Abstract

Using a novel range-resolved interferometric signal processing technique based on the sinusoidal optical frequency modulation of a cost-effective laser diode, a fiber sensing approach termed fiber segment interferometry (FSI) is described. In FSI, a chain of long-gauge length fiber optic strain sensors are separated by identical in-fiber partial reflectors. Targeted at dynamic strain analysis and ultrasound detection for structural health monitoring, this approach allows integrated strain measurements along fiber segments, removing the sensing gaps and sensitivity to inhomogeneities found with localized fiber sensors. In this paper, the multiplexing of six fiber segments, each of length 12.5 cm, is demonstrated. The sensor array can be interrogated at 98 kHz data rate, achieving dynamic strain noise levels $\leq 0.14\,\mathrm{n\epsilon \cdot Hz^{-0.5}}$. The reflector fabrication is discussed, an analysis of linearity and noise performance is carried out and results from an exemplar experiment to determine the speed-of-sound of a stainless steel rod are shown.

© 2016 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt., vol. 17, no. 18, pp. 2867–2869, 1978.
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997.
  3. B. Glisic, “Influence of the gauge length on the accuracy of long-gauge sensors employed in monitoring of prismatic beams,” Meas. Sci. Technol., vol. 22, no. 3, p. 35206, 2011.
  4. J. P. Dakin, C. A. Wade, and M. Henning, “Novel optical fibre hydrophone array using a single laser source and detector,” Electron. Lett., vol. 20, no. 1, pp. 53–54, 1984.
  5. I. Sakai, R. C. Youngquist, and G. Parry, “Multiplexing of optical fiber sensors using a frequency-modulated source and gated output,” J. Lightw. Technol., vol. 5, no. 7, pp. 932–940, 1987.
  6. G. A. Cranch and P. J. Nash, “Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM,” J. Lightw. Technol., vol. 19, no. 5, pp. 687–699, 2001.
  7. C. K. Kirkendall and A. D. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D: Appl. Phys., vol. 37, no. 18, pp. 197–216, 2004.
  8. J. A. Garcia-Souto, and H. Lamela-Rivera, “High resolution ($<$1nm) interferometric fiber-optic sensor of vibrations in high-power transformers.” Opt. Exp., vol. 14, no. 21, pp. 9679–9686, 2006.
  9. D. Vilchis-Rodriguez, S. Djurovic, P. Kung, M. I. Comanici, and A. C. Smith, “Investigation of induction generator wide band vibration monitoring using fibre Bragg grating accelerometers,” in Proc. IEEE Int. Conf. Electr. Mach., 2014, pp. 1772–1778.
  10. R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors, vol. 15, no. 8, pp. 18666–18713, 2015.
  11. J. M. Corres, J. Bravo, F. J. Arregui, and I. R. Matias, “Unbalance and harmonics detection in induction motors using an optical fiber sensor,” IEEE Sensors J., vol. 6, no. 3, pp. 605–612, 2006.
  12. W. K. Chan, G. Flanagan, and J. Schwartz, “Spatial and temporal resolution requirements for quench detection in (RE)Ba2Cu3Ox magnets using Rayleigh-scattering-based fiber optic distributed sensing,” Supercond. Sci. Technol., vol. 26, no. 10, p. 105015, 2013.
  13. C. Y. Park, B.-W. Jang, J. H. Kim, C.-G. Kim, and S.-M. Jun, “Bird strike event monitoring in a composite UAV wing using high speed optical fiber sensing system,” Composites Sci. Technol., vol. 72, no. 4, pp. 498–505, 2012.
  14. T. Vella, S. Chadderdon, R. Selfridge, S. Schultz, S. Webb, C. Park, K. Peters, and M. Zikry, “Full-spectrum interrogation of fiber Bragg gratings at 100 kHz for detection of impact loading,” Meas. Sci. Technol., vol. 21, no. 9, p. 094009, 2010.
  15. H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging.” J. Biophoton., vol. 4, no. 3, pp. 184–192, 2011.
  16. H. Gabai, I. Steinberg, and A. Eyal, “Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry,” Opt. Exp., vol. 23, no. 15, pp. 18915–18924, 2015.
  17. T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Range-resolved interferometric signal processing using sinusoidal optical frequency modulation.” Opt. Exp., vol. 23, no. 7, pp. 9415–9431, 2015.
  18. T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, p. 94011, 2013.
  19. J. Huang, X. Lan, M. Luo, and H. Xiao, “Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.” Opt. Exp., vol. 22, no. 15, pp. 18757–18769, 2014.
  20. Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.
  21. Z. Chen, L. Yuan, G. Hefferman, and T. Wei, “Ultraweak intrinsic Fabry–Perot cavity array for distributed sensing.” Opt. Lett., vol. 40, no. 3, pp. 320–323, 2015.
  22. M. E. Froggatt and J. Moore, “Distributed measurement of static strain in an optical fiber with multiple Bragg gratings at nominally equal wavelengths,” Appl. Opt., vol. 37, no. 10, pp. 1741–1746, 1998.
  23. M. P. Minneman, E. Hoover, P. Boschert, J. Ensher, M. Crawford, D. Derrickson, and A. D. Kersey, “Very high sensor-density multiplexing using a wavelength-to-time domain reflectometry approach based on a rapidly swept akinetic laser,” Proc. SPIE, vol. 9634, 2015.
  24. S. V. Shatalin, V. N. Treschikov, and A. J. Rogers, “Interferometric optical time-domain reflectometry for distributed optical-fiber sensing,” Appl. Opt., vol. 37, no. 24, pp. 5600–5604, 1998.
  25. M. E. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt., vol. 37, no. 10, pp. 1735–1740, 1998.
  26. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors, vol. 11, no. 4, pp. 4152–4187, 2011.
  27. T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Range-resolved signal processing for fibre segment interferometry applied to dynamic long-gauge length strain sensing,” Proc. SPIE, vol. 9634, 2015.
  28. K. Itoh, “Analysis of the phase unwrapping algorithm,” Appl. Opt., vol. 21, no. 14, p. 2470, 1982.
  29. C. Okawara and K. Saijyou, “Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing,” Acoust. Sci. Technol., vol. 28, no. 1, pp. 39–42, 2007.
  30. C. E. Lee, R. A. Atkins, and H. F. Taylor, “Reflectively tapped optical fibre transversal filters,” Electron. Lett., vol. 23, no. 11, pp. 596–598, 1987.
  31. E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Exp., vol. 18, no. 11, pp. 12017–12026, 2010.
  32. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol., vol. 9, no. 2, pp. 57–79, 2003.
  33. P. L. M. Heydemann, “Determination and correction of quadrature fringe measurement errors in interferometers,” Appl. Opt., vol. 20, no. 19, pp. 3382–3384, 1981.
  34. T. Kissinger. (2015). Range-resolved optical interferometric signal processing. Ph.D. dissertation, Cranfield Univ., Cranfield, U.K. [Online]. Available: http://dspace.lib.cranfield.ac.uk/handle/1826/9598}{http://dspace.lib.cranfield.ac.uk/handle/1826/9598
  35. C. K. Kirkendall, A. D. Kersey, A. D. Dandridge, M. J. Marrone, and A. R. Davis, “Sensitivity limitations due to aliased high frequency phase noise in high channel-count TDM interferometric arrays,” in Proc. Int. Conf. Opt. Fibre Sensors, 1996.
  36. K. F. Graff, Wave Motion in Elastic Solids. New York, NY, USA: Dover, 2003.
  37. R. E. Bartolo, A. B. Tveten, and C. K. Kirkendall, “The quest for inexpensive, compact, low phase noise laser sources for fiber optic sensing applications,” Proc. SPIE, vol. 7503, 2009.

