Abstract

We analyze the power consumption of optical amplifiers and the tradeoff between power consumption and system performance. The power consumption model includes erbium-doped fiber amplifiers (EDFA), backwards pumped Raman amplification, and monitoring and management electronics. Performance is studied using the Gaussian-noise model for nonlinear interference. We find that the power consumption of the monitoring and management electronics has a large impact on system configuration that gives the lowest overall power consumption, where a low value favors shorter spans and EDFA-only amplification, while a high value favors longer spans with Raman amplification. Long total system lengths and high requirements on the optical signal-to-noise ratio also favors Raman amplification. Furthermore, we compare the amplifier energy consumption per bit for polarization-multiplexed quadrature phase-shift-keying and 16-quadrature amplitude modulation (16QAM). Our results show that 16QAM has a lower energy consumption per bit due to its higher spectral efficiency. We also find that it may be more energy efficient to increase the signal quality by shortening the spans or using Raman amplification than using powerful forward error correction with high power consumption.

© 2017 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. G. Pillaiet al., “End-to-end energy modeling and analysis of long-haul coherent transmission systems,” J. Lightw. Technol., vol. 32, no. 18, pp. 3093–3111,  2014.
  2. T. Frisch and S. Desbruslais, “Electrical power, a potential limit to cable capacity,” in Proc. SubOptic Conf., 2013, pp. 3–7.
  3. S. Desbruslais, “Maximizing the capacity of ultra-long haul submarine systems,” in Proc. 20th Eur. Conf. Netw. Opt. Commun.,  2015, pp. 1–6.
  4. R. S. Tucker, “Green optical communications—Part I: Energy limitations in transport,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 245–260,  2011.
  5. K. Hinton, P. Wang, P. Farrell, and B. Pilai, “Power consumption of erbium doped fibre amplified links,” in Proc. IEEE 4th Int. Conf. Big Data Cloud Comput.,  2014, pp. 662–668.
  6. E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications. New York, NY, USA: Wiley, 1994.
  7. N. J. Doran and A. D. Ellis, “Minimising total energy requirements in amplified links by optimising amplifier spacing,” Opt. Express, vol. 22, no. 16, pp. 19810–19817,  2014.
  8. A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightw. Technol., vol. 30, no. 10, pp. 1524–1539,  2012.
  9. W. Van Heddeghem and F. Idzikowski, “Equipment power consumption in optical multilayer networks—Source data,” Tech. Rep. , 2012. [Online]. Available: http://powerlib.intec.ugent.be/
  10. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems. New York, NY, USA: Academic, 2005.
  11. V. Curri, A. Carena, P. Poggiolini, G. Bosco, and F. Forghieri, “Extension and validation of the GN model for non-linear interference to uncompensated links using Raman amplification,” Opt. Express, vol. 21, no. 3, pp. 3308–3317,  2013.
  12. V. Curri and A. Carena, “Merit of Raman pumping in uniform and uncompensated links Supporting NyWDM transmission,” J. Lightw. Technol., vol. 34, no. 2, pp. 554–565,  2016.
  13. W. S. Pelouch, “Raman amplification: An enabling technology for long-haul coherent transmission systems,” J. Lightw. Technol., vol. 34, no. 1, pp. 6–19,  2016.
  14. L. Lundberg, P. Johannisson, E. Agrell, M. Karlsson, and P. A. Andrekson, “Power consumption of hybrid EDFA/Raman amplified systems,” in Proc. Eur. Conf. Opt. Commun.,  2015, Art. no. .
  15. P. Wang, K. Hinton, P. M. Farrell, and B. S. G. Pillai, “On EDFA and Raman fiber amplifier energy efficiency,” in Proc. IEEE Int. Conf. Data Sci. Data Intensive Syst.,  2015, pp. 268–275.
  16. “Finisar Raman amplifier module,” 16, 2016. [Online]. Available: https://www.finisar.com/optical-amplifiers/foa-r9000de-rbw2c-aa002
  17. E. Pinceminet al., “Raman gain efficiencies of modern terrestrial transmission fibers in S-, C- and L-band,” in Proc. Nonlinear Guid. Waves Appl. Conf., 2002, Art. no. .
  18. P. Johannisson and E. Agrell, “Modeling of nonlinear signal distortion in fiber-optic networks,” J. Lightw. Technol., vol. 32, no. 23, pp. 4544–4552,  2014.
  19. J. Yoshidaet al., “2.8 FITs of field reliability of 1480nm/14xx-nm pump lasers,” in Proc. Opt. Fiber Commun. Conf., 2015, Art. no. .
  20. L. A. Johnson, Application note: Controlling Temperatures of Diode Lasers and Detectors Thermoelectrically, Newport Corporation, Irvine, CA, USA, 7, 2016. [Online]. Available: https://www.newport.com/medias/sys_master/images/images/hcc/hc7/8797049389086/AN01-Controlling-Temperatures-of-Laser-Diodes-Thermoelectrically.pdf
  21. W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol. 24, no. 2, pp. 86–102, 2012.
  22. V. Curri and A. Carena, “HFA optimization for NyWDM tranmission,” in Proc. Opt. Fiber Commun. Conf., 2015, Art. no. .
  23. J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York, NY, USA: McGraw-Hill, 2008.
  24. K. Cushon, P. Larsson-Edefors, and P. Andrekson, “Low-power 400-Gbps soft-decision LDPC FEC for optical transport networks,” J. Lightw. Technol., vol. 34, no. 18, pp. 4304–4311,  2016.
  25. E. Agrell, A. Alvarado, G. Durisi, and M. Karlsson, “Capacity of a nonlinear optical channel with finite memory,” J. Lightw. Technol., vol. 32, no. 16, pp. 2862–2876,  2014.
  26. G. Bosco, P. Poggiolini, A. Carena, V. Curri, and F. Forghieri, “Analytical results on channel capacity in uncompensated optical links with coherent detection,” Opt. Express, vol. 19, no. 26, pp. B440–B451,  2011.
  27. A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell, “Modeling of gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 714–717,  1990.
  28. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology. San Diego, CA, USA: Academic, 1999.
  29. D. Enescu and E. O. Virjoghe, “A review on thermoelectric cooling parameters and performance,” Renew. Sustain. Energy Rev., vol. 38, pp. 903–916, 2014.

