Abstract

The performance of direct-detection transceivers employing electronic dispersion compensation combined with DSP-based receiver linearization techniques is assessed through experiments on a 4 × 112 Gb/s wavelength-division multiplexing direct-detection single-sideband 16 quadratic-amplitude modulation Nyquist-subcarrier-modulation system operating at a net optical information spectral density of 2.8 b/s/Hz in transmission over standard single mode fiber links of up to 240 km. The experimental results indicate that systems with receiver-based dispersion compensation can achieve similar performance to those utilizing transmitter-based dispersion compensation, provided it is implemented together with an effective digital receiver linearization technique. The use of receiver-based compensation would simplify the operation of a fiber link since knowledge of the link dispersion is not required at the transmitter. The recently proposed Kramers–Kronig receiver scheme was found to be the best performing among the receiver linearization techniques assessed. To the best of our knowledge, this is the first experimental demonstration of the Kramers–Kronig scheme.

© 2017 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” in Proc. Opt. Fiber Commun., 2009, Paper OTuE1.
  2. J. C. Cartledge and A. S. Karar, “100 Gb/s intensity modulation and direct detection,” J. Lightw. Technol., vol. 32, no. 16, pp. 2809–2814,  2014.
  3. K. Zhonget al., “Experimental demonstration of 608Gbit/s short reach transmission employing half-cycle 16QAM Nyquist-SCM signal and direct detection with 25 Gbps EML,” Opt. Express, vol. 24, no. 22, pp. 25057–25067, 2016.
  4. M. S. Erkılınçet al., “Spectrally-efficient WDM Nyquist-pulse-shaped 16-QAM subcarrier modulation transmission with direct detection,” J. Lightw. Technol., vol. 33, no. 15, pp. 3147–3155,  2015.
  5. K. Zou, Y. Zhu, F. Zhang, and Z. Chen, “Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle subcarrier modulation and direct-detection,” Opt. Lett., vol. 41, no. 12, pp. 2767–2770, 2016.
  6. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 714–716,  2005.
  7. M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol., vol. 17, no. 10, pp. 1742–1749,  1999.
  8. Q. Zhanget al., “C-band 56Gbps transmission over 80-km single mode fiber without chromatic dispersion compensation by using intensity-modulation direct-detection,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.5.19.
  9. L. Zhanget al., “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-band,” J. Lightw. Technol., vol. 34, no. 2, pp. 723–729,  2016.
  10. S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper Mo.4.5.2.
  11. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers-Kronig coherent receiver,” Optica, vol. 3, no. 11, pp. 1220–1227, 2016.
  12. Z. Liet al., “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photon. Technol. Lett., vol. 28, no. 24, pp. 2838–2841,  2016.
  13. Z. Liet al., “Reach enhancement for WDM direct-detection subcarrier modulation using low-complexity two-stage signal-signal beat interference cancellation,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper M.2.B.1.
  14. W. R. Penget al., “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express, vol. 17, no. 11, pp. 9099–9111, 2009.
  15. Z. Liet al., “Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation,” Opt. Express, vol. 23, no. 18, pp. 23694–23709, 2015.
  16. C. Sánchez, B. Ortega, and J. Capmany, “System performance enhancement with pre-distorted OOFDM signal waveforms in IM/DD systems,” Opt. Express, vol. 22, no. 6, pp. 7269–7283, 2014.
  17. C. Ju, N. Liu, X. Chen, and Z. Zhang, “SSBI mitigation in a RF-tone-based VSSB-OFDM system with a frequency-domain Volterra series equalizer,” J. Lightw. Technol., vol. 33, no. 23, pp. 4997–5006,  2015.
  18. Z. Liet al., “Comparison of digital signal-signal beat interference compensation techniques in direct-detection subcarrier modulation systems,” Opt. Express, vol. 24, no. 25, pp. 29176–29189, 2016.
  19. H. Voelcker, “Demodulation of single-sideband signals via envelope detection,” IEEE Trans. Commun. Technol., vol. COM-14, no. 1, pp. 22–30,  1966.
  20. Z. Liet al., “Performance improvement of electronic dispersion post-compensation in direct detection systems using DSP-based receiver linearization,” in Proc. Opt. Fiber Commun., 2017, Paper Th3D.2.
  21. H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightw. Technol., vol. 26, no. 1, pp. 158–167,  2008.