2015 (5)

R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors, vol. 15, no. 8, pp. 18666–18713, 2015.

H. Gabai, I. Steinberg, and A. Eyal, “Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry,” Opt. Exp., vol. 23, no. 15, pp. 18915–18924, 2015.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Range-resolved interferometric signal processing using sinusoidal optical frequency modulation.” Opt. Exp., vol. 23, no. 7, pp. 9415–9431, 2015.

Z. Chen, L. Yuan, G. Hefferman, and T. Wei, “Ultraweak intrinsic Fabry–Perot cavity array for distributed sensing.” Opt. Lett., vol. 40, no. 3, pp. 320–323, 2015.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Range-resolved signal processing for fibre segment interferometry applied to dynamic long-gauge length strain sensing,” Proc. SPIE, vol. 9634, 2015.

2014 (1)

J. Huang, X. Lan, M. Luo, and H. Xiao, “Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.” Opt. Exp., vol. 22, no. 15, pp. 18757–18769, 2014.

2013 (2)

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, p. 94011, 2013.

W. K. Chan, G. Flanagan, and J. Schwartz, “Spatial and temporal resolution requirements for quench detection in (RE)Ba2Cu3Ox magnets using Rayleigh-scattering-based fiber optic distributed sensing,” Supercond. Sci. Technol., vol. 26, no. 10, p. 105015, 2013.

2012 (1)

C. Y. Park, B.-W. Jang, J. H. Kim, C.-G. Kim, and S.-M. Jun, “Bird strike event monitoring in a composite UAV wing using high speed optical fiber sensing system,” Composites Sci. Technol., vol. 72, no. 4, pp. 498–505, 2012.

2011 (3)

B. Glisic, “Influence of the gauge length on the accuracy of long-gauge sensors employed in monitoring of prismatic beams,” Meas. Sci. Technol., vol. 22, no. 3, p. 35206, 2011.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging.” J. Biophoton., vol. 4, no. 3, pp. 184–192, 2011.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors, vol. 11, no. 4, pp. 4152–4187, 2011.