2016 (3)

V. Curri and A. Carena, “Merit of Raman pumping in uniform and uncompensated links Supporting NyWDM transmission,” J. Lightw. Technol., vol. 34, no. 2, pp. 554–565,  2016.

W. S. Pelouch, “Raman amplification: An enabling technology for long-haul coherent transmission systems,” J. Lightw. Technol., vol. 34, no. 1, pp. 6–19,  2016.

K. Cushon, P. Larsson-Edefors, and P. Andrekson, “Low-power 400-Gbps soft-decision LDPC FEC for optical transport networks,” J. Lightw. Technol., vol. 34, no. 18, pp. 4304–4311,  2016.

2014 (5)

B. S. G. Pillaiet al., “End-to-end energy modeling and analysis of long-haul coherent transmission systems,” J. Lightw. Technol., vol. 32, no. 18, pp. 3093–3111,  2014.

E. Agrell, A. Alvarado, G. Durisi, and M. Karlsson, “Capacity of a nonlinear optical channel with finite memory,” J. Lightw. Technol., vol. 32, no. 16, pp. 2862–2876,  2014.

P. Johannisson and E. Agrell, “Modeling of nonlinear signal distortion in fiber-optic networks,” J. Lightw. Technol., vol. 32, no. 23, pp. 4544–4552,  2014.

D. Enescu and E. O. Virjoghe, “A review on thermoelectric cooling parameters and performance,” Renew. Sustain. Energy Rev., vol. 38, pp. 903–916, 2014.

N. J. Doran and A. D. Ellis, “Minimising total energy requirements in amplified links by optimising amplifier spacing,” Opt. Express, vol. 22, no. 16, pp. 19810–19817,  2014.

2013 (1)

2012 (2)

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightw. Technol., vol. 30, no. 10, pp. 1524–1539,  2012.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol. 24, no. 2, pp. 86–102, 2012.

2011 (2)

R. S. Tucker, “Green optical communications—Part I: Energy limitations in transport,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 245–260,  2011.

G. Bosco, P. Poggiolini, A. Carena, V. Curri, and F. Forghieri, “Analytical results on channel capacity in uncompensated optical links with coherent detection,” Opt. Express, vol. 19, no. 26, pp. B440–B451,  2011.

