Abstract

Fiber Bragg gratings (FBGs) are inherently sensitive to temperature, axial strain, and pressure, which can be easily measured by a shift of the Bragg wavelength in their reflected/transmitted power spectrum. FBG sensors acquire many more additional sensing modalities and applications when the polarization of the interrogating light is controlled. For the polarization to have an effect, the cylindrical symmetry of the fiber must be broken, either by the structure of the fiber itself, by that of the FBG, or by the perturbation to be measured. Polarization control allows for sensing parameters that are spatially oriented, such as lateral force, bending or twist, and also for measurements of the properties of anisotropic media. Most importantly, polarization control enables high quality all-fiber surface plasmon resonance (SPR) FBG sensors and localized SPR-assisted sensing. This tutorial will cover the theory of polarized measurements in fiber gratings, their experimental implementation, and review a selection of the most important applications.

© 2016 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Snyder and J. D. Love, Optical Waveguide Theory.New York, NY, USA: Springer, 1983.
  2. D. Gloge, “Weaky guiding fibers,” Appl. Opt., vol. 10, pp. 2252–2258, 1971.
  3. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Amer. B, vol. 11, pp. 2100–2105, 1994.
  4. N. Belhadj, S. LaRochelle, and K. Dossou, “Form birefringence in UV-exposed photosensitive fibers computed using a higher order finite element method,” Opt. Express, vol. 12, pp. 1720–1726, 2004.
  5. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett., vol. 19, pp. 1260–1262, 1994.
  6. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing.Norwood, MA, USA: Artech House, 1999.
  7. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev., vol. 7, no. 1, pp. 83–108, 2013.
  8. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt., vol. 46, pp. 1142–1149, 2007.
  9. C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2703–2705, 2005.
  10. S. Baek, Y. Jeong, and B. Lee, “Characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors,” Appl. Opt., vol. 41, pp. 631–636, 2002.
  11. J. Thomaset al., “Cladding mode coupling in highly localized fiber Bragg gratings: Modal properties and transmission spectra,” Opt. Express, vol. 19, pp. 325–341, 2011.
  12. K. Chah, V. Voisin, D. Kinet, and C. Caucheteur, “Surface plasmon resonance in eccentric femtosecond-laser-induced fiber Bragg gratings,” Opt. Lett., vol. 39, pp. 6887–6890, 2014.
  13. S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun., vol. 269, pp. 331–337, 2007.
  14. C. Caucheteuret al., “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” IEEE J. Lightw. Technol., vol. 48, no. 9, pp. 1635–1641, 2009.
  15. S. Bette, C. Caucheteur, R. Garcia-Olcina, M. Wuilpart, S. Sales, and J. Capmany, “Relationship between chromatic dispersion and differential group delay in weakly birefringent fiber gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 437–439, 2008.
  16. T. Erdogan, “Fiber grating spectra,” J. Lightw. Technol., vol. 15, no. 8, pp. 1277–1294, 1997.
  17. P. Lu, D. S. Waddy, S. J. Mihailov, and H. Ding, “Characterization of the growths of UV-induced birefringence in effective mode index and index modulation in fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2237–2239, 2005.
  18. N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun., vol. 142, pp. 119–125, 1997.
  19. B. Huttner, C. Geiser, and N. Gisin, “Polarization-induced distortion in optical fiber networks with polarization-mode dispersion and polarization-dependent losses,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 2, pp. 317–329, 2000.
  20. Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas., vol. 49, no. 6, pp. 1231–1239, 2000.
  21. Y. Zhaoet al., “Polarization mode coupling and related effects in fiber Bragg grating inscribed in polarization maintaining fiber,” Opt. Express, vol. 24, pp. 611–619, 2016.
  22. M. Z. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightw. Technol., vol. 31, no. 19, pp. 3167–3175, 2013.
  23. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett., vol. 32, pp. 211–213, 2007.
  24. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett., vol. 35, pp. 637–639, 2010.
  25. K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings,” Opt. Lett., vol. 30, pp. 1285–1287, 2005.
  26. Z. Yan, K. Zhou, and L. Zhang, “In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber,” Opt. Lett., vol. 37, pp. 3819–3821, 2012.
  27. B. L. Heffner, “Deterministic and analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photon. Technol. Lett., vol. 4, no. 5, pp. 451–453, 1992.
  28. D. Derikson, Fiber Optic Test and Measurement.Englewood Cliffs, NJ, USA: Prentice-Hall, 1998.
  29. X. S. Yao, X. Chen, and T. Liu, “High accuracy polarization measurements using binary polarization rotators,” Opt. Express, vol. 18, pp. 6667–6685, 2010.
  30. R. Barakat, “Theory of the coherency matrix for light of arbitrary spectral bandwidth,” J. Opt. Soc. Amer., vol. 53, pp. 317–323, 1963.
  31. R. Barakat, “Bilinear constraints between elements of the 4 × 4 Mueller-Jones transfer matrix of polarization theory,” Opt. Comm., vol. 38, pp. 159–161, 1981.
  32. S. Lu, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Amer. A, vol. 13, pp. 1106–1113, 1996.
  33. R. M. Craig, S. L. Gilbert, and P. D. Hale, “High-resolution, nonmechanical approach to polarization-dependent transmission measurements,” J. Lightw. Technol., vol. 16, no. 7, pp. 1285–1286, 1998.
  34. H. Donget al., “Generalized Mueller matrix method for polarization mode dispersion measurement in a system with polarization-dependent loss or gain,” Opt. Express, vol. 14, pp. 5067–5072, 2006.
  35. B. L. Heffner, “Deterministic, analytically complete measurement of polarization-dependent transmission through optical devices,” IEEE Photon. Technol. Lett., vol. 4, no. 5, pp. 451–454, 1992.
  36. S. Betteet al., “PDL and DGD reduction in Bragg gratings using twisted fibers for the inscription,” IEEE Photon. Technol. Lett., vol. 21, no. 22, pp. 1689–1691, 2009.
  37. V. García-Muñoz, C. Caucheteur, S. Bette, M. Wuilpart, M. Muriel, and P. Mégret, “Reduction of polarization related effects in superimposed fiber Bragg gratings,” Appl. Opt., vol. 48, no. 9, pp. 1635–1641, 2009.
  38. R. Gafsi and M. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol., vol. 6, pp. 299–323, 2000.
  39. J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, “Spectral properties of locally pressed fiber Bragg gratings written in polarization maintaining fibers,” J. Lightw. Technol., vol. 28, no. 9, pp. 1291–1297, 2010.
  40. Q. Ronget al., “Orthogonal polarization coupling for transverse strain measurement using a polarimetric mirror,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 729–732, 2014.
  41. C. Caucheteuret al., “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 13, pp. 966–968, 2007.
  42. Y. Wang, M. Wang, and X. Huang, “High-sensitivity fiber Bragg grating transverse force sensor based on centroid measurement of polarization-dependent loss,” Meas. Sci. Technol., vol. 21, 2010, Art. no. .
  43. Y. Wang, M. Wang, and X. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express, vol. 19, pp. 25535–25544, 2011.
  44. H. Peng, Y. Su, Z. Ye, and B. Zhou, “A novel fiber Bragg grating sensor for weak pressure measurement based on the stokes parameter,” Opt. Fiber Technol., vol. 18, pp. 485–489, 2012.
  45. Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol., vol. 18, pp. 51–57, 2012.
  46. Y. Su, Y. Zhu, B. Zhang, H. Peng, and Z. Ye, “Real time transverse-force sensor based on polarization properties of fiber Bragg grating and cross-sensitivity compensation,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .
  47. N. Lammenset al., “Residual strain monitoring of out-of-autoclave cured parts by use of polarization dependent loss measurements in embedded optical fiber Bragg gratings,” Composites Part A: Appl. Sci. Manuf., vol. 52, pp. 38–44, 2013.
  48. H. Peng, B. H. Zhou, H. Wang, L. H. Shi, C. Gao, and P. Xiang, “A new method for resolving the influence of circular birefringence in FBG weak pressure sensor,” Measurement, vol. 58, pp. 280–285, 2014.
  49. Y. Su, Y. Zhu, B. Z., H. Zhou, J. Li, and F. Wang, “Spectral characterization of polarization dependent loss in fiber Bragg grating under local pressure and the analysis of secondary peak,” Opt. Fiber Technol., vol. 24, pp. 77–83, 2015.
  50. X. Huet al., “Polarization effects in polymer FBGs: Study and use for transverse force sensing,” Opt. Express, vol. 23, pp. 4581–4590, 2015.
  51. Y. Wang, M. Wang, and X. Huang, “Diametric load sensor using a fiber Bragg grating and its differential group delay analysis,” Opt. Quantum Electron., vol. 44, pp. 483–491, 2012.
  52. Y. Su, Y. Zhu, B. Zhang, H. Zhou, J. Li, and F. Wang, “Spectral response of polarization properties of fiber Bragg grating under local pressure,” Opt. Fiber Technol., vol. 25, pp. 15–19, 2015.
  53. Y. Su, Y. Zhu, B. Zhang, and H. Zhou, “Real-time transverse force sensing using fiber Bragg grating through direct Stokes parameters measurement,” Opt. Express, vol. 23, pp. 32300–32310, 2015.
  54. Y. Wang, N. Li, X. Huang, and M. Wang, “Fiber optic transverse load sensor based on polarization properties of pi-phase-shifted fiber Bragg grating,” Opt. Commun., vol. 342, pp. 152–156, 2015.
  55. L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightw. Technol., vol. 28, no. 18, pp. 2681–2687, 2010.
  56. Z. Sunet al., “Optical loading sensor based on ring-cavity fiber laser incorporating a 45°-tilted fiber polarizing grating,” Appl. Opt., vol. 54, pp. 4267–4272, 2015.
  57. D. Wang, M. Matthews, and J. Brennan, “Polarization mode dispersion in chirped fiber Bragg gratings,” Opt. Express, vol. 12, pp. 5741–5753, 2004.
  58. F. Descamps, C. Caucheteur, P. Mégret, and S. Bette, “Distribution profiling of a transverse load using the DGD spectrum of chirped FBGs,” Opt. Express, vol. 23, pp. 18203–18217, 2015.
  59. F. Descamps, S. Bette, D. Kinet, and C. Caucheteur, “Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating,” Appl. Opt., vol. 55, pp. 4270–4276, 2016.
  60. K. Chahet al., “Temperature-insensitive polarimetric vibration sensor based on HiBi microstructured optical fiber,” Appl. Opt., vol. 51, pp. 6130–6138, 2012.
  61. T. Guoet al., “Polarization-maintaining fiber-optic-grating vector vibroscope,” Opt. Lett., vol. 38, pp. 531–533, 2013.
  62. D. Suet al., “Temperature-Independent fiber -inclinometer based on orthogonally polarized modes coupling using a polarization-maintaining fiber Bragg grating,” Sensors, vol. 14, pp. 20930–20939, 2014.
  63. Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett., vol. 39, pp. 6616–6619, 2014.
  64. D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett., vol. 41, pp. 1201–1204, 2016.
  65. T. Guo, L. Shang, Y. Ran, B.-O. Guan, and J. Albert, “Fiber-optic vector vibroscope,” Opt. Lett., vol. 37, pp. 2703–2705, 2012.
  66. L.Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett., vol. 35, pp. 1034–1036, 2010.
  67. D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3D shape sensor based on a pair of orthogonal tilted fiber bragg gratings,” Sci. Rep., vol. 5, 2015, Art. no. .
  68. Y. Huang, T. Guo, C. Lu, and H.-Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett., vol. 22, no. 16, pp. 1235–1237, 2010.
  69. N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Development of a multi-point polarization-based vibration sensor,” Opt. Express, vol. 21, pp. 5606–5624, 2013.
  70. X. Wanget al., “SNR enhanced distributed vibration fiber sensing system employing polarization OTDR and ultraweak FBGs,” IEEE Photon. J., vol. 7, no. 1, pp. 1–11, 2015.
  71. W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express, vol. 21, pp. 11913–11920, 2013.
  72. T. Guoet al., “VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor,” Opt. Express, vol. 21, pp. 19097–19102, 2013.
  73. B. Yinet al., “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photon. Technol. Lett., vol. 26, no. 15, pp. 1565–1568, 2014.
  74. Y. Lu, C. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol., vol. 20, pp. 491–494, 2014.
  75. C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett., vol. 104, pp. 1–5, 2014.
  76. Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependent loss characteristics and applications of 45° tilted fiber gratings,” J. Lightw. Technol., vol. 29, no. 18, pp. 2715–2724, 2011.
  77. S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Discrimination of temperature and strain with a single FBG based on the birefringence effect,” Opt. Express, vol. 12, pp. 724–729, 2004.
  78. Y. Wang, M. Wang, and X. Huang, “Simultaneous strain and temperature measurement with a single fiber Bragg grating based on the polarization properties analysis,” Opt. Commun., vol. 285, pp. 1834–1837, 2012.
  79. O. H. Waagaard, “Polarization-resolved spatial characterization of birefringent fiber Bragg gratings,” Opt. Express, vol. 14, pp. 4221–4236, 2006.
  80. R. Uchimura, A. Wada, S. Tanaka, and N. Takahashi, “Fiber Fabry-Perot interferometric sensor using Bragg gratings in polarization maintaining fiber,” J. Lightw. Technol., vol. 33, no. 12, pp. 2499–2503, 2015.
  81. B. Korenko, M. Rothhardt, A. Hartung, and H. Bartelt, “Novel fiber-optic relative humidity sensor with thermal compensation,” IEEE Sensors J., vol. 15, no. 10, pp. 5450–5454, 2015.
  82. Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol., vol. 17, pp. 196–200, 2011.
  83. H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Opt. Fiber Technol., vol. 18, pp. 177–182, 2012.
  84. B. Wu, F. Wen, K. Qiu, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol., vol. 19, pp. 219–222, 2013.
  85. P. Orr and P. Niewczas, “Polarization-xwitching FBG interrogator for distributed point measurement of magnetic field strength and temperature,” IEEE Sensors J., vol. 11, no. 5, pp. 1220–1226, 2011.
  86. J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett., vol. 103, 2013, Art. no. .
  87. W. Linet al., “Two-dimensional magnetic field vector sensor based on tilted fiber Bragg grating and magnetic fluid,” J. Lightw. Technol., vol. 31, no. 15, pp. 2599–2605, 2013.
  88. D. Yanget al., “Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid,” Appl. Phys. Lett., vol. 104, 2014, Art. no. .
  89. Z. Zhanget al., “Plasmonic fiber-optic vector magnetometer,” Appl. Phys. Lett., vol. 108, 2016, Art. no. .
  90. B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightw. Technol., vol. 30, no. 8, pp. 1097–1112, 2012.
  91. N. Jovanovicet al., “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express, vol. 17, pp. 6082–6095, 2009.
  92. W. Liu, T. Guo, A. C.-L. Wong, H.-Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express, vol. 18, pp. 17834–17840, 2010.
  93. L. Jin, Z. Quan, L. Cheng, and B.-O. Guan, “Hydrostatic pressure measurement with heterodyning fiber grating lasers: Mechanism and sensitivity enhancement,” J. Lightw. Technol., vol. 31, no. 9, pp. 1488–1494, 2013.
  94. J. Woet al., “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express, vol. 20, pp. 2844–2850, 2012.
  95. L. Cheng, J. Han, Z. Guo, L. Jin, and B.-O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett., vol. 38, pp. 688–690, 2013.
  96. T. Guo, A. C.-L. Wong, W. Liu, B.-O. Guan, C. Lu, and H.-Yaw Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express, vol. 19, no. 3, pp. 2485–2492, 2011.
  97. Q. Zhang, L. Hu, Y. Qi, G. Liu, N. Ianno, and M. Han, “Fiber-optic refractometer based on a phase-shifted fiber Bragg grating on a side-hole fiber,” Opt. Express, vol. 23, pp. 16750–16759, 2015.
  98. J. Li, H. Wang, L.-P. Sun, Y. Huang, L. Jin, and B.-O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express, vol. 22, pp. 31917–31923, 2014.
  99. Z. Yanet al., “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun., vol. 351, pp. 144–148, 2015.
  100. W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett., vol. 40, pp. 1713–1716, 2015.
  101. V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt., vol. 50, pp. 4257–4261, 2011.
  102. C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2153–2155, 2008.
  103. A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings,” Nanotechnology, vol. 23, 2012, Art. no. .
  104. W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express, vol. 22, pp. 31665–31671, 2014.
  105. W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C, vol. 118, pp. 670–678, 2014.
  106. W. Zhouet al., “Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles,” Opt. Exp., vol. 21, pp. 864–869, 2013.
  107. A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Opt. Express, vol. 19, pp. 18742–53, 2011.
  108. A. Ianoul, M. Robson, V. Pripotnev, and J. Albert, “Polarization-selective excitation of plasmonic resonances in silver nanocube random arrays by optical fiber cladding mode evanescent fields,” RSC Adv., vol. 4, 2014, Art. no. .
  109. D. J. Mandia, W. Zhou, J. Albert, and S. T. Barry, “CVD on optical fibers: Tilted fiber Bragg gratings as real-time sensing platforms,” Chem. Vapor Deposition, vol. 21, pp. 4–20, 2015.
  110. D. J. Mandia, W. Zhou, A. Wells, J. Albert, and S. Barry, “Metallic nanocoatings on optical fibers as a sensor platform,” ECS Trans., vol. 69, pp. 171–179, 2015.
  111. J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C, vol. 118, pp. 11035–11042, 2014.
  112. W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A, vol. 84, pp. 198–204, 2000.
  113. C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express, vol. 19, pp. 1656–1664, 2011.
  114. C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express, vol. 21, pp. 3055–3066, 2013.
  115. C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: Design rules for ultimate refractometric sensitivity,” Opt. Express, vol. 23, pp. 2804–2809, 2015.
  116. D. J. Mandiaet al., “The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors,” Nanotechnology, vol. 26, 2015, Art. no. .
  117. C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett., vol. 99, no. 4, 2011, Art. no. .
  118. Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. Derosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber grating aptasensor,” Anal. Chem., vol. 83, pp. 7027–7034, 2011.
  119. J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods, vol. 63, pp. 239–54, 2013.
  120. V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron., vol. 51, pp. 249–254, 2014.
  121. C. Ribautet al., “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron., vol. 77, pp. 315–322, 2016.
  122. T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron., vol. 55C, pp. 452–458, 2014.
  123. V. Malachovskaet al., “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem., vol. 87, pp. 5957–5965, 2015.
  124. T. Guoet al., “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron., vol. 78, pp. 221–228, 2016.
  125. Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron., vol. 56, pp. 359–367, 2014.
  126. L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express, vol. 1, pp. 128–137, 2011.
  127. Y. Yuanet al., “Electrochemical surface Plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms,” Anal. Chem., 2016, to be published. doi: .
    [Crossref]