2010 (2)

E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Exp., vol. 18, no. 11, pp. 12017–12026, 2010.

T. Vella, S. Chadderdon, R. Selfridge, S. Schultz, S. Webb, C. Park, K. Peters, and M. Zikry, “Full-spectrum interrogation of fiber Bragg gratings at 100 kHz for detection of impact loading,” Meas. Sci. Technol., vol. 21, no. 9, p. 094009, 2010.

2009 (1)

R. E. Bartolo, A. B. Tveten, and C. K. Kirkendall, “The quest for inexpensive, compact, low phase noise laser sources for fiber optic sensing applications,” Proc. SPIE, vol. 7503, 2009.

2007 (2)

C. Okawara and K. Saijyou, “Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing,” Acoust. Sci. Technol., vol. 28, no. 1, pp. 39–42, 2007.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.

2006 (2)

J. M. Corres, J. Bravo, F. J. Arregui, and I. R. Matias, “Unbalance and harmonics detection in induction motors using an optical fiber sensor,” IEEE Sensors J., vol. 6, no. 3, pp. 605–612, 2006.

J. A. Garcia-Souto, and H. Lamela-Rivera, “High resolution ($<$1nm) interferometric fiber-optic sensor of vibrations in high-power transformers.” Opt. Exp., vol. 14, no. 21, pp. 9679–9686, 2006.

2004 (1)

C. K. Kirkendall and A. D. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D: Appl. Phys., vol. 37, no. 18, pp. 197–216, 2004.

2003 (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol., vol. 9, no. 2, pp. 57–79, 2003.

2001 (1)

G. A. Cranch and P. J. Nash, “Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM,” J. Lightw. Technol., vol. 19, no. 5, pp. 687–699, 2001.

1998 (3)

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997.

1987 (2)

I. Sakai, R. C. Youngquist, and G. Parry, “Multiplexing of optical fiber sensors using a frequency-modulated source and gated output,” J. Lightw. Technol., vol. 5, no. 7, pp. 932–940, 1987.

C. E. Lee, R. A. Atkins, and H. F. Taylor, “Reflectively tapped optical fibre transversal filters,” Electron. Lett., vol. 23, no. 11, pp. 596–598, 1987.

1984 (1)

J. P. Dakin, C. A. Wade, and M. Henning, “Novel optical fibre hydrophone array using a single laser source and detector,” Electron. Lett., vol. 20, no. 1, pp. 53–54, 1984.

1982 (1)

1981 (1)

1978 (1)

Arregui, F. J.

J. M. Corres, J. Bravo, F. J. Arregui, and I. R. Matias, “Unbalance and harmonics detection in induction motors using an optical fiber sensor,” IEEE Sensors J., vol. 6, no. 3, pp. 605–612, 2006.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997.

Atkins, R. A.

C. E. Lee, R. A. Atkins, and H. F. Taylor, “Reflectively tapped optical fibre transversal filters,” Electron. Lett., vol. 23, no. 11, pp. 596–598, 1987.

Bao, X.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors, vol. 11, no. 4, pp. 4152–4187, 2011.

Bartolo, R. E.

R. E. Bartolo, A. B. Tveten, and C. K. Kirkendall, “The quest for inexpensive, compact, low phase noise laser sources for fiber optic sensing applications,” Proc. SPIE, vol. 7503, 2009.

Boschert, P.

M. P. Minneman, E. Hoover, P. Boschert, J. Ensher, M. Crawford, D. Derrickson, and A. D. Kersey, “Very high sensor-density multiplexing using a wavelength-to-time domain reflectometry approach based on a rapidly swept akinetic laser,” Proc. SPIE, vol. 9634, 2015.

Bravo, J.

J. M. Corres, J. Bravo, F. J. Arregui, and I. R. Matias, “Unbalance and harmonics detection in induction motors using an optical fiber sensor,” IEEE Sensors J., vol. 6, no. 3, pp. 605–612, 2006.

Butter, C. D.

Chadderdon, S.

T. Vella, S. Chadderdon, R. Selfridge, S. Schultz, S. Webb, C. Park, K. Peters, and M. Zikry, “Full-spectrum interrogation of fiber Bragg gratings at 100 kHz for detection of impact loading,” Meas. Sci. Technol., vol. 21, no. 9, p. 094009, 2010.

Chan, W. K.

W. K. Chan, G. Flanagan, and J. Schwartz, “Spatial and temporal resolution requirements for quench detection in (RE)Ba2Cu3Ox magnets using Rayleigh-scattering-based fiber optic distributed sensing,” Supercond. Sci. Technol., vol. 26, no. 10, p. 105015, 2013.

Charrett, T. O. H.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Range-resolved interferometric signal processing using sinusoidal optical frequency modulation.” Opt. Exp., vol. 23, no. 7, pp. 9415–9431, 2015.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Range-resolved signal processing for fibre segment interferometry applied to dynamic long-gauge length strain sensing,” Proc. SPIE, vol. 9634, 2015.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, p. 94011, 2013.