1990 (1)

A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell, “Modeling of gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 714–717,  1990.

Agrawal, G. P.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems. New York, NY, USA: Academic, 2005.

Agrell, E.

P. Johannisson and E. Agrell, “Modeling of nonlinear signal distortion in fiber-optic networks,” J. Lightw. Technol., vol. 32, no. 23, pp. 4544–4552,  2014.

E. Agrell, A. Alvarado, G. Durisi, and M. Karlsson, “Capacity of a nonlinear optical channel with finite memory,” J. Lightw. Technol., vol. 32, no. 16, pp. 2862–2876,  2014.

L. Lundberg, P. Johannisson, E. Agrell, M. Karlsson, and P. A. Andrekson, “Power consumption of hybrid EDFA/Raman amplified systems,” in Proc. Eur. Conf. Opt. Commun.,  2015, Art. no. .

Alvarado, A.

E. Agrell, A. Alvarado, G. Durisi, and M. Karlsson, “Capacity of a nonlinear optical channel with finite memory,” J. Lightw. Technol., vol. 32, no. 16, pp. 2862–2876,  2014.

Andrekson, P.

K. Cushon, P. Larsson-Edefors, and P. Andrekson, “Low-power 400-Gbps soft-decision LDPC FEC for optical transport networks,” J. Lightw. Technol., vol. 34, no. 18, pp. 4304–4311,  2016.

Andrekson, P. A.

L. Lundberg, P. Johannisson, E. Agrell, M. Karlsson, and P. A. Andrekson, “Power consumption of hybrid EDFA/Raman amplified systems,” in Proc. Eur. Conf. Opt. Commun.,  2015, Art. no. .

Aspell, J.

A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell, “Modeling of gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 714–717,  1990.

Becker, P. C.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology. San Diego, CA, USA: Academic, 1999.

Bosco, G.

Carena, A.

V. Curri and A. Carena, “Merit of Raman pumping in uniform and uncompensated links Supporting NyWDM transmission,” J. Lightw. Technol., vol. 34, no. 2, pp. 554–565,  2016.

V. Curri, A. Carena, P. Poggiolini, G. Bosco, and F. Forghieri, “Extension and validation of the GN model for non-linear interference to uncompensated links using Raman amplification,” Opt. Express, vol. 21, no. 3, pp. 3308–3317,  2013.

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightw. Technol., vol. 30, no. 10, pp. 1524–1539,  2012.

G. Bosco, P. Poggiolini, A. Carena, V. Curri, and F. Forghieri, “Analytical results on channel capacity in uncompensated optical links with coherent detection,” Opt. Express, vol. 19, no. 26, pp. B440–B451,  2011.

V. Curri and A. Carena, “HFA optimization for NyWDM tranmission,” in Proc. Opt. Fiber Commun. Conf., 2015, Art. no. .

Colle, D.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol. 24, no. 2, pp. 86–102, 2012.

Curri, V.

V. Curri and A. Carena, “Merit of Raman pumping in uniform and uncompensated links Supporting NyWDM transmission,” J. Lightw. Technol., vol. 34, no. 2, pp. 554–565,  2016.

V. Curri, A. Carena, P. Poggiolini, G. Bosco, and F. Forghieri, “Extension and validation of the GN model for non-linear interference to uncompensated links using Raman amplification,” Opt. Express, vol. 21, no. 3, pp. 3308–3317,  2013.

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightw. Technol., vol. 30, no. 10, pp. 1524–1539,  2012.

G. Bosco, P. Poggiolini, A. Carena, V. Curri, and F. Forghieri, “Analytical results on channel capacity in uncompensated optical links with coherent detection,” Opt. Express, vol. 19, no. 26, pp. B440–B451,  2011.

V. Curri and A. Carena, “HFA optimization for NyWDM tranmission,” in Proc. Opt. Fiber Commun. Conf., 2015, Art. no. .

Cushon, K.

K. Cushon, P. Larsson-Edefors, and P. Andrekson, “Low-power 400-Gbps soft-decision LDPC FEC for optical transport networks,” J. Lightw. Technol., vol. 34, no. 18, pp. 4304–4311,  2016.