2016 (7)

Z. Zhanget al., “Plasmonic fiber-optic vector magnetometer,” Appl. Phys. Lett., vol. 108, 2016, Art. no. .

C. Ribautet al., “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron., vol. 77, pp. 315–322, 2016.

T. Guoet al., “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron., vol. 78, pp. 221–228, 2016.

Y. Yuanet al., “Electrochemical surface Plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms,” Anal. Chem., 2016, to be published. doi: .
[Crossref]

Y. Zhaoet al., “Polarization mode coupling and related effects in fiber Bragg grating inscribed in polarization maintaining fiber,” Opt. Express, vol. 24, pp. 611–619, 2016.

D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett., vol. 41, pp. 1201–1204, 2016.

F. Descamps, S. Bette, D. Kinet, and C. Caucheteur, “Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating,” Appl. Opt., vol. 55, pp. 4270–4276, 2016.

2015 (19)

X. Huet al., “Polarization effects in polymer FBGs: Study and use for transverse force sensing,” Opt. Express, vol. 23, pp. 4581–4590, 2015.

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett., vol. 40, pp. 1713–1716, 2015.

Z. Sunet al., “Optical loading sensor based on ring-cavity fiber laser incorporating a 45°-tilted fiber polarizing grating,” Appl. Opt., vol. 54, pp. 4267–4272, 2015.

Q. Zhang, L. Hu, Y. Qi, G. Liu, N. Ianno, and M. Han, “Fiber-optic refractometer based on a phase-shifted fiber Bragg grating on a side-hole fiber,” Opt. Express, vol. 23, pp. 16750–16759, 2015.

F. Descamps, C. Caucheteur, P. Mégret, and S. Bette, “Distribution profiling of a transverse load using the DGD spectrum of chirped FBGs,” Opt. Express, vol. 23, pp. 18203–18217, 2015.

Y. Su, Y. Zhu, B. Zhang, and H. Zhou, “Real-time transverse force sensing using fiber Bragg grating through direct Stokes parameters measurement,” Opt. Express, vol. 23, pp. 32300–32310, 2015.

V. Malachovskaet al., “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem., vol. 87, pp. 5957–5965, 2015.

D. J. Mandia, W. Zhou, J. Albert, and S. T. Barry, “CVD on optical fibers: Tilted fiber Bragg gratings as real-time sensing platforms,” Chem. Vapor Deposition, vol. 21, pp. 4–20, 2015.

D. J. Mandia, W. Zhou, A. Wells, J. Albert, and S. Barry, “Metallic nanocoatings on optical fibers as a sensor platform,” ECS Trans., vol. 69, pp. 171–179, 2015.

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: Design rules for ultimate refractometric sensitivity,” Opt. Express, vol. 23, pp. 2804–2809, 2015.

D. J. Mandiaet al., “The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors,” Nanotechnology, vol. 26, 2015, Art. no. .

X. Wanget al., “SNR enhanced distributed vibration fiber sensing system employing polarization OTDR and ultraweak FBGs,” IEEE Photon. J., vol. 7, no. 1, pp. 1–11, 2015.

Z. Yanet al., “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun., vol. 351, pp. 144–148, 2015.

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3D shape sensor based on a pair of orthogonal tilted fiber bragg gratings,” Sci. Rep., vol. 5, 2015, Art. no. .

R. Uchimura, A. Wada, S. Tanaka, and N. Takahashi, “Fiber Fabry-Perot interferometric sensor using Bragg gratings in polarization maintaining fiber,” J. Lightw. Technol., vol. 33, no. 12, pp. 2499–2503, 2015.

B. Korenko, M. Rothhardt, A. Hartung, and H. Bartelt, “Novel fiber-optic relative humidity sensor with thermal compensation,” IEEE Sensors J., vol. 15, no. 10, pp. 5450–5454, 2015.

Y. Su, Y. Zhu, B. Z., H. Zhou, J. Li, and F. Wang, “Spectral characterization of polarization dependent loss in fiber Bragg grating under local pressure and the analysis of secondary peak,” Opt. Fiber Technol., vol. 24, pp. 77–83, 2015.

Y. Su, Y. Zhu, B. Zhang, H. Zhou, J. Li, and F. Wang, “Spectral response of polarization properties of fiber Bragg grating under local pressure,” Opt. Fiber Technol., vol. 25, pp. 15–19, 2015.

Y. Wang, N. Li, X. Huang, and M. Wang, “Fiber optic transverse load sensor based on polarization properties of pi-phase-shifted fiber Bragg grating,” Opt. Commun., vol. 342, pp. 152–156, 2015.

2014 (17)

H. Peng, B. H. Zhou, H. Wang, L. H. Shi, C. Gao, and P. Xiang, “A new method for resolving the influence of circular birefringence in FBG weak pressure sensor,” Measurement, vol. 58, pp. 280–285, 2014.

Q. Ronget al., “Orthogonal polarization coupling for transverse strain measurement using a polarimetric mirror,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 729–732, 2014.

B. Yinet al., “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photon. Technol. Lett., vol. 26, no. 15, pp. 1565–1568, 2014.

Y. Lu, C. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol., vol. 20, pp. 491–494, 2014.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett., vol. 104, pp. 1–5, 2014.

D. Suet al., “Temperature-Independent fiber -inclinometer based on orthogonally polarized modes coupling using a polarization-maintaining fiber Bragg grating,” Sensors, vol. 14, pp. 20930–20939, 2014.

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C, vol. 118, pp. 670–678, 2014.

D. Yanget al., “Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid,” Appl. Phys. Lett., vol. 104, 2014, Art. no. .

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron., vol. 55C, pp. 452–458, 2014.

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C, vol. 118, pp. 11035–11042, 2014.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron., vol. 51, pp. 249–254, 2014.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron., vol. 56, pp. 359–367, 2014.