2016 (6)

2015 (3)

Z. Liet al., “Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation,” Opt. Express, vol. 23, no. 18, pp. 23694–23709, 2015.

C. Ju, N. Liu, X. Chen, and Z. Zhang, “SSBI mitigation in a RF-tone-based VSSB-OFDM system with a frequency-domain Volterra series equalizer,” J. Lightw. Technol., vol. 33, no. 23, pp. 4997–5006,  2015.

M. S. Erkılınçet al., “Spectrally-efficient WDM Nyquist-pulse-shaped 16-QAM subcarrier modulation transmission with direct detection,” J. Lightw. Technol., vol. 33, no. 15, pp. 3147–3155,  2015.

2014 (2)

J. C. Cartledge and A. S. Karar, “100 Gb/s intensity modulation and direct detection,” J. Lightw. Technol., vol. 32, no. 16, pp. 2809–2814,  2014.

C. Sánchez, B. Ortega, and J. Capmany, “System performance enhancement with pre-distorted OOFDM signal waveforms in IM/DD systems,” Opt. Express, vol. 22, no. 6, pp. 7269–7283, 2014.

2009 (1)

2008 (1)

H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightw. Technol., vol. 26, no. 1, pp. 158–167,  2008.

2005 (1)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 714–716,  2005.

1999 (1)

M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol., vol. 17, no. 10, pp. 1742–1749,  1999.

1966 (1)

H. Voelcker, “Demodulation of single-sideband signals via envelope detection,” IEEE Trans. Commun. Technol., vol. COM-14, no. 1, pp. 22–30,  1966.

Andrekson, P. A.

A. O. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” in Proc. Opt. Fiber Commun., 2009, Paper OTuE1.

Antonelli, C.

Bayvel, P.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 714–716,  2005.

Buchali, F.

H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightw. Technol., vol. 26, no. 1, pp. 158–167,  2008.

Bülow, H.

H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightw. Technol., vol. 26, no. 1, pp. 158–167,  2008.

Capmany, J.

Cartledge, J. C.

J. C. Cartledge and A. S. Karar, “100 Gb/s intensity modulation and direct detection,” J. Lightw. Technol., vol. 32, no. 16, pp. 2809–2814,  2014.

Chandrasekhar, S.

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper Mo.4.5.2.

Chen, X.

C. Ju, N. Liu, X. Chen, and Z. Zhang, “SSBI mitigation in a RF-tone-based VSSB-OFDM system with a frequency-domain Volterra series equalizer,” J. Lightw. Technol., vol. 33, no. 23, pp. 4997–5006,  2015.

Chen, Z.

Conradi, J.

M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol., vol. 17, no. 10, pp. 1742–1749,  1999.

Dodds, D. E.

M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol., vol. 17, no. 10, pp. 1742–1749,  1999.

Erkilinç, M. S.

M. S. Erkılınçet al., “Spectrally-efficient WDM Nyquist-pulse-shaped 16-QAM subcarrier modulation transmission with direct detection,” J. Lightw. Technol., vol. 33, no. 15, pp. 3147–3155,  2015.

Glick, M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 714–716,  2005.

Ju, C.

C. Ju, N. Liu, X. Chen, and Z. Zhang, “SSBI mitigation in a RF-tone-based VSSB-OFDM system with a frequency-domain Volterra series equalizer,” J. Lightw. Technol., vol. 33, no. 23, pp. 4997–5006,  2015.

Karar, A. S.

J. C. Cartledge and A. S. Karar, “100 Gb/s intensity modulation and direct detection,” J. Lightw. Technol., vol. 32, no. 16, pp. 2809–2814,  2014.

Killey, R. I.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 714–716,  2005.

Klekamp, A.

H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightw. Technol., vol. 26, no. 1, pp. 158–167,  2008.

Li, Z.

Z. Liet al., “Comparison of digital signal-signal beat interference compensation techniques in direct-detection subcarrier modulation systems,” Opt. Express, vol. 24, no. 25, pp. 29176–29189, 2016.

Z. Liet al., “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photon. Technol. Lett., vol. 28, no. 24, pp. 2838–2841,  2016.

Z. Liet al., “Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation,” Opt. Express, vol. 23, no. 18, pp. 23694–23709, 2015.

Z. Liet al., “Reach enhancement for WDM direct-detection subcarrier modulation using low-complexity two-stage signal-signal beat interference cancellation,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper M.2.B.1.