Chen, L.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors, vol. 11, no. 4, pp. 4152–4187, 2011.

Chen, Z.

Cibula, E.

E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Exp., vol. 18, no. 11, pp. 12017–12026, 2010.

Comanici, M. I.

D. Vilchis-Rodriguez, S. Djurovic, P. Kung, M. I. Comanici, and A. C. Smith, “Investigation of induction generator wide band vibration monitoring using fibre Bragg grating accelerometers,” in Proc. IEEE Int. Conf. Electr. Mach., 2014, pp. 1772–1778.

Correia, R.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Range-resolved signal processing for fibre segment interferometry applied to dynamic long-gauge length strain sensing,” Proc. SPIE, vol. 9634, 2015.

Corres, J. M.

J. M. Corres, J. Bravo, F. J. Arregui, and I. R. Matias, “Unbalance and harmonics detection in induction motors using an optical fiber sensor,” IEEE Sensors J., vol. 6, no. 3, pp. 605–612, 2006.

Cranch, G. A.

G. A. Cranch and P. J. Nash, “Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM,” J. Lightw. Technol., vol. 19, no. 5, pp. 687–699, 2001.

Crawford, M.

M. P. Minneman, E. Hoover, P. Boschert, J. Ensher, M. Crawford, D. Derrickson, and A. D. Kersey, “Very high sensor-density multiplexing using a wavelength-to-time domain reflectometry approach based on a rapidly swept akinetic laser,” Proc. SPIE, vol. 9634, 2015.

Dakin, J. P.

J. P. Dakin, C. A. Wade, and M. Henning, “Novel optical fibre hydrophone array using a single laser source and detector,” Electron. Lett., vol. 20, no. 1, pp. 53–54, 1984.

Dandridge, A. D.

C. K. Kirkendall and A. D. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D: Appl. Phys., vol. 37, no. 18, pp. 197–216, 2004.

C. K. Kirkendall, A. D. Kersey, A. D. Dandridge, M. J. Marrone, and A. R. Davis, “Sensitivity limitations due to aliased high frequency phase noise in high channel-count TDM interferometric arrays,” in Proc. Int. Conf. Opt. Fibre Sensors, 1996.

Davis, A. R.

C. K. Kirkendall, A. D. Kersey, A. D. Dandridge, M. J. Marrone, and A. R. Davis, “Sensitivity limitations due to aliased high frequency phase noise in high channel-count TDM interferometric arrays,” in Proc. Int. Conf. Opt. Fibre Sensors, 1996.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997.

Derrickson, D.

M. P. Minneman, E. Hoover, P. Boschert, J. Ensher, M. Crawford, D. Derrickson, and A. D. Kersey, “Very high sensor-density multiplexing using a wavelength-to-time domain reflectometry approach based on a rapidly swept akinetic laser,” Proc. SPIE, vol. 9634, 2015.

Djurovic, S.

D. Vilchis-Rodriguez, S. Djurovic, P. Kung, M. I. Comanici, and A. C. Smith, “Investigation of induction generator wide band vibration monitoring using fibre Bragg grating accelerometers,” in Proc. IEEE Int. Conf. Electr. Mach., 2014, pp. 1772–1778.

Donlagic, D.

E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Exp., vol. 18, no. 11, pp. 12017–12026, 2010.

Ensher, J.

M. P. Minneman, E. Hoover, P. Boschert, J. Ensher, M. Crawford, D. Derrickson, and A. D. Kersey, “Very high sensor-density multiplexing using a wavelength-to-time domain reflectometry approach based on a rapidly swept akinetic laser,” Proc. SPIE, vol. 9634, 2015.

Eyal, A.

H. Gabai, I. Steinberg, and A. Eyal, “Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry,” Opt. Exp., vol. 23, no. 15, pp. 18915–18924, 2015.

Flanagan, G.

W. K. Chan, G. Flanagan, and J. Schwartz, “Spatial and temporal resolution requirements for quench detection in (RE)Ba2Cu3Ox magnets using Rayleigh-scattering-based fiber optic distributed sensing,” Supercond. Sci. Technol., vol. 26, no. 10, p. 105015, 2013.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997.

Froggatt, M. E.

Gabai, H.

H. Gabai, I. Steinberg, and A. Eyal, “Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry,” Opt. Exp., vol. 23, no. 15, pp. 18915–18924, 2015.

Gallego, D.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging.” J. Biophoton., vol. 4, no. 3, pp. 184–192, 2011.

Garcia-Souto, J. A.

J. A. Garcia-Souto, and H. Lamela-Rivera, “High resolution ($<$1nm) interferometric fiber-optic sensor of vibrations in high-power transformers.” Opt. Exp., vol. 14, no. 21, pp. 9679–9686, 2006.

Glisic, B.