A. Ianoul, M. Robson, V. Pripotnev, and J. Albert, “Polarization-selective excitation of plasmonic resonances in silver nanocube random arrays by optical fiber cladding mode evanescent fields,” RSC Adv., vol. 4, 2014, Art. no. .

Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett., vol. 39, pp. 6616–6619, 2014.

K. Chah, V. Voisin, D. Kinet, and C. Caucheteur, “Surface plasmon resonance in eccentric femtosecond-laser-induced fiber Bragg gratings,” Opt. Lett., vol. 39, pp. 6887–6890, 2014.

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express, vol. 22, pp. 31665–31671, 2014.

J. Li, H. Wang, L.-P. Sun, Y. Huang, L. Jin, and B.-O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express, vol. 22, pp. 31917–31923, 2014.

2013 (16)

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express, vol. 21, pp. 3055–3066, 2013.

T. Guoet al., “Polarization-maintaining fiber-optic-grating vector vibroscope,” Opt. Lett., vol. 38, pp. 531–533, 2013.

L. Cheng, J. Han, Z. Guo, L. Jin, and B.-O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett., vol. 38, pp. 688–690, 2013.

N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Development of a multi-point polarization-based vibration sensor,” Opt. Express, vol. 21, pp. 5606–5624, 2013.

W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express, vol. 21, pp. 11913–11920, 2013.

T. Guoet al., “VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor,” Opt. Express, vol. 21, pp. 19097–19102, 2013.

J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods, vol. 63, pp. 239–54, 2013.

L. Jin, Z. Quan, L. Cheng, and B.-O. Guan, “Hydrostatic pressure measurement with heterodyning fiber grating lasers: Mechanism and sensitivity enhancement,” J. Lightw. Technol., vol. 31, no. 9, pp. 1488–1494, 2013.

W. Zhouet al., “Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles,” Opt. Exp., vol. 21, pp. 864–869, 2013.

B. Wu, F. Wen, K. Qiu, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol., vol. 19, pp. 219–222, 2013.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett., vol. 103, 2013, Art. no. .

W. Linet al., “Two-dimensional magnetic field vector sensor based on tilted fiber Bragg grating and magnetic fluid,” J. Lightw. Technol., vol. 31, no. 15, pp. 2599–2605, 2013.

Y. Su, Y. Zhu, B. Zhang, H. Peng, and Z. Ye, “Real time transverse-force sensor based on polarization properties of fiber Bragg grating and cross-sensitivity compensation,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

N. Lammenset al., “Residual strain monitoring of out-of-autoclave cured parts by use of polarization dependent loss measurements in embedded optical fiber Bragg gratings,” Composites Part A: Appl. Sci. Manuf., vol. 52, pp. 38–44, 2013.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev., vol. 7, no. 1, pp. 83–108, 2013.

M. Z. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightw. Technol., vol. 31, no. 19, pp. 3167–3175, 2013.

2012 (11)

H. Peng, Y. Su, Z. Ye, and B. Zhou, “A novel fiber Bragg grating sensor for weak pressure measurement based on the stokes parameter,” Opt. Fiber Technol., vol. 18, pp. 485–489, 2012.

Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol., vol. 18, pp. 51–57, 2012.

Y. Wang, M. Wang, and X. Huang, “Diametric load sensor using a fiber Bragg grating and its differential group delay analysis,” Opt. Quantum Electron., vol. 44, pp. 483–491, 2012.

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightw. Technol., vol. 30, no. 8, pp. 1097–1112, 2012.

H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Opt. Fiber Technol., vol. 18, pp. 177–182, 2012.

Y. Wang, M. Wang, and X. Huang, “Simultaneous strain and temperature measurement with a single fiber Bragg grating based on the polarization properties analysis,” Opt. Commun., vol. 285, pp. 1834–1837, 2012.

A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings,” Nanotechnology, vol. 23, 2012, Art. no. .

J. Woet al., “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express, vol. 20, pp. 2844–2850, 2012.

T. Guo, L. Shang, Y. Ran, B.-O. Guan, and J. Albert, “Fiber-optic vector vibroscope,” Opt. Lett., vol. 37, pp. 2703–2705, 2012.

K. Chahet al., “Temperature-insensitive polarimetric vibration sensor based on HiBi microstructured optical fiber,” Appl. Opt., vol. 51, pp. 6130–6138, 2012.

Z. Yan, K. Zhou, and L. Zhang, “In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber,” Opt. Lett., vol. 37, pp. 3819–3821, 2012.

2011 (12)

J. Thomaset al., “Cladding mode coupling in highly localized fiber Bragg gratings: Modal properties and transmission spectra,” Opt. Express, vol. 19, pp. 325–341, 2011.

C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express, vol. 19, pp. 1656–1664, 2011.

T. Guo, A. C.-L. Wong, W. Liu, B.-O. Guan, C. Lu, and H.-Yaw Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express, vol. 19, no. 3, pp. 2485–2492, 2011.

L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express, vol. 1, pp. 128–137, 2011.

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt., vol. 50, pp. 4257–4261, 2011.

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Opt. Express, vol. 19, pp. 18742–53, 2011.

Y. Wang, M. Wang, and X. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express, vol. 19, pp. 25535–25544, 2011.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett., vol. 99, no. 4, 2011, Art. no. .

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. Derosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber grating aptasensor,” Anal. Chem., vol. 83, pp. 7027–7034, 2011.

P. Orr and P. Niewczas, “Polarization-xwitching FBG interrogator for distributed point measurement of magnetic field strength and temperature,” IEEE Sensors J., vol. 11, no. 5, pp. 1220–1226, 2011.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependent loss characteristics and applications of 45° tilted fiber gratings,” J. Lightw. Technol., vol. 29, no. 18, pp. 2715–2724, 2011.

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol., vol. 17, pp. 196–200, 2011.

2010 (8)

Y. Huang, T. Guo, C. Lu, and H.-Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett., vol. 22, no. 16, pp. 1235–1237, 2010.

L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightw. Technol., vol. 28, no. 18, pp. 2681–2687, 2010.

Y. Wang, M. Wang, and X. Huang, “High-sensitivity fiber Bragg grating transverse force sensor based on centroid measurement of polarization-dependent loss,” Meas. Sci. Technol., vol. 21, 2010, Art. no. .

J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, “Spectral properties of locally pressed fiber Bragg gratings written in polarization maintaining fibers,” J. Lightw. Technol., vol. 28, no. 9, pp. 1291–1297, 2010.

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett., vol. 35, pp. 637–639, 2010.

X. S. Yao, X. Chen, and T. Liu, “High accuracy polarization measurements using binary polarization rotators,” Opt. Express, vol. 18, pp. 6667–6685, 2010.

L.Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett., vol. 35, pp. 1034–1036, 2010.

W. Liu, T. Guo, A. C.-L. Wong, H.-Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express, vol. 18, pp. 17834–17840, 2010.

2009 (4)

V. García-Muñoz, C. Caucheteur, S. Bette, M. Wuilpart, M. Muriel, and P. Mégret, “Reduction of polarization related effects in superimposed fiber Bragg gratings,” Appl. Opt., vol. 48, no. 9, pp. 1635–1641, 2009.

N. Jovanovicet al., “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express, vol. 17, pp. 6082–6095, 2009.

S. Betteet al., “PDL and DGD reduction in Bragg gratings using twisted fibers for the inscription,” IEEE Photon. Technol. Lett., vol. 21, no. 22, pp. 1689–1691, 2009.

C. Caucheteuret al., “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” IEEE J. Lightw. Technol., vol. 48, no. 9, pp. 1635–1641, 2009.

2008 (2)

S. Bette, C. Caucheteur, R. Garcia-Olcina, M. Wuilpart, S. Sales, and J. Capmany, “Relationship between chromatic dispersion and differential group delay in weakly birefringent fiber gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 437–439, 2008.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2153–2155, 2008.

2007 (4)

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun., vol. 269, pp. 331–337, 2007.

C. Caucheteuret al., “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 13, pp. 966–968, 2007.

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett., vol. 32, pp. 211–213, 2007.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt., vol. 46, pp. 1142–1149, 2007.

2006 (2)

2005 (3)

K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings,” Opt. Lett., vol. 30, pp. 1285–1287, 2005.

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2703–2705, 2005.

P. Lu, D. S. Waddy, S. J. Mihailov, and H. Ding, “Characterization of the growths of UV-induced birefringence in effective mode index and index modulation in fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2237–2239, 2005.

2004 (3)

2002 (1)

2000 (4)

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A, vol. 84, pp. 198–204, 2000.

B. Huttner, C. Geiser, and N. Gisin, “Polarization-induced distortion in optical fiber networks with polarization-mode dispersion and polarization-dependent losses,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 2, pp. 317–329, 2000.

Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas., vol. 49, no. 6, pp. 1231–1239, 2000.

R. Gafsi and M. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol., vol. 6, pp. 299–323, 2000.

1998 (1)

R. M. Craig, S. L. Gilbert, and P. D. Hale, “High-resolution, nonmechanical approach to polarization-dependent transmission measurements,” J. Lightw. Technol., vol. 16, no. 7, pp. 1285–1286, 1998.

1997 (2)

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun., vol. 142, pp. 119–125, 1997.

T. Erdogan, “Fiber grating spectra,” J. Lightw. Technol., vol. 15, no. 8, pp. 1277–1294, 1997.

1996 (1)

S. Lu, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Amer. A, vol. 13, pp. 1106–1113, 1996.

1994 (2)

T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Amer. B, vol. 11, pp. 2100–2105, 1994.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett., vol. 19, pp. 1260–1262, 1994.

1992 (2)

B. L. Heffner, “Deterministic and analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photon. Technol. Lett., vol. 4, no. 5, pp. 451–453, 1992.

B. L. Heffner, “Deterministic, analytically complete measurement of polarization-dependent transmission through optical devices,” IEEE Photon. Technol. Lett., vol. 4, no. 5, pp. 451–454, 1992.

1981 (1)

R. Barakat, “Bilinear constraints between elements of the 4 × 4 Mueller-Jones transfer matrix of polarization theory,” Opt. Comm., vol. 38, pp. 159–161, 1981.

1971 (1)

1963 (1)

R. Barakat, “Theory of the coherency matrix for light of arbitrary spectral bandwidth,” J. Opt. Soc. Amer., vol. 53, pp. 317–323, 1963.

Ahamad, N.

Alam, M. Z.

M. Z. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightw. Technol., vol. 31, no. 19, pp. 3167–3175, 2013.

Albert, J.

D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett., vol. 41, pp. 1201–1204, 2016.

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3D shape sensor based on a pair of orthogonal tilted fiber bragg gratings,” Sci. Rep., vol. 5, 2015, Art. no. .

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett., vol. 40, pp. 1713–1716, 2015.

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: Design rules for ultimate refractometric sensitivity,” Opt. Express, vol. 23, pp. 2804–2809, 2015.

D. J. Mandia, W. Zhou, J. Albert, and S. T. Barry, “CVD on optical fibers: Tilted fiber Bragg gratings as real-time sensing platforms,” Chem. Vapor Deposition, vol. 21, pp. 4–20, 2015.

D. J. Mandia, W. Zhou, A. Wells, J. Albert, and S. Barry, “Metallic nanocoatings on optical fibers as a sensor platform,” ECS Trans., vol. 69, pp. 171–179, 2015.

A. Ianoul, M. Robson, V. Pripotnev, and J. Albert, “Polarization-selective excitation of plasmonic resonances in silver nanocube random arrays by optical fiber cladding mode evanescent fields,” RSC Adv., vol. 4, 2014, Art. no. .

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron., vol. 56, pp. 359–367, 2014.

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express, vol. 22, pp. 31665–31671, 2014.

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C, vol. 118, pp. 670–678, 2014.

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C, vol. 118, pp. 11035–11042, 2014.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett., vol. 104, pp. 1–5, 2014.

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron., vol. 55C, pp. 452–458, 2014.

M. Z. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightw. Technol., vol. 31, no. 19, pp. 3167–3175, 2013.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev., vol. 7, no. 1, pp. 83–108, 2013.

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express, vol. 21, pp. 3055–3066, 2013.

J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods, vol. 63, pp. 239–54, 2013.

T. Guo, L. Shang, Y. Ran, B.-O. Guan, and J. Albert, “Fiber-optic vector vibroscope,” Opt. Lett., vol. 37, pp. 2703–2705, 2012.

A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings,” Nanotechnology, vol. 23, 2012, Art. no. .