Demeester, P.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol. 24, no. 2, pp. 86–102, 2012.

Desbruslais, S.

T. Frisch and S. Desbruslais, “Electrical power, a potential limit to cable capacity,” in Proc. SubOptic Conf., 2013, pp. 3–7.

S. Desbruslais, “Maximizing the capacity of ultra-long haul submarine systems,” in Proc. 20th Eur. Conf. Netw. Opt. Commun.,  2015, pp. 1–6.

Desurvire, E.

E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications. New York, NY, USA: Wiley, 1994.

Doran, N. J.

Durisi, G.

E. Agrell, A. Alvarado, G. Durisi, and M. Karlsson, “Capacity of a nonlinear optical channel with finite memory,” J. Lightw. Technol., vol. 32, no. 16, pp. 2862–2876,  2014.

Ellis, A. D.

Enescu, D.

D. Enescu and E. O. Virjoghe, “A review on thermoelectric cooling parameters and performance,” Renew. Sustain. Energy Rev., vol. 38, pp. 903–916, 2014.

Evankow, J. D.

A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell, “Modeling of gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 714–717,  1990.

Farrell, P.

K. Hinton, P. Wang, P. Farrell, and B. Pilai, “Power consumption of erbium doped fibre amplified links,” in Proc. IEEE 4th Int. Conf. Big Data Cloud Comput.,  2014, pp. 662–668.

Farrell, P. M.

P. Wang, K. Hinton, P. M. Farrell, and B. S. G. Pillai, “On EDFA and Raman fiber amplifier energy efficiency,” in Proc. IEEE Int. Conf. Data Sci. Data Intensive Syst.,  2015, pp. 268–275.

Forghieri, F.

Frisch, T.

T. Frisch and S. Desbruslais, “Electrical power, a potential limit to cable capacity,” in Proc. SubOptic Conf., 2013, pp. 3–7.

Headley, C.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems. New York, NY, USA: Academic, 2005.

Heddeghem, W. Van

W. Van Heddeghem and F. Idzikowski, “Equipment power consumption in optical multilayer networks—Source data,” Tech. Rep. , 2012. [Online]. Available: http://powerlib.intec.ugent.be/

Hinton, K.

K. Hinton, P. Wang, P. Farrell, and B. Pilai, “Power consumption of erbium doped fibre amplified links,” in Proc. IEEE 4th Int. Conf. Big Data Cloud Comput.,  2014, pp. 662–668.

P. Wang, K. Hinton, P. M. Farrell, and B. S. G. Pillai, “On EDFA and Raman fiber amplifier energy efficiency,” in Proc. IEEE Int. Conf. Data Sci. Data Intensive Syst.,  2015, pp. 268–275.

Idzikowski, F.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol. 24, no. 2, pp. 86–102, 2012.

W. Van Heddeghem and F. Idzikowski, “Equipment power consumption in optical multilayer networks—Source data,” Tech. Rep. , 2012. [Online]. Available: http://powerlib.intec.ugent.be/

Johannisson, P.

P. Johannisson and E. Agrell, “Modeling of nonlinear signal distortion in fiber-optic networks,” J. Lightw. Technol., vol. 32, no. 23, pp. 4544–4552,  2014.

L. Lundberg, P. Johannisson, E. Agrell, M. Karlsson, and P. A. Andrekson, “Power consumption of hybrid EDFA/Raman amplified systems,” in Proc. Eur. Conf. Opt. Commun.,  2015, Art. no. .

Johnson, L. A.

L. A. Johnson, Application note: Controlling Temperatures of Diode Lasers and Detectors Thermoelectrically, Newport Corporation, Irvine, CA, USA, 7, 2016. [Online]. Available: https://www.newport.com/medias/sys_master/images/images/hcc/hc7/8797049389086/AN01-Controlling-Temperatures-of-Laser-Diodes-Thermoelectrically.pdf

Jopson, R. M.

A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell, “Modeling of gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 714–717,  1990.

Karlsson, M.

E. Agrell, A. Alvarado, G. Durisi, and M. Karlsson, “Capacity of a nonlinear optical channel with finite memory,” J. Lightw. Technol., vol. 32, no. 16, pp. 2862–2876,  2014.