B. Glisic, “Influence of the gauge length on the accuracy of long-gauge sensors employed in monitoring of prismatic beams,” Meas. Sci. Technol., vol. 22, no. 3, p. 35206, 2011.

Graff, K. F.

K. F. Graff, Wave Motion in Elastic Solids. New York, NY, USA: Dover, 2003.

Gutierrez, R.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging.” J. Biophoton., vol. 4, no. 3, pp. 184–192, 2011.

Hefferman, G.

Henning, M.

J. P. Dakin, C. A. Wade, and M. Henning, “Novel optical fibre hydrophone array using a single laser source and detector,” Electron. Lett., vol. 20, no. 1, pp. 53–54, 1984.

Heydemann, P. L. M.

Hocker, G. B.

Hoover, E.

M. P. Minneman, E. Hoover, P. Boschert, J. Ensher, M. Crawford, D. Derrickson, and A. D. Kersey, “Very high sensor-density multiplexing using a wavelength-to-time domain reflectometry approach based on a rapidly swept akinetic laser,” Proc. SPIE, vol. 9634, 2015.

Huang, J.

J. Huang, X. Lan, M. Luo, and H. Xiao, “Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.” Opt. Exp., vol. 22, no. 15, pp. 18757–18769, 2014.

Itoh, K.

James, S. W.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Range-resolved signal processing for fibre segment interferometry applied to dynamic long-gauge length strain sensing,” Proc. SPIE, vol. 9634, 2015.

Jang, B.-W.

C. Y. Park, B.-W. Jang, J. H. Kim, C.-G. Kim, and S.-M. Jun, “Bird strike event monitoring in a composite UAV wing using high speed optical fiber sensing system,” Composites Sci. Technol., vol. 72, no. 4, pp. 498–505, 2012.

Jun, S.-M.

C. Y. Park, B.-W. Jang, J. H. Kim, C.-G. Kim, and S.-M. Jun, “Bird strike event monitoring in a composite UAV wing using high speed optical fiber sensing system,” Composites Sci. Technol., vol. 72, no. 4, pp. 498–505, 2012.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997.

M. P. Minneman, E. Hoover, P. Boschert, J. Ensher, M. Crawford, D. Derrickson, and A. D. Kersey, “Very high sensor-density multiplexing using a wavelength-to-time domain reflectometry approach based on a rapidly swept akinetic laser,” Proc. SPIE, vol. 9634, 2015.

C. K. Kirkendall, A. D. Kersey, A. D. Dandridge, M. J. Marrone, and A. R. Davis, “Sensitivity limitations due to aliased high frequency phase noise in high channel-count TDM interferometric arrays,” in Proc. Int. Conf. Opt. Fibre Sensors, 1996.

Kim, C.-G.

C. Y. Park, B.-W. Jang, J. H. Kim, C.-G. Kim, and S.-M. Jun, “Bird strike event monitoring in a composite UAV wing using high speed optical fiber sensing system,” Composites Sci. Technol., vol. 72, no. 4, pp. 498–505, 2012.

Kim, J. H.

C. Y. Park, B.-W. Jang, J. H. Kim, C.-G. Kim, and S.-M. Jun, “Bird strike event monitoring in a composite UAV wing using high speed optical fiber sensing system,” Composites Sci. Technol., vol. 72, no. 4, pp. 498–505, 2012.

Kirkendall, C. K.

R. E. Bartolo, A. B. Tveten, and C. K. Kirkendall, “The quest for inexpensive, compact, low phase noise laser sources for fiber optic sensing applications,” Proc. SPIE, vol. 7503, 2009.

C. K. Kirkendall and A. D. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D: Appl. Phys., vol. 37, no. 18, pp. 197–216, 2004.

C. K. Kirkendall, A. D. Kersey, A. D. Dandridge, M. J. Marrone, and A. R. Davis, “Sensitivity limitations due to aliased high frequency phase noise in high channel-count TDM interferometric arrays,” in Proc. Int. Conf. Opt. Fibre Sensors, 1996.

Kissinger, T.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Range-resolved signal processing for fibre segment interferometry applied to dynamic long-gauge length strain sensing,” Proc. SPIE, vol. 9634, 2015.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Range-resolved interferometric signal processing using sinusoidal optical frequency modulation.” Opt. Exp., vol. 23, no. 7, pp. 9415–9431, 2015.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, p. 94011, 2013.

T. Kissinger. (2015). Range-resolved optical interferometric signal processing. Ph.D. dissertation, Cranfield Univ., Cranfield, U.K. [Online]. Available: http://dspace.lib.cranfield.ac.uk/handle/1826/9598}{http://dspace.lib.cranfield.ac.uk/handle/1826/9598

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997.

Kung, P.

D. Vilchis-Rodriguez, S. Djurovic, P. Kung, M. I. Comanici, and A. C. Smith, “Investigation of induction generator wide band vibration monitoring using fibre Bragg grating accelerometers,” in Proc. IEEE Int. Conf. Electr. Mach., 2014, pp. 1772–1778.