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett., vol. 99, no. 4, 2011, Art. no. .

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. Derosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber grating aptasensor,” Anal. Chem., vol. 83, pp. 7027–7034, 2011.

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Opt. Express, vol. 19, pp. 18742–53, 2011.

L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express, vol. 1, pp. 128–137, 2011.

C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express, vol. 19, pp. 1656–1664, 2011.

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt., vol. 50, pp. 4257–4261, 2011.

L.Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett., vol. 35, pp. 1034–1036, 2010.

L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightw. Technol., vol. 28, no. 18, pp. 2681–2687, 2010.

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett., vol. 35, pp. 637–639, 2010.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2153–2155, 2008.

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett., vol. 32, pp. 211–213, 2007.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt., vol. 46, pp. 1142–1149, 2007.

Baek, S.

Bao, W.

Barakat, R.

R. Barakat, “Bilinear constraints between elements of the 4 × 4 Mueller-Jones transfer matrix of polarization theory,” Opt. Comm., vol. 38, pp. 159–161, 1981.

R. Barakat, “Theory of the coherency matrix for light of arbitrary spectral bandwidth,” J. Opt. Soc. Amer., vol. 53, pp. 317–323, 1963.

Barry, S.

D. J. Mandia, W. Zhou, A. Wells, J. Albert, and S. Barry, “Metallic nanocoatings on optical fibers as a sensor platform,” ECS Trans., vol. 69, pp. 171–179, 2015.

Barry, S. T.

D. J. Mandia, W. Zhou, J. Albert, and S. T. Barry, “CVD on optical fibers: Tilted fiber Bragg gratings as real-time sensing platforms,” Chem. Vapor Deposition, vol. 21, pp. 4–20, 2015.

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett., vol. 40, pp. 1713–1716, 2015.

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express, vol. 22, pp. 31665–31671, 2014.

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C, vol. 118, pp. 670–678, 2014.

L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express, vol. 1, pp. 128–137, 2011.

Bartelt, H.

B. Korenko, M. Rothhardt, A. Hartung, and H. Bartelt, “Novel fiber-optic relative humidity sensor with thermal compensation,” IEEE Sensors J., vol. 15, no. 10, pp. 5450–5454, 2015.

Belhadj, N.

Bennion,

Berini, P.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett., vol. 99, no. 4, 2011, Art. no. .

Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas., vol. 49, no. 6, pp. 1231–1239, 2000.

Bette, S.

F. Descamps, S. Bette, D. Kinet, and C. Caucheteur, “Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating,” Appl. Opt., vol. 55, pp. 4270–4276, 2016.

F. Descamps, C. Caucheteur, P. Mégret, and S. Bette, “Distribution profiling of a transverse load using the DGD spectrum of chirped FBGs,” Opt. Express, vol. 23, pp. 18203–18217, 2015.

S. Betteet al., “PDL and DGD reduction in Bragg gratings using twisted fibers for the inscription,” IEEE Photon. Technol. Lett., vol. 21, no. 22, pp. 1689–1691, 2009.

V. García-Muñoz, C. Caucheteur, S. Bette, M. Wuilpart, M. Muriel, and P. Mégret, “Reduction of polarization related effects in superimposed fiber Bragg gratings,” Appl. Opt., vol. 48, no. 9, pp. 1635–1641, 2009.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2153–2155, 2008.

S. Bette, C. Caucheteur, R. Garcia-Olcina, M. Wuilpart, S. Sales, and J. Capmany, “Relationship between chromatic dispersion and differential group delay in weakly birefringent fiber gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 437–439, 2008.

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun., vol. 269, pp. 331–337, 2007.

Bialiayeu, A.

A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings,” Nanotechnology, vol. 23, 2012, Art. no. .

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Opt. Express, vol. 19, pp. 18742–53, 2011.

Blair, D. A. D.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. Derosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber grating aptasensor,” Anal. Chem., vol. 83, pp. 7027–7034, 2011.

Botero-Cadavid, J. F.

J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, “Spectral properties of locally pressed fiber Bragg gratings written in polarization maintaining fibers,” J. Lightw. Technol., vol. 28, no. 9, pp. 1291–1297, 2010.

Bottomley, A.

A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings,” Nanotechnology, vol. 23, 2012, Art. no. .

Brennan, J.

Camci-Unal, G.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron., vol. 56, pp. 359–367, 2014.

Capmany, J.

S. Bette, C. Caucheteur, R. Garcia-Olcina, M. Wuilpart, S. Sales, and J. Capmany, “Relationship between chromatic dispersion and differential group delay in weakly birefringent fiber gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 437–439, 2008.

Caucheteur, C.

F. Descamps, S. Bette, D. Kinet, and C. Caucheteur, “Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating,” Appl. Opt., vol. 55, pp. 4270–4276, 2016.

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: Design rules for ultimate refractometric sensitivity,” Opt. Express, vol. 23, pp. 2804–2809, 2015.

F. Descamps, C. Caucheteur, P. Mégret, and S. Bette, “Distribution profiling of a transverse load using the DGD spectrum of chirped FBGs,” Opt. Express, vol. 23, pp. 18203–18217, 2015.

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C, vol. 118, pp. 11035–11042, 2014.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron., vol. 51, pp. 249–254, 2014.

K. Chah, V. Voisin, D. Kinet, and C. Caucheteur, “Surface plasmon resonance in eccentric femtosecond-laser-induced fiber Bragg gratings,” Opt. Lett., vol. 39, pp. 6887–6890, 2014.

J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods, vol. 63, pp. 239–54, 2013.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev., vol. 7, no. 1, pp. 83–108, 2013.

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express, vol. 21, pp. 3055–3066, 2013.

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Opt. Express, vol. 19, pp. 18742–53, 2011.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett., vol. 99, no. 4, 2011, Art. no. .

C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express, vol. 19, pp. 1656–1664, 2011.

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt., vol. 50, pp. 4257–4261, 2011.

V. García-Muñoz, C. Caucheteur, S. Bette, M. Wuilpart, M. Muriel, and P. Mégret, “Reduction of polarization related effects in superimposed fiber Bragg gratings,” Appl. Opt., vol. 48, no. 9, pp. 1635–1641, 2009.

C. Caucheteuret al., “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” IEEE J. Lightw. Technol., vol. 48, no. 9, pp. 1635–1641, 2009.

S. Bette, C. Caucheteur, R. Garcia-Olcina, M. Wuilpart, S. Sales, and J. Capmany, “Relationship between chromatic dispersion and differential group delay in weakly birefringent fiber gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 437–439, 2008.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2153–2155, 2008.

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun., vol. 269, pp. 331–337, 2007.

C. Caucheteuret al., “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 13, pp. 966–968, 2007.

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2703–2705, 2005.

Causado-Buelvas, J. D.

J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, “Spectral properties of locally pressed fiber Bragg gratings written in polarization maintaining fibers,” J. Lightw. Technol., vol. 28, no. 9, pp. 1291–1297, 2010.

Chah, K.

Chan, C. F.

Chen, C.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett., vol. 99, no. 4, 2011, Art. no. .

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett., vol. 35, pp. 637–639, 2010.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2153–2155, 2008.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt., vol. 46, pp. 1142–1149, 2007.

Chen, C. K.

L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightw. Technol., vol. 28, no. 18, pp. 2681–2687, 2010.

Chen, D.

Y. Lu, C. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol., vol. 20, pp. 491–494, 2014.

Chen, N.-K.

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron., vol. 55C, pp. 452–458, 2014.

Chen, X.

Cheng, L.

L. Jin, Z. Quan, L. Cheng, and B.-O. Guan, “Hydrostatic pressure measurement with heterodyning fiber grating lasers: Mechanism and sensitivity enhancement,” J. Lightw. Technol., vol. 31, no. 9, pp. 1488–1494, 2013.

L. Cheng, J. Han, Z. Guo, L. Jin, and B.-O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett., vol. 38, pp. 688–690, 2013.

Chu, J.

Y. Lu, C. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol., vol. 20, pp. 491–494, 2014.

Chung, Y.

Coyle, J. P.

Craig, R. M.

R. M. Craig, S. L. Gilbert, and P. D. Hale, “High-resolution, nonmechanical approach to polarization-dependent transmission measurements,” J. Lightw. Technol., vol. 16, no. 7, pp. 1285–1286, 1998.

Cuttica, D. F.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron., vol. 56, pp. 359–367, 2014.

Dakka, M. A.

Damman, P.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron., vol. 51, pp. 249–254, 2014.

Debliquy, M.

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C, vol. 118, pp. 11035–11042, 2014.

Derikson, D.

D. Derikson, Fiber Optic Test and Measurement.Englewood Cliffs, NJ, USA: Prentice-Hall, 1998.

Derosa, M. C.

J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods, vol. 63, pp. 239–54, 2013.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. Derosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber grating aptasensor,” Anal. Chem., vol. 83, pp. 7027–7034, 2011.

Descamps, F.

Ding, H.

P. Lu, D. S. Waddy, S. J. Mihailov, and H. Ding, “Characterization of the growths of UV-induced birefringence in effective mode index and index modulation in fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2237–2239, 2005.

Dokmeci, M. R.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron., vol. 56, pp. 359–367, 2014.

Dong, H.

Dong, X.

Y. Lu, C. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol., vol. 20, pp. 491–494, 2014.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett., vol. 103, 2013, Art. no. .

Dossou, K.

El-Sherif,

R. Gafsi and M. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol., vol. 6, pp. 299–323, 2000.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightw. Technol., vol. 15, no. 8, pp. 1277–1294, 1997.

T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Amer. B, vol. 11, pp. 2100–2105, 1994.

Feng, D.

D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett., vol. 41, pp. 1201–1204, 2016.

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3D shape sensor based on a pair of orthogonal tilted fiber bragg gratings,” Sci. Rep., vol. 5, 2015, Art. no. .

Francis, T. J.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. Derosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber grating aptasensor,” Anal. Chem., vol. 83, pp. 7027–7034, 2011.

Gafsi,

R. Gafsi and M. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol., vol. 6, pp. 299–323, 2000.

Gagnaire, A.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A, vol. 84, pp. 198–204, 2000.

Gagnaire, H.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A, vol. 84, pp. 198–204, 2000.

Gao, C.

H. Peng, B. H. Zhou, H. Wang, L. H. Shi, C. Gao, and P. Xiang, “A new method for resolving the influence of circular birefringence in FBG weak pressure sensor,” Measurement, vol. 58, pp. 280–285, 2014.

García-Muñoz, V.

Garcia-Olcina, R.

S. Bette, C. Caucheteur, R. Garcia-Olcina, M. Wuilpart, S. Sales, and J. Capmany, “Relationship between chromatic dispersion and differential group delay in weakly birefringent fiber gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 437–439, 2008.

Geiser, C.

B. Huttner, C. Geiser, and N. Gisin, “Polarization-induced distortion in optical fiber networks with polarization-mode dispersion and polarization-dependent losses,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 2, pp. 317–329, 2000.

Gilbert, S. L.

R. M. Craig, S. L. Gilbert, and P. D. Hale, “High-resolution, nonmechanical approach to polarization-dependent transmission measurements,” J. Lightw. Technol., vol. 16, no. 7, pp. 1285–1286, 1998.

Gisin, N.

B. Huttner, C. Geiser, and N. Gisin, “Polarization-induced distortion in optical fiber networks with polarization-mode dispersion and polarization-dependent losses,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 2, pp. 317–329, 2000.

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun., vol. 142, pp. 119–125, 1997.

Gloge, D.

Griffiths, M. B. E.

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C, vol. 118, pp. 670–678, 2014.

Grover, C. P.

Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas., vol. 49, no. 6, pp. 1231–1239, 2000.

Guan, B.-O.

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron., vol. 55C, pp. 452–458, 2014.

J. Li, H. Wang, L.-P. Sun, Y. Huang, L. Jin, and B.-O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express, vol. 22, pp. 31917–31923, 2014.

L. Cheng, J. Han, Z. Guo, L. Jin, and B.-O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett., vol. 38, pp. 688–690, 2013.

L. Jin, Z. Quan, L. Cheng, and B.-O. Guan, “Hydrostatic pressure measurement with heterodyning fiber grating lasers: Mechanism and sensitivity enhancement,” J. Lightw. Technol., vol. 31, no. 9, pp. 1488–1494, 2013.