L. Lundberg, P. Johannisson, E. Agrell, M. Karlsson, and P. A. Andrekson, “Power consumption of hybrid EDFA/Raman amplified systems,” in Proc. Eur. Conf. Opt. Commun.,  2015, Art. no. .

Larsson-Edefors, P.

K. Cushon, P. Larsson-Edefors, and P. Andrekson, “Low-power 400-Gbps soft-decision LDPC FEC for optical transport networks,” J. Lightw. Technol., vol. 34, no. 18, pp. 4304–4311,  2016.

Lundberg, L.

L. Lundberg, P. Johannisson, E. Agrell, M. Karlsson, and P. A. Andrekson, “Power consumption of hybrid EDFA/Raman amplified systems,” in Proc. Eur. Conf. Opt. Commun.,  2015, Art. no. .

Olsson, N. A.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology. San Diego, CA, USA: Academic, 1999.

Pelouch, W. S.

W. S. Pelouch, “Raman amplification: An enabling technology for long-haul coherent transmission systems,” J. Lightw. Technol., vol. 34, no. 1, pp. 6–19,  2016.

Pickavet, M.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol. 24, no. 2, pp. 86–102, 2012.

Pilai, B.

K. Hinton, P. Wang, P. Farrell, and B. Pilai, “Power consumption of erbium doped fibre amplified links,” in Proc. IEEE 4th Int. Conf. Big Data Cloud Comput.,  2014, pp. 662–668.

Pillai, B. S. G.

B. S. G. Pillaiet al., “End-to-end energy modeling and analysis of long-haul coherent transmission systems,” J. Lightw. Technol., vol. 32, no. 18, pp. 3093–3111,  2014.

P. Wang, K. Hinton, P. M. Farrell, and B. S. G. Pillai, “On EDFA and Raman fiber amplifier energy efficiency,” in Proc. IEEE Int. Conf. Data Sci. Data Intensive Syst.,  2015, pp. 268–275.

Pincemin, E.

E. Pinceminet al., “Raman gain efficiencies of modern terrestrial transmission fibers in S-, C- and L-band,” in Proc. Nonlinear Guid. Waves Appl. Conf., 2002, Art. no. .

Poggiolini, P.

Proakis, J. G.

J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York, NY, USA: McGraw-Hill, 2008.

Saleh, A. A. M.

A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell, “Modeling of gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 714–717,  1990.

Salehi, M.

J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York, NY, USA: McGraw-Hill, 2008.

Simpson, J. R.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology. San Diego, CA, USA: Academic, 1999.

Tucker, R. S.

R. S. Tucker, “Green optical communications—Part I: Energy limitations in transport,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 245–260,  2011.

Van Heddeghem, W.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol. 24, no. 2, pp. 86–102, 2012.

Vereecken, W.

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol. 24, no. 2, pp. 86–102, 2012.

Virjoghe, E. O.

D. Enescu and E. O. Virjoghe, “A review on thermoelectric cooling parameters and performance,” Renew. Sustain. Energy Rev., vol. 38, pp. 903–916, 2014.

Wang, P.

K. Hinton, P. Wang, P. Farrell, and B. Pilai, “Power consumption of erbium doped fibre amplified links,” in Proc. IEEE 4th Int. Conf. Big Data Cloud Comput.,  2014, pp. 662–668.

P. Wang, K. Hinton, P. M. Farrell, and B. S. G. Pillai, “On EDFA and Raman fiber amplifier energy efficiency,” in Proc. IEEE Int. Conf. Data Sci. Data Intensive Syst.,  2015, pp. 268–275.

Yoshida, J.

J. Yoshidaet al., “2.8 FITs of field reliability of 1480nm/14xx-nm pump lasers,” in Proc. Opt. Fiber Commun. Conf., 2015, Art. no. .

IEEE J. Sel. Topics Quantum Electron. (1)

R. S. Tucker, “Green optical communications—Part I: Energy limitations in transport,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 245–260,  2011.

IEEE Photon. Technol. Lett. (1)

A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell, “Modeling of gain in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 714–717,  1990.

J. Lightw. Technol. (7)

K. Cushon, P. Larsson-Edefors, and P. Andrekson, “Low-power 400-Gbps soft-decision LDPC FEC for optical transport networks,” J. Lightw. Technol., vol. 34, no. 18, pp. 4304–4311,  2016.