Lamela, H.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging.” J. Biophoton., vol. 4, no. 3, pp. 184–192, 2011.

Lamela-Rivera, H.

J. A. Garcia-Souto, and H. Lamela-Rivera, “High resolution ($<$1nm) interferometric fiber-optic sensor of vibrations in high-power transformers.” Opt. Exp., vol. 14, no. 21, pp. 9679–9686, 2006.

Lan, X.

J. Huang, X. Lan, M. Luo, and H. Xiao, “Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.” Opt. Exp., vol. 22, no. 15, pp. 18757–18769, 2014.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997.

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol., vol. 9, no. 2, pp. 57–79, 2003.

Lee, C. E.

C. E. Lee, R. A. Atkins, and H. F. Taylor, “Reflectively tapped optical fibre transversal filters,” Electron. Lett., vol. 23, no. 11, pp. 596–598, 1987.

Luo, M.

J. Huang, X. Lan, M. Luo, and H. Xiao, “Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.” Opt. Exp., vol. 22, no. 15, pp. 18757–18769, 2014.

Marrone, M. J.

C. K. Kirkendall, A. D. Kersey, A. D. Dandridge, M. J. Marrone, and A. R. Davis, “Sensitivity limitations due to aliased high frequency phase noise in high channel-count TDM interferometric arrays,” in Proc. Int. Conf. Opt. Fibre Sensors, 1996.

Matias, I. R.

J. M. Corres, J. Bravo, F. J. Arregui, and I. R. Matias, “Unbalance and harmonics detection in induction motors using an optical fiber sensor,” IEEE Sensors J., vol. 6, no. 3, pp. 605–612, 2006.

Minneman, M. P.

M. P. Minneman, E. Hoover, P. Boschert, J. Ensher, M. Crawford, D. Derrickson, and A. D. Kersey, “Very high sensor-density multiplexing using a wavelength-to-time domain reflectometry approach based on a rapidly swept akinetic laser,” Proc. SPIE, vol. 9634, 2015.

Moore, J.

Nash, P. J.

G. A. Cranch and P. J. Nash, “Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM,” J. Lightw. Technol., vol. 19, no. 5, pp. 687–699, 2001.

Okawara, C.

C. Okawara and K. Saijyou, “Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing,” Acoust. Sci. Technol., vol. 28, no. 1, pp. 39–42, 2007.

Oraevsky, A.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging.” J. Biophoton., vol. 4, no. 3, pp. 184–192, 2011.

Park, C.

T. Vella, S. Chadderdon, R. Selfridge, S. Schultz, S. Webb, C. Park, K. Peters, and M. Zikry, “Full-spectrum interrogation of fiber Bragg gratings at 100 kHz for detection of impact loading,” Meas. Sci. Technol., vol. 21, no. 9, p. 094009, 2010.

Park, C. Y.

C. Y. Park, B.-W. Jang, J. H. Kim, C.-G. Kim, and S.-M. Jun, “Bird strike event monitoring in a composite UAV wing using high speed optical fiber sensing system,” Composites Sci. Technol., vol. 72, no. 4, pp. 498–505, 2012.

Parry, G.

I. Sakai, R. C. Youngquist, and G. Parry, “Multiplexing of optical fiber sensors using a frequency-modulated source and gated output,” J. Lightw. Technol., vol. 5, no. 7, pp. 932–940, 1987.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997.

Peters, K.

T. Vella, S. Chadderdon, R. Selfridge, S. Schultz, S. Webb, C. Park, K. Peters, and M. Zikry, “Full-spectrum interrogation of fiber Bragg gratings at 100 kHz for detection of impact loading,” Meas. Sci. Technol., vol. 21, no. 9, p. 094009, 2010.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997.

Rogers, A. J.

Saijyou, K.

C. Okawara and K. Saijyou, “Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing,” Acoust. Sci. Technol., vol. 28, no. 1, pp. 39–42, 2007.

Sakai, I.

I. Sakai, R. C. Youngquist, and G. Parry, “Multiplexing of optical fiber sensors using a frequency-modulated source and gated output,” J. Lightw. Technol., vol. 5, no. 7, pp. 932–940, 1987.

Sante, R. Di

R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors, vol. 15, no. 8, pp. 18666–18713, 2015.

Schultz, S.

T. Vella, S. Chadderdon, R. Selfridge, S. Schultz, S. Webb, C. Park, K. Peters, and M. Zikry, “Full-spectrum interrogation of fiber Bragg gratings at 100 kHz for detection of impact loading,” Meas. Sci. Technol., vol. 21, no. 9, p. 094009, 2010.

Schwartz, J.

W. K. Chan, G. Flanagan, and J. Schwartz, “Spatial and temporal resolution requirements for quench detection in (RE)Ba2Cu3Ox magnets using Rayleigh-scattering-based fiber optic distributed sensing,” Supercond. Sci. Technol., vol. 26, no. 10, p. 105015, 2013.