T. Guo, L. Shang, Y. Ran, B.-O. Guan, and J. Albert, “Fiber-optic vector vibroscope,” Opt. Lett., vol. 37, pp. 2703–2705, 2012.

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightw. Technol., vol. 30, no. 8, pp. 1097–1112, 2012.

T. Guo, A. C.-L. Wong, W. Liu, B.-O. Guan, C. Lu, and H.-Yaw Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express, vol. 19, no. 3, pp. 2485–2492, 2011.

Guo, T.

T. Guoet al., “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron., vol. 78, pp. 221–228, 2016.

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron., vol. 55C, pp. 452–458, 2014.

Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett., vol. 39, pp. 6616–6619, 2014.

T. Guoet al., “VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor,” Opt. Express, vol. 21, pp. 19097–19102, 2013.

T. Guoet al., “Polarization-maintaining fiber-optic-grating vector vibroscope,” Opt. Lett., vol. 38, pp. 531–533, 2013.

T. Guo, L. Shang, Y. Ran, B.-O. Guan, and J. Albert, “Fiber-optic vector vibroscope,” Opt. Lett., vol. 37, pp. 2703–2705, 2012.

T. Guo, A. C.-L. Wong, W. Liu, B.-O. Guan, C. Lu, and H.-Yaw Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express, vol. 19, no. 3, pp. 2485–2492, 2011.

Y. Huang, T. Guo, C. Lu, and H.-Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett., vol. 22, no. 16, pp. 1235–1237, 2010.

W. Liu, T. Guo, A. C.-L. Wong, H.-Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express, vol. 18, pp. 17834–17840, 2010.

Guo, Z.

Hale, P. D.

R. M. Craig, S. L. Gilbert, and P. D. Hale, “High-resolution, nonmechanical approach to polarization-dependent transmission measurements,” J. Lightw. Technol., vol. 16, no. 7, pp. 1285–1286, 1998.

Han, J.

Han, M.

Han, W. T.

Hartung, A.

B. Korenko, M. Rothhardt, A. Hartung, and H. Bartelt, “Novel fiber-optic relative humidity sensor with thermal compensation,” IEEE Sensors J., vol. 15, no. 10, pp. 5450–5454, 2015.

He, S.

Heffner, B. L.

B. L. Heffner, “Deterministic, analytically complete measurement of polarization-dependent transmission through optical devices,” IEEE Photon. Technol. Lett., vol. 4, no. 5, pp. 451–454, 1992.

B. L. Heffner, “Deterministic and analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photon. Technol. Lett., vol. 4, no. 5, pp. 451–453, 1992.

Hu, L.

Hu, X.

Huang, X.

Y. Wang, N. Li, X. Huang, and M. Wang, “Fiber optic transverse load sensor based on polarization properties of pi-phase-shifted fiber Bragg grating,” Opt. Commun., vol. 342, pp. 152–156, 2015.

W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express, vol. 21, pp. 11913–11920, 2013.

Y. Wang, M. Wang, and X. Huang, “Simultaneous strain and temperature measurement with a single fiber Bragg grating based on the polarization properties analysis,” Opt. Commun., vol. 285, pp. 1834–1837, 2012.

Y. Wang, M. Wang, and X. Huang, “Diametric load sensor using a fiber Bragg grating and its differential group delay analysis,” Opt. Quantum Electron., vol. 44, pp. 483–491, 2012.

Y. Wang, M. Wang, and X. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express, vol. 19, pp. 25535–25544, 2011.

Y. Wang, M. Wang, and X. Huang, “High-sensitivity fiber Bragg grating transverse force sensor based on centroid measurement of polarization-dependent loss,” Meas. Sci. Technol., vol. 21, 2010, Art. no. .

Huang, Y.

J. Li, H. Wang, L.-P. Sun, Y. Huang, L. Jin, and B.-O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express, vol. 22, pp. 31917–31923, 2014.

Y. Huang, T. Guo, C. Lu, and H.-Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett., vol. 22, no. 16, pp. 1235–1237, 2010.

Huttner, B.

B. Huttner, C. Geiser, and N. Gisin, “Polarization-induced distortion in optical fiber networks with polarization-mode dispersion and polarization-dependent losses,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 2, pp. 317–329, 2000.

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun., vol. 142, pp. 119–125, 1997.

Ianno, N.

Ianoul, A.

A. Ianoul, M. Robson, V. Pripotnev, and J. Albert, “Polarization-selective excitation of plasmonic resonances in silver nanocube random arrays by optical fiber cladding mode evanescent fields,” RSC Adv., vol. 4, 2014, Art. no. .

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C, vol. 118, pp. 11035–11042, 2014.

A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings,” Nanotechnology, vol. 23, 2012, Art. no. .

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Opt. Express, vol. 19, pp. 18742–53, 2011.

Inniss, D.

Jafari, A.

Jaffrezic-Renault, N.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A, vol. 84, pp. 198–204, 2000.

Jeong, Y.

Ji, J.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett., vol. 103, 2013, Art. no. .

Jin, L.

J. Li, H. Wang, L.-P. Sun, Y. Huang, L. Jin, and B.-O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express, vol. 22, pp. 31917–31923, 2014.

L. Jin, Z. Quan, L. Cheng, and B.-O. Guan, “Hydrostatic pressure measurement with heterodyning fiber grating lasers: Mechanism and sensitivity enhancement,” J. Lightw. Technol., vol. 31, no. 9, pp. 1488–1494, 2013.

L. Cheng, J. Han, Z. Guo, L. Jin, and B.-O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett., vol. 38, pp. 688–690, 2013.

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightw. Technol., vol. 30, no. 8, pp. 1097–1112, 2012.

Jovanovic, N.

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing.Norwood, MA, USA: Artech House, 1999.

Khademhosseini, A.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron., vol. 56, pp. 359–367, 2014.

Kinet, D.

Korenko, B.

B. Korenko, M. Rothhardt, A. Hartung, and H. Bartelt, “Novel fiber-optic relative humidity sensor with thermal compensation,” IEEE Sensors J., vol. 15, no. 10, pp. 5450–5454, 2015.

Kosinski, S. G.

Lammens, N.

N. Lammenset al., “Residual strain monitoring of out-of-autoclave cured parts by use of polarization dependent loss measurements in embedded optical fiber Bragg gratings,” Composites Part A: Appl. Sci. Manuf., vol. 52, pp. 38–44, 2013.

LaRochelle, S.

Laronche, A.

L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightw. Technol., vol. 28, no. 18, pp. 2681–2687, 2010.

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt., vol. 46, pp. 1142–1149, 2007.

Lee, B.

Lemaire, P.

Lepinay, S.

J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods, vol. 63, pp. 239–54, 2013.

Li, J.

Y. Su, Y. Zhu, B. Zhang, H. Zhou, J. Li, and F. Wang, “Spectral response of polarization properties of fiber Bragg grating under local pressure,” Opt. Fiber Technol., vol. 25, pp. 15–19, 2015.

Y. Su, Y. Zhu, B. Z., H. Zhou, J. Li, and F. Wang, “Spectral characterization of polarization dependent loss in fiber Bragg grating under local pressure and the analysis of secondary peak,” Opt. Fiber Technol., vol. 24, pp. 77–83, 2015.

J. Li, H. Wang, L.-P. Sun, Y. Huang, L. Jin, and B.-O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express, vol. 22, pp. 31917–31923, 2014.

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol., vol. 17, pp. 196–200, 2011.

Li, N.

Y. Wang, N. Li, X. Huang, and M. Wang, “Fiber optic transverse load sensor based on polarization properties of pi-phase-shifted fiber Bragg grating,” Opt. Commun., vol. 342, pp. 152–156, 2015.

Li, Y.

Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol., vol. 18, pp. 51–57, 2012.

H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Opt. Fiber Technol., vol. 18, pp. 177–182, 2012.

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol., vol. 17, pp. 196–200, 2011.

Lin, W.

W. Linet al., “Two-dimensional magnetic field vector sensor based on tilted fiber Bragg grating and magnetic fluid,” J. Lightw. Technol., vol. 31, no. 15, pp. 2599–2605, 2013.

Lin, W. B.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A, vol. 84, pp. 198–204, 2000.

Linze, N.

Liu, F.

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron., vol. 55C, pp. 452–458, 2014.

Liu, G.

Liu, T.

Liu, W.

Liu, Y.

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron., vol. 55C, pp. 452–458, 2014.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory.New York, NY, USA: Springer, 1983.

Lu, C.

T. Guo, A. C.-L. Wong, W. Liu, B.-O. Guan, C. Lu, and H.-Yaw Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express, vol. 19, no. 3, pp. 2485–2492, 2011.

Y. Huang, T. Guo, C. Lu, and H.-Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett., vol. 22, no. 16, pp. 1235–1237, 2010.

Lu, P.

P. Lu, D. S. Waddy, S. J. Mihailov, and H. Ding, “Characterization of the growths of UV-induced birefringence in effective mode index and index modulation in fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2237–2239, 2005.

Lu, S.

S. Lu, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Amer. A, vol. 13, pp. 1106–1113, 1996.

Lu, X.

B. Wu, F. Wen, K. Qiu, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol., vol. 19, pp. 219–222, 2013.

Lu, Y.

Y. Lu, C. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol., vol. 20, pp. 491–494, 2014.

Malachovska, V.

V. Malachovskaet al., “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem., vol. 87, pp. 5957–5965, 2015.

Mandia, D. J.

D. J. Mandiaet al., “The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors,” Nanotechnology, vol. 26, 2015, Art. no. .

D. J. Mandia, W. Zhou, A. Wells, J. Albert, and S. Barry, “Metallic nanocoatings on optical fibers as a sensor platform,” ECS Trans., vol. 69, pp. 171–179, 2015.

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett., vol. 40, pp. 1713–1716, 2015.

D. J. Mandia, W. Zhou, J. Albert, and S. T. Barry, “CVD on optical fibers: Tilted fiber Bragg gratings as real-time sensing platforms,” Chem. Vapor Deposition, vol. 21, pp. 4–20, 2015.

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express, vol. 22, pp. 31665–31671, 2014.

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C, vol. 118, pp. 670–678, 2014.

Matthews, M.

Mégret, P.

F. Descamps, C. Caucheteur, P. Mégret, and S. Bette, “Distribution profiling of a transverse load using the DGD spectrum of chirped FBGs,” Opt. Express, vol. 23, pp. 18203–18217, 2015.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron., vol. 51, pp. 249–254, 2014.

N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Development of a multi-point polarization-based vibration sensor,” Opt. Express, vol. 21, pp. 5606–5624, 2013.

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt., vol. 50, pp. 4257–4261, 2011.

V. García-Muñoz, C. Caucheteur, S. Bette, M. Wuilpart, M. Muriel, and P. Mégret, “Reduction of polarization related effects in superimposed fiber Bragg gratings,” Appl. Opt., vol. 48, no. 9, pp. 1635–1641, 2009.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2153–2155, 2008.

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun., vol. 269, pp. 331–337, 2007.

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2703–2705, 2005.

Mihailov, S. J.

P. Lu, D. S. Waddy, S. J. Mihailov, and H. Ding, “Characterization of the growths of UV-induced birefringence in effective mode index and index modulation in fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2237–2239, 2005.

Mizrahi, V.

T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Amer. B, vol. 11, pp. 2100–2105, 1994.

Mou, C.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependent loss characteristics and applications of 45° tilted fiber gratings,” J. Lightw. Technol., vol. 29, no. 18, pp. 2715–2724, 2011.

Muriel, M.

Niewczas, P.

P. Orr and P. Niewczas, “Polarization-xwitching FBG interrogator for distributed point measurement of magnetic field strength and temperature,” IEEE Sensors J., vol. 11, no. 5, pp. 1220–1226, 2011.

Oh, S. T.

Orr, P.

P. Orr and P. Niewczas, “Polarization-xwitching FBG interrogator for distributed point measurement of magnetic field strength and temperature,” IEEE Sensors J., vol. 11, no. 5, pp. 1220–1226, 2011.

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing.Norwood, MA, USA: Artech House, 1999.

Paek, U. C.

Peng, H.

H. Peng, B. H. Zhou, H. Wang, L. H. Shi, C. Gao, and P. Xiang, “A new method for resolving the influence of circular birefringence in FBG weak pressure sensor,” Measurement, vol. 58, pp. 280–285, 2014.