E. Agrell, A. Alvarado, G. Durisi, and M. Karlsson, “Capacity of a nonlinear optical channel with finite memory,” J. Lightw. Technol., vol. 32, no. 16, pp. 2862–2876,  2014.

B. S. G. Pillaiet al., “End-to-end energy modeling and analysis of long-haul coherent transmission systems,” J. Lightw. Technol., vol. 32, no. 18, pp. 3093–3111,  2014.

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightw. Technol., vol. 30, no. 10, pp. 1524–1539,  2012.

V. Curri and A. Carena, “Merit of Raman pumping in uniform and uncompensated links Supporting NyWDM transmission,” J. Lightw. Technol., vol. 34, no. 2, pp. 554–565,  2016.

W. S. Pelouch, “Raman amplification: An enabling technology for long-haul coherent transmission systems,” J. Lightw. Technol., vol. 34, no. 1, pp. 6–19,  2016.

P. Johannisson and E. Agrell, “Modeling of nonlinear signal distortion in fiber-optic networks,” J. Lightw. Technol., vol. 32, no. 23, pp. 4544–4552,  2014.

Opt. Express (3)

Photon. Netw. Commun. (1)

W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol. 24, no. 2, pp. 86–102, 2012.

Renew. Sustain. Energy Rev. (1)

D. Enescu and E. O. Virjoghe, “A review on thermoelectric cooling parameters and performance,” Renew. Sustain. Energy Rev., vol. 38, pp. 903–916, 2014.

Other (15)

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology. San Diego, CA, USA: Academic, 1999.

V. Curri and A. Carena, “HFA optimization for NyWDM tranmission,” in Proc. Opt. Fiber Commun. Conf., 2015, Art. no. .

J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York, NY, USA: McGraw-Hill, 2008.

J. Yoshidaet al., “2.8 FITs of field reliability of 1480nm/14xx-nm pump lasers,” in Proc. Opt. Fiber Commun. Conf., 2015, Art. no. .

L. A. Johnson, Application note: Controlling Temperatures of Diode Lasers and Detectors Thermoelectrically, Newport Corporation, Irvine, CA, USA, 7, 2016. [Online]. Available: https://www.newport.com/medias/sys_master/images/images/hcc/hc7/8797049389086/AN01-Controlling-Temperatures-of-Laser-Diodes-Thermoelectrically.pdf

L. Lundberg, P. Johannisson, E. Agrell, M. Karlsson, and P. A. Andrekson, “Power consumption of hybrid EDFA/Raman amplified systems,” in Proc. Eur. Conf. Opt. Commun.,  2015, Art. no. .

P. Wang, K. Hinton, P. M. Farrell, and B. S. G. Pillai, “On EDFA and Raman fiber amplifier energy efficiency,” in Proc. IEEE Int. Conf. Data Sci. Data Intensive Syst.,  2015, pp. 268–275.

“Finisar Raman amplifier module,” 16, 2016. [Online]. Available: https://www.finisar.com/optical-amplifiers/foa-r9000de-rbw2c-aa002

E. Pinceminet al., “Raman gain efficiencies of modern terrestrial transmission fibers in S-, C- and L-band,” in Proc. Nonlinear Guid. Waves Appl. Conf., 2002, Art. no. .

W. Van Heddeghem and F. Idzikowski, “Equipment power consumption in optical multilayer networks—Source data,” Tech. Rep. , 2012. [Online]. Available: http://powerlib.intec.ugent.be/

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems. New York, NY, USA: Academic, 2005.

T. Frisch and S. Desbruslais, “Electrical power, a potential limit to cable capacity,” in Proc. SubOptic Conf., 2013, pp. 3–7.

S. Desbruslais, “Maximizing the capacity of ultra-long haul submarine systems,” in Proc. 20th Eur. Conf. Netw. Opt. Commun.,  2015, pp. 1–6.

K. Hinton, P. Wang, P. Farrell, and B. Pilai, “Power consumption of erbium doped fibre amplified links,” in Proc. IEEE 4th Int. Conf. Big Data Cloud Comput.,  2014, pp. 662–668.

E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications. New York, NY, USA: Wiley, 1994.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.