crossref]

S. A. Claussen, E. Tasyurek, J. E. Roth, and D. A. B. Miller, “Measurement and modeling of ultrafast carrier dynamics and transport in germanium/silicon-germanium quantum wells,” Opt. Express, vol. 18, pp. 25596–25607, 2010.

J. E. Rothet al., “Optical modulator on silicon employing germanium quantum wells,” Opt. Express, vol. 15, pp. 5851–5859, 2007. [Online]. Available: http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-9-5851

H. Subbaramanet al., “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express, vol. 23, pp. 2487–2511, 2015, doi: .
[Crossref]

J. S. Orcuttet al., “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express, vol. 20, pp. 12222–12232, 2012, doi: .
[Crossref]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express, vol. 20, pp. A293–A308, 2012.

K. Shanget al., “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express, vol. 21, pp. 13958–13968, 2013, doi: .
[Crossref]

L. Luet al., “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express, vol. 21, pp. 9447–9456, 2013, doi: .
[Crossref]

F. Lu, T.-T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express, vol. 20, pp. 12171–12176, 2012, doi: .
[Crossref]

N.-N. Fenget al., “30 GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide,” Opt. Express, vol. 19, pp. 7062–7067, 2011.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express, vol. 24, pp. 16167–16174, 2016. [Online]. Available: http://dx.doi.org/10.1364/OE.24.016167

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express, vol. 20, pp. 22181–22187, 2012, doi: .
[Crossref]

B. Chmielaket al., “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express, vol. 19, pp. 17212–17219, 2011, doi: . [Online]. Available: http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-10-1336
[Crossref]

P. Damaset al., “Wavelength dependence of Pockels effect in strained silicon waveguides,” Opt. Express, vol. 22, pp. 22095–22100, 2014, doi: .
[Crossref]

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express, vol. 22, pp. 15292–15297, 2014, doi: .
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (4)

Opt. Photon. News (1)

K. Bergman, J. Shalf, and T. Hausken, “Optical interconnects and extreme computing,” Opt. Photon. News, vol. 27, no. 4, pp. 32–39, 2016, doi: .
[Crossref]

Optica (3)

Photon. Res. (3)

Phys. Rev. (6)

D. A. B. Milleret al., “Electric field dependence of optical absorption near the bandgap of quantum well structures,” Phys. Rev., vol. B32, pp. 1043–1060, 1985.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,”Phys. Rev., vol. 69, p. 681, 1946.

D. A. B. Miller, D. S. Chemla and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev., vol. B33, pp. 6976–6982, 1986.

F. L. Lederman and J. D. Dow, “Theory of electroabsorption by anisotropic and layered semiconductors. I. Two-dimensional excitons in a uniform electric field,” Phys. Rev., vol. B13, pp. 1633–1642, 1976.

K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev., vol. 130, pp. 2204–2206, 1963.

R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev., vol. 108, pp. 1384–1389, 1957.

Phys. Rev. B (2)

J. D. Dow and D. Redfield, “Electroabsorption in semiconductors: The excitonic absorption edge,” Phys. Rev. B, vol. 1, pp. 3358–3371, 1970.

Y. Liet al., “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B, vol. 90, 2014, Art. no. 205422, doi: .
[Crossref]

Phys. Rev. Lett. (2)

D. A. B. Miller, C. T. Seaton, M. E. Prise and S. D. Smith, “Bandgap resonant nonlinear refraction in III V semiconductors,” Phys. Rev. Lett., vol. 47, pp. 197–200, 1981.

D. A. B. Milleret al., “Bandedge electro-absorption in quantum well structures: The quantum confined Stark effect,” Phys. Rev. Lett., vol. 53, pp. 2173–2177, 1984.

Phys. Status Solidi B (1)

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B, vol. 247, no. 4, pp. 774–788, 2010.

PNAS (1)

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” PNAS, vol. 112, no. 6, pp. 1704–1709, 2015, doi: .
[Crossref]

Proc. IEEE (4)

C. Haffneret al., “Plasmonic organic hybrid modulators—Scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379,  2016, doi: .
[Crossref]

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE, vol. 88, no. 6, pp. 728–749, 2000.

A. Shakouri, “Nano-scale thermal transport and microrefrigerators on a chip,” Proc. IEEE, vol. 94, no. 8, pp. 1613–1638,  2006, doi: .
[Crossref]

H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, and F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE, vol. 82, no. 11, pp. 1632–1649,  1994, doi: .
[Crossref]

Sci. Rep. (3)

K. Tanabe, K. Watanabe and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep., vol. 2, 2012, Art. no. , doi: .
[Crossref]

P. O. Weigelet al., “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep., vol. 6, 2016, Art. no. 22301, doi: .
[Crossref]

J. G. Kim, W. S. Yun, S. Jo, J. D. Lee, and C.-H. Cho, “Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals,” Sci. Rep., vol. 6, 2016, Art. no. 29813, doi: .
[Crossref]

Science (3)

N. Bozinovicet al., “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science, vol. 340, pp. 1545–1548, 2013, doi: .
[Crossref]

M. Hilbert and P. Lopez, “The world's technological capacity to store, communicate, and compute information,” Science, vol. 332, no. 6025, pp. 60–65, 2011.

D. A. B. Miller, “Sorting out light,” Science, vol. 347, pp. 1423–1424, 2015, doi: .
[Crossref]

Semicond. Semimetals (1)

X. Dai, M. Tchernycheva, and C. Soci, “Compound semiconductor nanowire photodetectors,” Semicond. Semimetals, vol. 94, pp. 75–107, 2016. [Online]. Available: http://dx.doi.org/10.1016/bs.semsem.2015.08.001

Solid State Commun. (1)

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun., vol. 152, pp. 1341–1349, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.ssc.2012.04.064

Z. Naturforschung (1)

W. Franz, “Einfluß eines elektrischen Feldes auf eine optische Absorptionskante,” Z. Naturforschung, vol. 13a, pp. 484–489, 1958.