Y. Su, Y. Zhu, B. Zhang, H. Peng, and Z. Ye, “Real time transverse-force sensor based on polarization properties of fiber Bragg grating and cross-sensitivity compensation,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Opt. Fiber Technol., vol. 18, pp. 177–182, 2012.

H. Peng, Y. Su, Z. Ye, and B. Zhou, “A novel fiber Bragg grating sensor for weak pressure measurement based on the stokes parameter,” Opt. Fiber Technol., vol. 18, pp. 485–489, 2012.

Pilate, J.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron., vol. 51, pp. 249–254, 2014.

Prezgot, D.

A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings,” Nanotechnology, vol. 23, 2012, Art. no. .

Pripotnev, V.

A. Ianoul, M. Robson, V. Pripotnev, and J. Albert, “Polarization-selective excitation of plasmonic resonances in silver nanocube random arrays by optical fiber cladding mode evanescent fields,” RSC Adv., vol. 4, 2014, Art. no. .

Qi, Y.

Qiao, X.

Qiu, K.

B. Wu, F. Wen, K. Qiu, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol., vol. 19, pp. 219–222, 2013.

Quan, Z.

L. Jin, Z. Quan, L. Cheng, and B.-O. Guan, “Hydrostatic pressure measurement with heterodyning fiber grating lasers: Mechanism and sensitivity enhancement,” J. Lightw. Technol., vol. 31, no. 9, pp. 1488–1494, 2013.

Ran, Y.

Reed, W. A.

Renoirt, J.-M.

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C, vol. 118, pp. 11035–11042, 2014.

Ribaut, C.

C. Ribautet al., “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron., vol. 77, pp. 315–322, 2016.

Robson, M.

A. Ianoul, M. Robson, V. Pripotnev, and J. Albert, “Polarization-selective excitation of plasmonic resonances in silver nanocube random arrays by optical fiber cladding mode evanescent fields,” RSC Adv., vol. 4, 2014, Art. no. .

Rong, Q.

Q. Ronget al., “Orthogonal polarization coupling for transverse strain measurement using a polarimetric mirror,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 729–732, 2014.

Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett., vol. 39, pp. 6616–6619, 2014.

Rothhardt, M.

B. Korenko, M. Rothhardt, A. Hartung, and H. Bartelt, “Novel fiber-optic relative humidity sensor with thermal compensation,” IEEE Sensors J., vol. 15, no. 10, pp. 5450–5454, 2015.

Sales, S.

S. Bette, C. Caucheteur, R. Garcia-Olcina, M. Wuilpart, S. Sales, and J. Capmany, “Relationship between chromatic dispersion and differential group delay in weakly birefringent fiber gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 437–439, 2008.

Shang, L.

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev., vol. 7, no. 1, pp. 83–108, 2013.

L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightw. Technol., vol. 28, no. 18, pp. 2681–2687, 2010.

Shao, L.Y.

Shao, L.-Y.

Shen, C.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett., vol. 104, pp. 1–5, 2014.

Y. Lu, C. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol., vol. 20, pp. 491–494, 2014.

Shevchenko, Y.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron., vol. 56, pp. 359–367, 2014.

C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express, vol. 19, pp. 1656–1664, 2011.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. Derosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber grating aptasensor,” Anal. Chem., vol. 83, pp. 7027–7034, 2011.

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett., vol. 35, pp. 637–639, 2010.

Shevchenko, Y. Y.

Shi, L. H.

H. Peng, B. H. Zhou, H. Wang, L. H. Shi, C. Gao, and P. Xiang, “A new method for resolving the influence of circular birefringence in FBG weak pressure sensor,” Measurement, vol. 58, pp. 280–285, 2014.

Shum, P. P.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett., vol. 103, 2013, Art. no. .

Simova, E.

Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas., vol. 49, no. 6, pp. 1231–1239, 2000.

Simpson, G.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory.New York, NY, USA: Springer, 1983.

Su, D.

D. Suet al., “Temperature-Independent fiber -inclinometer based on orthogonally polarized modes coupling using a polarization-maintaining fiber Bragg grating,” Sensors, vol. 14, pp. 20930–20939, 2014.

Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett., vol. 39, pp. 6616–6619, 2014.

Su, H.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett., vol. 103, 2013, Art. no. .

Su, Y.

Y. Su, Y. Zhu, B. Z., H. Zhou, J. Li, and F. Wang, “Spectral characterization of polarization dependent loss in fiber Bragg grating under local pressure and the analysis of secondary peak,” Opt. Fiber Technol., vol. 24, pp. 77–83, 2015.

Y. Su, Y. Zhu, B. Zhang, and H. Zhou, “Real-time transverse force sensing using fiber Bragg grating through direct Stokes parameters measurement,” Opt. Express, vol. 23, pp. 32300–32310, 2015.

Y. Su, Y. Zhu, B. Zhang, H. Zhou, J. Li, and F. Wang, “Spectral response of polarization properties of fiber Bragg grating under local pressure,” Opt. Fiber Technol., vol. 25, pp. 15–19, 2015.

Y. Su, Y. Zhu, B. Zhang, H. Peng, and Z. Ye, “Real time transverse-force sensor based on polarization properties of fiber Bragg grating and cross-sensitivity compensation,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol., vol. 18, pp. 51–57, 2012.

H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Opt. Fiber Technol., vol. 18, pp. 177–182, 2012.

H. Peng, Y. Su, Z. Ye, and B. Zhou, “A novel fiber Bragg grating sensor for weak pressure measurement based on the stokes parameter,” Opt. Fiber Technol., vol. 18, pp. 485–489, 2012.

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol., vol. 17, pp. 196–200, 2011.

Sun, L.-P.

Sun, Z.

Takahashi, N.

R. Uchimura, A. Wada, S. Tanaka, and N. Takahashi, “Fiber Fabry-Perot interferometric sensor using Bragg gratings in polarization maintaining fiber,” J. Lightw. Technol., vol. 33, no. 12, pp. 2499–2503, 2015.

Tam, H.-Y.

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightw. Technol., vol. 30, no. 8, pp. 1097–1112, 2012.

W. Liu, T. Guo, A. C.-L. Wong, H.-Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express, vol. 18, pp. 17834–17840, 2010.

Y. Huang, T. Guo, C. Lu, and H.-Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett., vol. 22, no. 16, pp. 1235–1237, 2010.

Tam, H.-Yaw

Tanaka, S.

R. Uchimura, A. Wada, S. Tanaka, and N. Takahashi, “Fiber Fabry-Perot interferometric sensor using Bragg gratings in polarization maintaining fiber,” J. Lightw. Technol., vol. 33, no. 12, pp. 2499–2503, 2015.

Thomas, J.

Thomson, D. J.

Tihon, P.

Torres, P.

J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, “Spectral properties of locally pressed fiber Bragg gratings written in polarization maintaining fibers,” J. Lightw. Technol., vol. 28, no. 9, pp. 1291–1297, 2010.

Uchimura, R.

R. Uchimura, A. Wada, S. Tanaka, and N. Takahashi, “Fiber Fabry-Perot interferometric sensor using Bragg gratings in polarization maintaining fiber,” J. Lightw. Technol., vol. 33, no. 12, pp. 2499–2503, 2015.

Vengsarkar, A. M.

Verlinden, O.

Voisin, V.

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: Design rules for ultimate refractometric sensitivity,” Opt. Express, vol. 23, pp. 2804–2809, 2015.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron., vol. 51, pp. 249–254, 2014.

K. Chah, V. Voisin, D. Kinet, and C. Caucheteur, “Surface plasmon resonance in eccentric femtosecond-laser-induced fiber Bragg gratings,” Opt. Lett., vol. 39, pp. 6887–6890, 2014.

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express, vol. 21, pp. 3055–3066, 2013.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett., vol. 99, no. 4, 2011, Art. no. .

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt., vol. 50, pp. 4257–4261, 2011.

Waagaard, O. H.

Wada, A.

R. Uchimura, A. Wada, S. Tanaka, and N. Takahashi, “Fiber Fabry-Perot interferometric sensor using Bragg gratings in polarization maintaining fiber,” J. Lightw. Technol., vol. 33, no. 12, pp. 2499–2503, 2015.

Waddy, D. S.

P. Lu, D. S. Waddy, S. J. Mihailov, and H. Ding, “Characterization of the growths of UV-induced birefringence in effective mode index and index modulation in fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2237–2239, 2005.

Walsh, R.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. Derosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber grating aptasensor,” Anal. Chem., vol. 83, pp. 7027–7034, 2011.

Wang, D.

Wang, F.

Y. Su, Y. Zhu, B. Z., H. Zhou, J. Li, and F. Wang, “Spectral characterization of polarization dependent loss in fiber Bragg grating under local pressure and the analysis of secondary peak,” Opt. Fiber Technol., vol. 24, pp. 77–83, 2015.

Y. Su, Y. Zhu, B. Zhang, H. Zhou, J. Li, and F. Wang, “Spectral response of polarization properties of fiber Bragg grating under local pressure,” Opt. Fiber Technol., vol. 25, pp. 15–19, 2015.

Wang, H.

H. Peng, B. H. Zhou, H. Wang, L. H. Shi, C. Gao, and P. Xiang, “A new method for resolving the influence of circular birefringence in FBG weak pressure sensor,” Measurement, vol. 58, pp. 280–285, 2014.

J. Li, H. Wang, L.-P. Sun, Y. Huang, L. Jin, and B.-O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express, vol. 22, pp. 31917–31923, 2014.

Wang, M.

Y. Wang, N. Li, X. Huang, and M. Wang, “Fiber optic transverse load sensor based on polarization properties of pi-phase-shifted fiber Bragg grating,” Opt. Commun., vol. 342, pp. 152–156, 2015.

W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express, vol. 21, pp. 11913–11920, 2013.

Y. Wang, M. Wang, and X. Huang, “Diametric load sensor using a fiber Bragg grating and its differential group delay analysis,” Opt. Quantum Electron., vol. 44, pp. 483–491, 2012.

Y. Wang, M. Wang, and X. Huang, “Simultaneous strain and temperature measurement with a single fiber Bragg grating based on the polarization properties analysis,” Opt. Commun., vol. 285, pp. 1834–1837, 2012.

Y. Wang, M. Wang, and X. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express, vol. 19, pp. 25535–25544, 2011.

Y. Wang, M. Wang, and X. Huang, “High-sensitivity fiber Bragg grating transverse force sensor based on centroid measurement of polarization-dependent loss,” Meas. Sci. Technol., vol. 21, 2010, Art. no. .

Wang, Q.

Y. Lu, C. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol., vol. 20, pp. 491–494, 2014.

Wang, X.

X. Wanget al., “SNR enhanced distributed vibration fiber sensing system employing polarization OTDR and ultraweak FBGs,” IEEE Photon. J., vol. 7, no. 1, pp. 1–11, 2015.

Wang, Y.

Y. Wang, N. Li, X. Huang, and M. Wang, “Fiber optic transverse load sensor based on polarization properties of pi-phase-shifted fiber Bragg grating,” Opt. Commun., vol. 342, pp. 152–156, 2015.

Y. Wang, M. Wang, and X. Huang, “Simultaneous strain and temperature measurement with a single fiber Bragg grating based on the polarization properties analysis,” Opt. Commun., vol. 285, pp. 1834–1837, 2012.

Y. Wang, M. Wang, and X. Huang, “Diametric load sensor using a fiber Bragg grating and its differential group delay analysis,” Opt. Quantum Electron., vol. 44, pp. 483–491, 2012.

Y. Wang, M. Wang, and X. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express, vol. 19, pp. 25535–25544, 2011.

Y. Wang, M. Wang, and X. Huang, “High-sensitivity fiber Bragg grating transverse force sensor based on centroid measurement of polarization-dependent loss,” Meas. Sci. Technol., vol. 21, 2010, Art. no. .

Wells, A.

D. J. Mandia, W. Zhou, A. Wells, J. Albert, and S. Barry, “Metallic nanocoatings on optical fibers as a sensor platform,” ECS Trans., vol. 69, pp. 171–179, 2015.

Wen, F.

B. Wu, F. Wen, K. Qiu, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol., vol. 19, pp. 219–222, 2013.

Wo, J.

Wong, A. C.-L.

Wu, B.

B. Wu, F. Wen, K. Qiu, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol., vol. 19, pp. 219–222, 2013.

Wuilpart, M.