Selfridge, R.

T. Vella, S. Chadderdon, R. Selfridge, S. Schultz, S. Webb, C. Park, K. Peters, and M. Zikry, “Full-spectrum interrogation of fiber Bragg gratings at 100 kHz for detection of impact loading,” Meas. Sci. Technol., vol. 21, no. 9, p. 094009, 2010.

Shatalin, S. V.

Shen, F.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.

Smith, A. C.

D. Vilchis-Rodriguez, S. Djurovic, P. Kung, M. I. Comanici, and A. C. Smith, “Investigation of induction generator wide band vibration monitoring using fibre Bragg grating accelerometers,” in Proc. IEEE Int. Conf. Electr. Mach., 2014, pp. 1772–1778.

Song, L.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.

Steinberg, I.

H. Gabai, I. Steinberg, and A. Eyal, “Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry,” Opt. Exp., vol. 23, no. 15, pp. 18915–18924, 2015.

Tatam, R. P.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Range-resolved interferometric signal processing using sinusoidal optical frequency modulation.” Opt. Exp., vol. 23, no. 7, pp. 9415–9431, 2015.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Range-resolved signal processing for fibre segment interferometry applied to dynamic long-gauge length strain sensing,” Proc. SPIE, vol. 9634, 2015.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, p. 94011, 2013.

Taylor, H. F.

C. E. Lee, R. A. Atkins, and H. F. Taylor, “Reflectively tapped optical fibre transversal filters,” Electron. Lett., vol. 23, no. 11, pp. 596–598, 1987.

Treschikov, V. N.

Tveten, A. B.

R. E. Bartolo, A. B. Tveten, and C. K. Kirkendall, “The quest for inexpensive, compact, low phase noise laser sources for fiber optic sensing applications,” Proc. SPIE, vol. 7503, 2009.

Vella, T.

T. Vella, S. Chadderdon, R. Selfridge, S. Schultz, S. Webb, C. Park, K. Peters, and M. Zikry, “Full-spectrum interrogation of fiber Bragg gratings at 100 kHz for detection of impact loading,” Meas. Sci. Technol., vol. 21, no. 9, p. 094009, 2010.

Vilchis-Rodriguez, D.

D. Vilchis-Rodriguez, S. Djurovic, P. Kung, M. I. Comanici, and A. C. Smith, “Investigation of induction generator wide band vibration monitoring using fibre Bragg grating accelerometers,” in Proc. IEEE Int. Conf. Electr. Mach., 2014, pp. 1772–1778.

Wade, C. A.

J. P. Dakin, C. A. Wade, and M. Henning, “Novel optical fibre hydrophone array using a single laser source and detector,” Electron. Lett., vol. 20, no. 1, pp. 53–54, 1984.

Wang, A.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.

Wang, X.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.

Wang, Z.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.

Webb, S.

T. Vella, S. Chadderdon, R. Selfridge, S. Schultz, S. Webb, C. Park, K. Peters, and M. Zikry, “Full-spectrum interrogation of fiber Bragg gratings at 100 kHz for detection of impact loading,” Meas. Sci. Technol., vol. 21, no. 9, p. 094009, 2010.

Wei, T.

Xiao, H.

J. Huang, X. Lan, M. Luo, and H. Xiao, “Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.” Opt. Exp., vol. 22, no. 15, pp. 18757–18769, 2014.

Youngquist, R. C.

I. Sakai, R. C. Youngquist, and G. Parry, “Multiplexing of optical fiber sensors using a frequency-modulated source and gated output,” J. Lightw. Technol., vol. 5, no. 7, pp. 932–940, 1987.

Yuan, L.

Zikry, M.

T. Vella, S. Chadderdon, R. Selfridge, S. Schultz, S. Webb, C. Park, K. Peters, and M. Zikry, “Full-spectrum interrogation of fiber Bragg gratings at 100 kHz for detection of impact loading,” Meas. Sci. Technol., vol. 21, no. 9, p. 094009, 2010.

Acoust. Sci. Technol. (1)

C. Okawara and K. Saijyou, “Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing,” Acoust. Sci. Technol., vol. 28, no. 1, pp. 39–42, 2007.

Appl. Opt. (6)

Composites Sci. Technol. (1)

C. Y. Park, B.-W. Jang, J. H. Kim, C.-G. Kim, and S.-M. Jun, “Bird strike event monitoring in a composite UAV wing using high speed optical fiber sensing system,” Composites Sci. Technol., vol. 72, no. 4, pp. 498–505, 2012.

Electron. Lett. (2)

J. P. Dakin, C. A. Wade, and M. Henning, “Novel optical fibre hydrophone array using a single laser source and detector,” Electron. Lett., vol. 20, no. 1, pp. 53–54, 1984.

C. E. Lee, R. A. Atkins, and H. F. Taylor, “Reflectively tapped optical fibre transversal filters,” Electron. Lett., vol. 23, no. 11, pp. 596–598, 1987.