Z. Liet al., “Performance improvement of electronic dispersion post-compensation in direct detection systems using DSP-based receiver linearization,” in Proc. Opt. Fiber Commun., 2017, Paper Th3D.2.

Liu, N.

C. Ju, N. Liu, X. Chen, and Z. Zhang, “SSBI mitigation in a RF-tone-based VSSB-OFDM system with a frequency-domain Volterra series equalizer,” J. Lightw. Technol., vol. 33, no. 23, pp. 4997–5006,  2015.

Mecozzi, A.

Mikhailov, V.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 714–716,  2005.

Olsson, B.-E.

A. O. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” in Proc. Opt. Fiber Commun., 2009, Paper OTuE1.

Ortega, B.

Peng, W. R.

Pilori, D.

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper Mo.4.5.2.

Randel, S.

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper Mo.4.5.2.

Raybon, G.

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper Mo.4.5.2.

Sánchez, C.

Shtaif, M.

Sieben, M.

M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol., vol. 17, no. 10, pp. 1742–1749,  1999.

Voelcker, H.

H. Voelcker, “Demodulation of single-sideband signals via envelope detection,” IEEE Trans. Commun. Technol., vol. COM-14, no. 1, pp. 22–30,  1966.

Watts, P. M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 714–716,  2005.

Wiberg, A. O.

A. O. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” in Proc. Opt. Fiber Commun., 2009, Paper OTuE1.

Winzer, P.

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper Mo.4.5.2.

Zhang, F.

Zhang, L.

L. Zhanget al., “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-band,” J. Lightw. Technol., vol. 34, no. 2, pp. 723–729,  2016.

Zhang, Q.

Q. Zhanget al., “C-band 56Gbps transmission over 80-km single mode fiber without chromatic dispersion compensation by using intensity-modulation direct-detection,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.5.19.

Zhang, Z.

C. Ju, N. Liu, X. Chen, and Z. Zhang, “SSBI mitigation in a RF-tone-based VSSB-OFDM system with a frequency-domain Volterra series equalizer,” J. Lightw. Technol., vol. 33, no. 23, pp. 4997–5006,  2015.

Zhong, K.

Zhu, Y.

Zou, K.

IEEE Photon. Technol. Lett. (2)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 714–716,  2005.

Z. Liet al., “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photon. Technol. Lett., vol. 28, no. 24, pp. 2838–2841,  2016.

IEEE Trans. Commun. Technol. (1)

H. Voelcker, “Demodulation of single-sideband signals via envelope detection,” IEEE Trans. Commun. Technol., vol. COM-14, no. 1, pp. 22–30,  1966.

J. Lightw. Technol. (6)

C. Ju, N. Liu, X. Chen, and Z. Zhang, “SSBI mitigation in a RF-tone-based VSSB-OFDM system with a frequency-domain Volterra series equalizer,” J. Lightw. Technol., vol. 33, no. 23, pp. 4997–5006,  2015.

H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightw. Technol., vol. 26, no. 1, pp. 158–167,  2008.

L. Zhanget al., “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-band,” J. Lightw. Technol., vol. 34, no. 2, pp. 723–729,  2016.

M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightw. Technol., vol. 17, no. 10, pp. 1742–1749,  1999.

J. C. Cartledge and A. S. Karar, “100 Gb/s intensity modulation and direct detection,” J. Lightw. Technol., vol. 32, no. 16, pp. 2809–2814,  2014.

M. S. Erkılınçet al., “Spectrally-efficient WDM Nyquist-pulse-shaped 16-QAM subcarrier modulation transmission with direct detection,” J. Lightw. Technol., vol. 33, no. 15, pp. 3147–3155,  2015.

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Other (5)

A. O. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” in Proc. Opt. Fiber Commun., 2009, Paper OTuE1.

Z. Liet al., “Performance improvement of electronic dispersion post-compensation in direct detection systems using DSP-based receiver linearization,” in Proc. Opt. Fiber Commun., 2017, Paper Th3D.2.

Q. Zhanget al., “C-band 56Gbps transmission over 80-km single mode fiber without chromatic dispersion compensation by using intensity-modulation direct-detection,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.5.19.

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper Mo.4.5.2.

Z. Liet al., “Reach enhancement for WDM direct-detection subcarrier modulation using low-complexity two-stage signal-signal beat interference cancellation,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper M.2.B.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.