N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Development of a multi-point polarization-based vibration sensor,” Opt. Express, vol. 21, pp. 5606–5624, 2013.

C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express, vol. 19, pp. 1656–1664, 2011.

V. García-Muñoz, C. Caucheteur, S. Bette, M. Wuilpart, M. Muriel, and P. Mégret, “Reduction of polarization related effects in superimposed fiber Bragg gratings,” Appl. Opt., vol. 48, no. 9, pp. 1635–1641, 2009.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2153–2155, 2008.

S. Bette, C. Caucheteur, R. Garcia-Olcina, M. Wuilpart, S. Sales, and J. Capmany, “Relationship between chromatic dispersion and differential group delay in weakly birefringent fiber gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 437–439, 2008.

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun., vol. 269, pp. 331–337, 2007.

Xiang, P.

H. Peng, B. H. Zhou, H. Wang, L. H. Shi, C. Gao, and P. Xiang, “A new method for resolving the influence of circular birefringence in FBG weak pressure sensor,” Measurement, vol. 58, pp. 280–285, 2014.

Xiong, L. Y.

L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightw. Technol., vol. 28, no. 18, pp. 2681–2687, 2010.

Yan, Z.

Z. Yanet al., “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun., vol. 351, pp. 144–148, 2015.

Z. Yan, K. Zhou, and L. Zhang, “In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber,” Opt. Lett., vol. 37, pp. 3819–3821, 2012.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependent loss characteristics and applications of 45° tilted fiber gratings,” J. Lightw. Technol., vol. 29, no. 18, pp. 2715–2724, 2011.

Yang, D.

D. Yanget al., “Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid,” Appl. Phys. Lett., vol. 104, 2014, Art. no. .

Yang, H.

Yao, X. S.

Ye, Z.

Y. Su, Y. Zhu, B. Zhang, H. Peng, and Z. Ye, “Real time transverse-force sensor based on polarization properties of fiber Bragg grating and cross-sensitivity compensation,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

H. Peng, Y. Su, Z. Ye, and B. Zhou, “A novel fiber Bragg grating sensor for weak pressure measurement based on the stokes parameter,” Opt. Fiber Technol., vol. 18, pp. 485–489, 2012.

Yin, B.

B. Yinet al., “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photon. Technol. Lett., vol. 26, no. 15, pp. 1565–1568, 2014.

Yiping, W.

Yuan, Y.

Y. Yuanet al., “Electrochemical surface Plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms,” Anal. Chem., 2016, to be published. doi: .
[Crossref]

Zhang, B.

Y. Su, Y. Zhu, B. Zhang, H. Zhou, J. Li, and F. Wang, “Spectral response of polarization properties of fiber Bragg grating under local pressure,” Opt. Fiber Technol., vol. 25, pp. 15–19, 2015.

Y. Su, Y. Zhu, B. Zhang, and H. Zhou, “Real-time transverse force sensing using fiber Bragg grating through direct Stokes parameters measurement,” Opt. Express, vol. 23, pp. 32300–32310, 2015.

Y. Su, Y. Zhu, B. Zhang, H. Peng, and Z. Ye, “Real time transverse-force sensor based on polarization properties of fiber Bragg grating and cross-sensitivity compensation,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol., vol. 18, pp. 51–57, 2012.

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol., vol. 17, pp. 196–200, 2011.

Zhang, L.

Zhang, Q.

Zhang, Y.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett., vol. 104, pp. 1–5, 2014.

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightw. Technol., vol. 30, no. 8, pp. 1097–1112, 2012.

Zhang, Z.

Z. Zhanget al., “Plasmonic fiber-optic vector magnetometer,” Appl. Phys. Lett., vol. 108, 2016, Art. no. .

Zhao, Y.

Zheng, J.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett., vol. 103, 2013, Art. no. .

Zhong, Q.

Zhou, B.

H. Peng, Y. Su, Z. Ye, and B. Zhou, “A novel fiber Bragg grating sensor for weak pressure measurement based on the stokes parameter,” Opt. Fiber Technol., vol. 18, pp. 485–489, 2012.

Zhou, B. H.

H. Peng, B. H. Zhou, H. Wang, L. H. Shi, C. Gao, and P. Xiang, “A new method for resolving the influence of circular birefringence in FBG weak pressure sensor,” Measurement, vol. 58, pp. 280–285, 2014.

Zhou, B. Z., H.

Y. Su, Y. Zhu, B. Z., H. Zhou, J. Li, and F. Wang, “Spectral characterization of polarization dependent loss in fiber Bragg grating under local pressure and the analysis of secondary peak,” Opt. Fiber Technol., vol. 24, pp. 77–83, 2015.

Zhou, H.

Y. Su, Y. Zhu, B. Zhang, and H. Zhou, “Real-time transverse force sensing using fiber Bragg grating through direct Stokes parameters measurement,” Opt. Express, vol. 23, pp. 32300–32310, 2015.

Y. Su, Y. Zhu, B. Zhang, H. Zhou, J. Li, and F. Wang, “Spectral response of polarization properties of fiber Bragg grating under local pressure,” Opt. Fiber Technol., vol. 25, pp. 15–19, 2015.

Zhou, K.

Zhou, W.

D. J. Mandia, W. Zhou, A. Wells, J. Albert, and S. Barry, “Metallic nanocoatings on optical fibers as a sensor platform,” ECS Trans., vol. 69, pp. 171–179, 2015.

D. J. Mandia, W. Zhou, J. Albert, and S. T. Barry, “CVD on optical fibers: Tilted fiber Bragg gratings as real-time sensing platforms,” Chem. Vapor Deposition, vol. 21, pp. 4–20, 2015.

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3D shape sensor based on a pair of orthogonal tilted fiber bragg gratings,” Sci. Rep., vol. 5, 2015, Art. no. .

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett., vol. 40, pp. 1713–1716, 2015.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett., vol. 104, pp. 1–5, 2014.

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express, vol. 22, pp. 31665–31671, 2014.

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C, vol. 118, pp. 670–678, 2014.

W. Zhouet al., “Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles,” Opt. Exp., vol. 21, pp. 864–869, 2013.

Zhu, Y.

Y. Su, Y. Zhu, B. Zhang, H. Zhou, J. Li, and F. Wang, “Spectral response of polarization properties of fiber Bragg grating under local pressure,” Opt. Fiber Technol., vol. 25, pp. 15–19, 2015.

Y. Su, Y. Zhu, B. Z., H. Zhou, J. Li, and F. Wang, “Spectral characterization of polarization dependent loss in fiber Bragg grating under local pressure and the analysis of secondary peak,” Opt. Fiber Technol., vol. 24, pp. 77–83, 2015.

Y. Su, Y. Zhu, B. Zhang, and H. Zhou, “Real-time transverse force sensing using fiber Bragg grating through direct Stokes parameters measurement,” Opt. Express, vol. 23, pp. 32300–32310, 2015.

Y. Su, Y. Zhu, B. Zhang, H. Peng, and Z. Ye, “Real time transverse-force sensor based on polarization properties of fiber Bragg grating and cross-sensitivity compensation,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol., vol. 18, pp. 51–57, 2012.

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol., vol. 17, pp. 196–200, 2011.

Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas., vol. 49, no. 6, pp. 1231–1239, 2000.

Zu, P.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett., vol. 103, 2013, Art. no. .

Anal. Chem. (3)

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. Derosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber grating aptasensor,” Anal. Chem., vol. 83, pp. 7027–7034, 2011.

V. Malachovskaet al., “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem., vol. 87, pp. 5957–5965, 2015.

Y. Yuanet al., “Electrochemical surface Plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms,” Anal. Chem., 2016, to be published. doi: .
[Crossref]

Appl. Opt. (8)

Appl. Phys. Lett. (5)

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett., vol. 99, no. 4, 2011, Art. no. .

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett., vol. 104, pp. 1–5, 2014.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. P. Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett., vol. 103, 2013, Art. no. .

D. Yanget al., “Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid,” Appl. Phys. Lett., vol. 104, 2014, Art. no. .

Z. Zhanget al., “Plasmonic fiber-optic vector magnetometer,” Appl. Phys. Lett., vol. 108, 2016, Art. no. .

Biosens. Bioelectron. (5)

T. Guoet al., “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron., vol. 78, pp. 221–228, 2016.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron., vol. 56, pp. 359–367, 2014.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron., vol. 51, pp. 249–254, 2014.

C. Ribautet al., “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron., vol. 77, pp. 315–322, 2016.

T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan, and J. Albert, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors,” Biosens. Bioelectron., vol. 55C, pp. 452–458, 2014.

Chem. Vapor Deposition (1)

D. J. Mandia, W. Zhou, J. Albert, and S. T. Barry, “CVD on optical fibers: Tilted fiber Bragg gratings as real-time sensing platforms,” Chem. Vapor Deposition, vol. 21, pp. 4–20, 2015.

Composites Part A: Appl. Sci. Manuf. (1)

N. Lammenset al., “Residual strain monitoring of out-of-autoclave cured parts by use of polarization dependent loss measurements in embedded optical fiber Bragg gratings,” Composites Part A: Appl. Sci. Manuf., vol. 52, pp. 38–44, 2013.

ECS Trans. (1)

D. J. Mandia, W. Zhou, A. Wells, J. Albert, and S. Barry, “Metallic nanocoatings on optical fibers as a sensor platform,” ECS Trans., vol. 69, pp. 171–179, 2015.

IEEE J. Lightw. Technol. (1)

C. Caucheteuret al., “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” IEEE J. Lightw. Technol., vol. 48, no. 9, pp. 1635–1641, 2009.

IEEE J. Sel. Topics Quantum Electron. (1)

B. Huttner, C. Geiser, and N. Gisin, “Polarization-induced distortion in optical fiber networks with polarization-mode dispersion and polarization-dependent losses,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 2, pp. 317–329, 2000.

IEEE Photon. J. (1)

X. Wanget al., “SNR enhanced distributed vibration fiber sensing system employing polarization OTDR and ultraweak FBGs,” IEEE Photon. J., vol. 7, no. 1, pp. 1–11, 2015.

IEEE Photon. Technol. Lett. (11)

Y. Huang, T. Guo, C. Lu, and H.-Y. Tam, “VCSEL-based tilted fiber grating vibration sensing system,” IEEE Photon. Technol. Lett., vol. 22, no. 16, pp. 1235–1237, 2010.

B. Yinet al., “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photon. Technol. Lett., vol. 26, no. 15, pp. 1565–1568, 2014.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2153–2155, 2008.

B. L. Heffner, “Deterministic and analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photon. Technol. Lett., vol. 4, no. 5, pp. 451–453, 1992.

S. Bette, C. Caucheteur, R. Garcia-Olcina, M. Wuilpart, S. Sales, and J. Capmany, “Relationship between chromatic dispersion and differential group delay in weakly birefringent fiber gratings,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 437–439, 2008.

P. Lu, D. S. Waddy, S. J. Mihailov, and H. Ding, “Characterization of the growths of UV-induced birefringence in effective mode index and index modulation in fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2237–2239, 2005.

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2703–2705, 2005.

B. L. Heffner, “Deterministic, analytically complete measurement of polarization-dependent transmission through optical devices,” IEEE Photon. Technol. Lett., vol. 4, no. 5, pp. 451–454, 1992.

S. Betteet al., “PDL and DGD reduction in Bragg gratings using twisted fibers for the inscription,” IEEE Photon. Technol. Lett., vol. 21, no. 22, pp. 1689–1691, 2009.

Q. Ronget al., “Orthogonal polarization coupling for transverse strain measurement using a polarimetric mirror,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 729–732, 2014.

C. Caucheteuret al., “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 13, pp. 966–968, 2007.

IEEE Sensors J. (2)

P. Orr and P. Niewczas, “Polarization-xwitching FBG interrogator for distributed point measurement of magnetic field strength and temperature,” IEEE Sensors J., vol. 11, no. 5, pp. 1220–1226, 2011.

B. Korenko, M. Rothhardt, A. Hartung, and H. Bartelt, “Novel fiber-optic relative humidity sensor with thermal compensation,” IEEE Sensors J., vol. 15, no. 10, pp. 5450–5454, 2015.

IEEE Trans. Instrum. Meas. (1)

Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas., vol. 49, no. 6, pp. 1231–1239, 2000.