IEEE Photon. Technol. Lett. (1)

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.

IEEE Sensors J. (1)

J. M. Corres, J. Bravo, F. J. Arregui, and I. R. Matias, “Unbalance and harmonics detection in induction motors using an optical fiber sensor,” IEEE Sensors J., vol. 6, no. 3, pp. 605–612, 2006.

J. Biophoton. (1)

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging.” J. Biophoton., vol. 4, no. 3, pp. 184–192, 2011.

J. Lightw. Technol. (3)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997.

I. Sakai, R. C. Youngquist, and G. Parry, “Multiplexing of optical fiber sensors using a frequency-modulated source and gated output,” J. Lightw. Technol., vol. 5, no. 7, pp. 932–940, 1987.

G. A. Cranch and P. J. Nash, “Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM,” J. Lightw. Technol., vol. 19, no. 5, pp. 687–699, 2001.

J. Phys. D: Appl. Phys. (1)

C. K. Kirkendall and A. D. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D: Appl. Phys., vol. 37, no. 18, pp. 197–216, 2004.

Meas. Sci. Technol. (3)

B. Glisic, “Influence of the gauge length on the accuracy of long-gauge sensors employed in monitoring of prismatic beams,” Meas. Sci. Technol., vol. 22, no. 3, p. 35206, 2011.

T. Vella, S. Chadderdon, R. Selfridge, S. Schultz, S. Webb, C. Park, K. Peters, and M. Zikry, “Full-spectrum interrogation of fiber Bragg gratings at 100 kHz for detection of impact loading,” Meas. Sci. Technol., vol. 21, no. 9, p. 094009, 2010.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, p. 94011, 2013.

Opt. Exp. (5)

J. Huang, X. Lan, M. Luo, and H. Xiao, “Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.” Opt. Exp., vol. 22, no. 15, pp. 18757–18769, 2014.

H. Gabai, I. Steinberg, and A. Eyal, “Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry,” Opt. Exp., vol. 23, no. 15, pp. 18915–18924, 2015.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Range-resolved interferometric signal processing using sinusoidal optical frequency modulation.” Opt. Exp., vol. 23, no. 7, pp. 9415–9431, 2015.

J. A. Garcia-Souto, and H. Lamela-Rivera, “High resolution ($<$1nm) interferometric fiber-optic sensor of vibrations in high-power transformers.” Opt. Exp., vol. 14, no. 21, pp. 9679–9686, 2006.

E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Exp., vol. 18, no. 11, pp. 12017–12026, 2010.

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol., vol. 9, no. 2, pp. 57–79, 2003.

Opt. Lett. (1)

Proc. SPIE (2)

R. E. Bartolo, A. B. Tveten, and C. K. Kirkendall, “The quest for inexpensive, compact, low phase noise laser sources for fiber optic sensing applications,” Proc. SPIE, vol. 7503, 2009.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Range-resolved signal processing for fibre segment interferometry applied to dynamic long-gauge length strain sensing,” Proc. SPIE, vol. 9634, 2015.

Sensors (2)

R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors, vol. 15, no. 8, pp. 18666–18713, 2015.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors, vol. 11, no. 4, pp. 4152–4187, 2011.

Supercond. Sci. Technol. (1)

W. K. Chan, G. Flanagan, and J. Schwartz, “Spatial and temporal resolution requirements for quench detection in (RE)Ba2Cu3Ox magnets using Rayleigh-scattering-based fiber optic distributed sensing,” Supercond. Sci. Technol., vol. 26, no. 10, p. 105015, 2013.

Other (5)

D. Vilchis-Rodriguez, S. Djurovic, P. Kung, M. I. Comanici, and A. C. Smith, “Investigation of induction generator wide band vibration monitoring using fibre Bragg grating accelerometers,” in Proc. IEEE Int. Conf. Electr. Mach., 2014, pp. 1772–1778.

M. P. Minneman, E. Hoover, P. Boschert, J. Ensher, M. Crawford, D. Derrickson, and A. D. Kersey, “Very high sensor-density multiplexing using a wavelength-to-time domain reflectometry approach based on a rapidly swept akinetic laser,” Proc. SPIE, vol. 9634, 2015.

T. Kissinger. (2015). Range-resolved optical interferometric signal processing. Ph.D. dissertation, Cranfield Univ., Cranfield, U.K. [Online]. Available: http://dspace.lib.cranfield.ac.uk/handle/1826/9598}{http://dspace.lib.cranfield.ac.uk/handle/1826/9598

C. K. Kirkendall, A. D. Kersey, A. D. Dandridge, M. J. Marrone, and A. R. Davis, “Sensitivity limitations due to aliased high frequency phase noise in high channel-count TDM interferometric arrays,” in Proc. Int. Conf. Opt. Fibre Sensors, 1996.

K. F. Graff, Wave Motion in Elastic Solids. New York, NY, USA: Dover, 2003.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.