Other (29)

J. Jahns and S. Helfert, Introduction to Micro- and Nanooptics. Hoboken, NJ, USA: Wiley, 2012.

D. V. Plant and A. G. Kirk, “Optical interconnects at the chip and board level: challenges and solutions,” Proc. IEEE, vol. 88, no. 6, pp. 806–818,  2000.

N. Streiblet al., “Digital optics,” Proc. IEEE, vol. 77, no. 12, pp. 1954–1969,  1989.

F. Morichettiet al., “4-Channel All-Optical MIMO Demultiplexing on a Silicon Chip,” in Proc. Opt. Fibers Commun. Conf., Anaheim, CA, USA, Mar. 24, 2016, Paper ThE3.7.

A. V. Krishnamoorthyet al., “Computer systems based on silicon photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361,  2009, doi: .

S. L. Chuang, Physics of Photonic Devices, 2nd ed.Hoboken, NJ, USA: Wiley, 2009.

P. W. Juodawlkiset al., “InGaAsP/InP quantum-well electrorefractive modulators with sub-volt Vpi,” in Proc. SPIE 5435, Enabling Photonic Technol. Aerosp. Appl. VI, pp. 53–63, 3, 2004, doi: .

K. W. Goossenet al., “Low field electroabsorption and self-biased self-electrooptics effect device using slightly asymmetric coupled quantum wells,” in Proc. Topical Meeting Quantum Optoelectron., Salt Lake City, Mar. 1991, Paper MB3.

G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. Hoboken, NJ, USA: Wiley, 2010.

R. G. Smith and S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for Optical Communication. New York, NY, USA: Springer-Verlag, 1982, pp. 89–160.

V. Liu, D. A. B. Miller, and S. H. Fan, “Highly tailored computational electromagnetics methods for nanophotonic design and discovery,” Proc. IEEE, vol. 101, no. 2, pp. 484–493,  2013, doi: .

A. L. Lentine and C. T. DeRose, “Challenges in the implementation of dense wavelength division multiplexed (DWDM) optical interconnects using resonant silicon photonics,” in Proc. SPIE 9772, Broadband Access Commun. Technol. X, 12, 2016, Paper 977207, doi: .

D. A. B. Miller, Quantum Mechanics for Scientists and Engineers. Cambridge, U.K.: Cambridge Univ. Press, 2008.

Cisco Systems, Inc., “The Zettabyte era: trends and analysis,” [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf, Downloaded: Jun. 20, 2016.

K. Kim, “From the future Si technology perspective: Challenges and opportunities,” in Proc. 2010 IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, Dec. 6–8, 2010, pp. 1.1.1–1.1.9, doi: .

N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in mobile phones: A measurement study and implications for network applications,” in Proc. 9th ACM SIGCOMM Conf. Internet Meas., Chicago, IL, USA, Nov. 4–6, 2009.

A. Singhet al., “Jupiter rising: A decade of clos topologies and centralized control in google's datacenter network,” in Proc. SIGCOMM, London, U.K., Aug. 17–21, 2015, pp. 183–197, doi: .

J. Proesel, C. Schow, and A. Rylyakov, “Ultra low power 10- to 25-Gb/s CMOS-driven VCSEL links,” in Proc. Opt. Fiber Commun. Conf., 2012, Paper OW4I.3, doi: .

A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Proc. Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf., 2011, Paper OTuH2, doi: .

D. Liang, M. Fiorentino, and R. G. Beausoleil, “VLSI photonics for high-performance data centers,” Chapter 18 in Silicon Photonics III (Series Topics in Applied Physics, vol. 122), L. Pavesi and D. J. Lockwood, Eds.New York, NY, USA: Springer-Verlag, 2016, pp. 489–516.

“International technology roadmap for semiconductors 2.0 2015 edition.” [Online]. Available: http://www.itrs2.net/itrs-reports.html, Downloaded: Aug. 3, 2016.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE, vol. 97, no. 7, pp. 1166–1185, 2009.

D. A. B. Miller, A. Bhatnagar, S. Palermo, A. Emami-Neyestanak, and M. A. Horowitz, “Opportunities for optics in integrated circuits applications,” in Proc. Int. Solid State Circuits Conf., 2005, Paper 4.6, pp. 86–87.

P. De Dobbelaereet al., “Packaging of silicon photonics systems,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper W3I.2, doi: .

A. L. Lentineet al., “Silicon photonics platform for national security applications,” in Proc. IEEE Aerosp. Conf., 2015, pp. 1–9, doi: .

S. Rakheja, A. Ceyhan, and A. Naeemi, “Interconnect considerations,” in CMOS and Beyond, T.-J. K. Liu and K. Kuhn, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2015, pp. 381–412, doi: .

M. Raj, S. Saeedi, and A Emami, “A 4-to-11GHz injection-locked quarter-rate clocking for an adaptive 153fJ/b optical receiver in 28nm FDSOI CMOS,” in Proc. 2015 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2015, vol. 58, pp. 404–406.

R. S. Shelar and M. Patyra, “Impact of local interconnects on timing and power in a high performance microprocessor,” in Proc. 19th Int. Symp. Phys. Des., 2010, pp. 145–152, doi: .

S. Borkar, “The Exascale challenge,” in Proc. 2010 Int. Symp. VLSI Des., Autom. Test, 2010, pp. 2–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.