J. Lightw. Technol. (10)

M. Z. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightw. Technol., vol. 31, no. 19, pp. 3167–3175, 2013.

T. Erdogan, “Fiber grating spectra,” J. Lightw. Technol., vol. 15, no. 8, pp. 1277–1294, 1997.

R. M. Craig, S. L. Gilbert, and P. D. Hale, “High-resolution, nonmechanical approach to polarization-dependent transmission measurements,” J. Lightw. Technol., vol. 16, no. 7, pp. 1285–1286, 1998.

J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, “Spectral properties of locally pressed fiber Bragg gratings written in polarization maintaining fibers,” J. Lightw. Technol., vol. 28, no. 9, pp. 1291–1297, 2010.

L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightw. Technol., vol. 28, no. 18, pp. 2681–2687, 2010.

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightw. Technol., vol. 30, no. 8, pp. 1097–1112, 2012.

W. Linet al., “Two-dimensional magnetic field vector sensor based on tilted fiber Bragg grating and magnetic fluid,” J. Lightw. Technol., vol. 31, no. 15, pp. 2599–2605, 2013.

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependent loss characteristics and applications of 45° tilted fiber gratings,” J. Lightw. Technol., vol. 29, no. 18, pp. 2715–2724, 2011.

R. Uchimura, A. Wada, S. Tanaka, and N. Takahashi, “Fiber Fabry-Perot interferometric sensor using Bragg gratings in polarization maintaining fiber,” J. Lightw. Technol., vol. 33, no. 12, pp. 2499–2503, 2015.

L. Jin, Z. Quan, L. Cheng, and B.-O. Guan, “Hydrostatic pressure measurement with heterodyning fiber grating lasers: Mechanism and sensitivity enhancement,” J. Lightw. Technol., vol. 31, no. 9, pp. 1488–1494, 2013.

J. Opt. Soc. Amer. (1)

R. Barakat, “Theory of the coherency matrix for light of arbitrary spectral bandwidth,” J. Opt. Soc. Amer., vol. 53, pp. 317–323, 1963.

J. Opt. Soc. Amer. A (1)

S. Lu, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Amer. A, vol. 13, pp. 1106–1113, 1996.

J. Opt. Soc. Amer. B (1)

T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Amer. B, vol. 11, pp. 2100–2105, 1994.

J. Phys. Chem. C (2)

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C, vol. 118, pp. 670–678, 2014.

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C, vol. 118, pp. 11035–11042, 2014.

Laser Photon. Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev., vol. 7, no. 1, pp. 83–108, 2013.

Meas. Sci. Technol. (2)

Y. Wang, M. Wang, and X. Huang, “High-sensitivity fiber Bragg grating transverse force sensor based on centroid measurement of polarization-dependent loss,” Meas. Sci. Technol., vol. 21, 2010, Art. no. .

Y. Su, Y. Zhu, B. Zhang, H. Peng, and Z. Ye, “Real time transverse-force sensor based on polarization properties of fiber Bragg grating and cross-sensitivity compensation,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

Measurement (1)

H. Peng, B. H. Zhou, H. Wang, L. H. Shi, C. Gao, and P. Xiang, “A new method for resolving the influence of circular birefringence in FBG weak pressure sensor,” Measurement, vol. 58, pp. 280–285, 2014.

Methods (1)

J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods, vol. 63, pp. 239–54, 2013.

Nanotechnology (2)

D. J. Mandiaet al., “The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors,” Nanotechnology, vol. 26, 2015, Art. no. .

A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings,” Nanotechnology, vol. 23, 2012, Art. no. .

Opt. Comm. (1)

R. Barakat, “Bilinear constraints between elements of the 4 × 4 Mueller-Jones transfer matrix of polarization theory,” Opt. Comm., vol. 38, pp. 159–161, 1981.

Opt. Commun. (5)

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun., vol. 269, pp. 331–337, 2007.

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun., vol. 142, pp. 119–125, 1997.

Z. Yanet al., “Hybrid tilted fiber grating based refractive index and liquid level sensing system,” Opt. Commun., vol. 351, pp. 144–148, 2015.

Y. Wang, M. Wang, and X. Huang, “Simultaneous strain and temperature measurement with a single fiber Bragg grating based on the polarization properties analysis,” Opt. Commun., vol. 285, pp. 1834–1837, 2012.

Y. Wang, N. Li, X. Huang, and M. Wang, “Fiber optic transverse load sensor based on polarization properties of pi-phase-shifted fiber Bragg grating,” Opt. Commun., vol. 342, pp. 152–156, 2015.

Opt. Exp. (1)

W. Zhouet al., “Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles,” Opt. Exp., vol. 21, pp. 864–869, 2013.

Opt. Express (26)

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: Design rules for ultimate refractometric sensitivity,” Opt. Express, vol. 23, pp. 2804–2809, 2015.

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Discrimination of temperature and strain with a single FBG based on the birefringence effect,” Opt. Express, vol. 12, pp. 724–729, 2004.

N. Belhadj, S. LaRochelle, and K. Dossou, “Form birefringence in UV-exposed photosensitive fibers computed using a higher order finite element method,” Opt. Express, vol. 12, pp. 1720–1726, 2004.

D. Wang, M. Matthews, and J. Brennan, “Polarization mode dispersion in chirped fiber Bragg gratings,” Opt. Express, vol. 12, pp. 5741–5753, 2004.

N. Jovanovicet al., “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express, vol. 17, pp. 6082–6095, 2009.

O. H. Waagaard, “Polarization-resolved spatial characterization of birefringent fiber Bragg gratings,” Opt. Express, vol. 14, pp. 4221–4236, 2006.

H. Donget al., “Generalized Mueller matrix method for polarization mode dispersion measurement in a system with polarization-dependent loss or gain,” Opt. Express, vol. 14, pp. 5067–5072, 2006.

X. S. Yao, X. Chen, and T. Liu, “High accuracy polarization measurements using binary polarization rotators,” Opt. Express, vol. 18, pp. 6667–6685, 2010.

N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Development of a multi-point polarization-based vibration sensor,” Opt. Express, vol. 21, pp. 5606–5624, 2013.

W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express, vol. 21, pp. 11913–11920, 2013.

T. Guoet al., “VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor,” Opt. Express, vol. 21, pp. 19097–19102, 2013.

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Opt. Express, vol. 19, pp. 18742–53, 2011.

Y. Wang, M. Wang, and X. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express, vol. 19, pp. 25535–25544, 2011.

J. Woet al., “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express, vol. 20, pp. 2844–2850, 2012.

W. Liu, T. Guo, A. C.-L. Wong, H.-Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express, vol. 18, pp. 17834–17840, 2010.

J. Thomaset al., “Cladding mode coupling in highly localized fiber Bragg gratings: Modal properties and transmission spectra,” Opt. Express, vol. 19, pp. 325–341, 2011.

C. Caucheteur, Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express, vol. 19, pp. 1656–1664, 2011.

T. Guo, A. C.-L. Wong, W. Liu, B.-O. Guan, C. Lu, and H.-Yaw Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express, vol. 19, no. 3, pp. 2485–2492, 2011.

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express, vol. 21, pp. 3055–3066, 2013.

Q. Zhang, L. Hu, Y. Qi, G. Liu, N. Ianno, and M. Han, “Fiber-optic refractometer based on a phase-shifted fiber Bragg grating on a side-hole fiber,” Opt. Express, vol. 23, pp. 16750–16759, 2015.

F. Descamps, C. Caucheteur, P. Mégret, and S. Bette, “Distribution profiling of a transverse load using the DGD spectrum of chirped FBGs,” Opt. Express, vol. 23, pp. 18203–18217, 2015.

Y. Su, Y. Zhu, B. Zhang, and H. Zhou, “Real-time transverse force sensing using fiber Bragg grating through direct Stokes parameters measurement,” Opt. Express, vol. 23, pp. 32300–32310, 2015.

Y. Zhaoet al., “Polarization mode coupling and related effects in fiber Bragg grating inscribed in polarization maintaining fiber,” Opt. Express, vol. 24, pp. 611–619, 2016.

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express, vol. 22, pp. 31665–31671, 2014.

J. Li, H. Wang, L.-P. Sun, Y. Huang, L. Jin, and B.-O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express, vol. 22, pp. 31917–31923, 2014.

X. Huet al., “Polarization effects in polymer FBGs: Study and use for transverse force sensing,” Opt. Express, vol. 23, pp. 4581–4590, 2015.

Opt. Fiber Technol. (9)

Y. Lu, C. Shen, D. Chen, J. Chu, Q. Wang, and X. Dong, “Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties,” Opt. Fiber Technol., vol. 20, pp. 491–494, 2014.

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol., vol. 17, pp. 196–200, 2011.

H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Opt. Fiber Technol., vol. 18, pp. 177–182, 2012.

B. Wu, F. Wen, K. Qiu, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol., vol. 19, pp. 219–222, 2013.

Y. Su, Y. Zhu, B. Z., H. Zhou, J. Li, and F. Wang, “Spectral characterization of polarization dependent loss in fiber Bragg grating under local pressure and the analysis of secondary peak,” Opt. Fiber Technol., vol. 24, pp. 77–83, 2015.

Y. Su, Y. Zhu, B. Zhang, H. Zhou, J. Li, and F. Wang, “Spectral response of polarization properties of fiber Bragg grating under local pressure,” Opt. Fiber Technol., vol. 25, pp. 15–19, 2015.

H. Peng, Y. Su, Z. Ye, and B. Zhou, “A novel fiber Bragg grating sensor for weak pressure measurement based on the stokes parameter,” Opt. Fiber Technol., vol. 18, pp. 485–489, 2012.

Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol., vol. 18, pp. 51–57, 2012.

R. Gafsi and M. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol., vol. 6, pp. 299–323, 2000.

Opt. Lett. (13)

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett., vol. 40, pp. 1713–1716, 2015.

D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett., vol. 41, pp. 1201–1204, 2016.

T. Guoet al., “Polarization-maintaining fiber-optic-grating vector vibroscope,” Opt. Lett., vol. 38, pp. 531–533, 2013.

L. Cheng, J. Han, Z. Guo, L. Jin, and B.-O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett., vol. 38, pp. 688–690, 2013.

T. Guo, L. Shang, Y. Ran, B.-O. Guan, and J. Albert, “Fiber-optic vector vibroscope,” Opt. Lett., vol. 37, pp. 2703–2705, 2012.

Q. Rong, X. Qiao, T. Guo, W. Bao, D. Su, and H. Yang, “Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding,” Opt. Lett., vol. 39, pp. 6616–6619, 2014.

K. Chah, V. Voisin, D. Kinet, and C. Caucheteur, “Surface plasmon resonance in eccentric femtosecond-laser-induced fiber Bragg gratings,” Opt. Lett., vol. 39, pp. 6887–6890, 2014.

L.Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett., vol. 35, pp. 1034–1036, 2010.

Z. Yan, K. Zhou, and L. Zhang, “In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber,” Opt. Lett., vol. 37, pp. 3819–3821, 2012.

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett., vol. 32, pp. 211–213, 2007.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett., vol. 19, pp. 1260–1262, 1994.

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett., vol. 35, pp. 637–639, 2010.

K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings,” Opt. Lett., vol. 30, pp. 1285–1287, 2005.

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

Y. Wang, M. Wang, and X. Huang, “Diametric load sensor using a fiber Bragg grating and its differential group delay analysis,” Opt. Quantum Electron., vol. 44, pp. 483–491, 2012.

RSC Adv. (1)

A. Ianoul, M. Robson, V. Pripotnev, and J. Albert, “Polarization-selective excitation of plasmonic resonances in silver nanocube random arrays by optical fiber cladding mode evanescent fields,” RSC Adv., vol. 4, 2014, Art. no. .

Sci. Rep. (1)

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3D shape sensor based on a pair of orthogonal tilted fiber bragg gratings,” Sci. Rep., vol. 5, 2015, Art. no. .

Sens. Actuators A (1)

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, “The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A, vol. 84, pp. 198–204, 2000.

Sensors (1)

D. Suet al., “Temperature-Independent fiber -inclinometer based on orthogonally polarized modes coupling using a polarization-maintaining fiber Bragg grating,” Sensors, vol. 14, pp. 20930–20939, 2014.

Other (3)

A. W. Snyder and J. D. Love, Optical Waveguide Theory.New York, NY, USA: Springer, 1983.

D. Derikson, Fiber Optic Test and Measurement.Englewood Cliffs, NJ, USA: Prentice-Hall, 1998.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing.Norwood, MA, USA: Artech House, 1999.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.