Abstract

Raman spectroscopy performed using optical fibers, with excitation at 1064 nm and a dispersive detection scheme, was utilized to measure a selection of unifloral honeys produced in the Italian region of Calabria. The honey samples had three different botanical origins: chestnut, citrus, and acacia. A multivariate processing of the spectroscopic data enabled us to distinguish their botanical origin, and to build predictive models for quantifying important nutraceutic indicators, such as the main sugars and potassium. Furthermore, the Raman spectra of chestnut honeys were compared with the taste profile measured by an electronic tongue: A good correlation to a bitter-savory taste was obtained. This experiment indicates the excellent potential of Raman spectroscopy as a modern analytical tool for the nondestructive and rapid multi-component analysis of food quality indicators.

© 2016 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Persano Oddo, M. G. Piazza, A. G. Sabatini, and M. Accorti, “Characterization of unifloral honeys,” Apidologie, vol. 26, pp. 453–465, 1995.
  2. L. Persano Oddo and R. Piro, “Main European unifloral honeys: Descriptive sheets,” Apidologie, vol. 35, pp. S38–S81, 2004.
  3. [Online]. (2016). Available: http://www.apimondia.com/en
  4. M. de la Guardia and S. Garrigues, Eds., Challenges in Green Analytical Chemistry. Cambridge, U.K.: RSC, 2011.
  5. J. Moros, S. Garrigues, and M. de la Guardia, “Vibrational spectroscopy provides a green tool for multi-component analysis,” Trends Analytical Chem., vol. 29, pp. 578–591, 2010.
  6. S. Armenta, S. Garrigues, and M. de la Guardia, “Green analytical chemistry,” Trends Analytical Chem., vol. 27, pp. 497–511, 2008.
  7. J. Riedl, S. Esslinger, and C. Fauhl-Hassek, “Review of validation and reporting on non-targeted fingerprinting approaches for food authentication,” Analytica Chimica Acta, vol. 885, pp. 17–32, 2015.
  8. D. I. Ellis, V. L. Brewster, W. B. Dunn, J. W. Allwood, A. P. Golovanov, and R. Goodacre, “Fingerprinting food: Current technologies for the detection of food adulteration and contamination,” Chem. Soc. Rev., vol. 41, pp. 5569–5868, 2012.
  9. A. M. Mouazen and A. Al-Walaan, “Glucose adulteration in Saudi honey with visible and near infrared spectroscopy,” Int. J. Food Properties, vol. 17, pp. 2263–2274, 2014.
  10. L. Chen, J. Wang, Z. Ye, J. Zhao, X. Xue, Y. Vander Heyden, and Q. Sun, “Classification of Chinese honeys according to their floral origin by near infrared spectroscopy,” Food Chem., vol. 135, pp. 338–342, 2012.
  11. L. Chen, X. Xue, Z. Ye, J. Zhou, F. Chen, and J. Zhao, “Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy,” Food Chem., vol. 128, pp. 1110–1114, 2011.
  12. T. Woodcock, G. Downey, and C. P. O’Donnell, “Near infrared spectral fingerprinting for confirmation of claimed PDO provenance of honey,” Food Chem., vol. 114, pp. 742–746, 2009.
  13. K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry,” Eur. Food Res. Technol., vol. 225, pp. 415–423, 2007.
  14. K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Authentication of the botanical origin of honey by near-infrared spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6867–6872, 2006.
  15. T. Woodcock, G. Downey, J. D. Kelly, and C. O’Donnell, “Geographical classification of honey samples by near-infrared spectroscopy: A feasibility study,” J. Agricultural Food Chem., vol. 55, pp. 9128–9134, 2007.
  16. G. Downey, V. Fouratier, and J. D. Kelly, “Detection of honey adulteration by addition of fructose and glucose using near infrared transflectance spectroscopy,” J. Near Infrared Spectrosc., vol. 11, pp. 447–456, 2003.
  17. L. Dvash, O. Afik, S. Shafir, A. Schaffer, Y. Yeselson, A. Dag, and S. Landau, “Determination by near-infrared spectroscopy of perseitol used as a marker for the botanical origin of avocado (Persea Americana Mill.) honey,” J. Agricultural Food Chem., vol. 50, pp. 5283–5287, 2002.
  18. Z. Gan, Y. Yang, J. Li, X. Wen, M. Zhu, Y. Jiang, and Y. Ni, “Using sensor and spectral analysis to classify botanic origin and determine adulteration of raw honeys,” J. Food Eng., vol. 178, pp. 151–158.
  19. H. E. Tahir, Z. Xiaobo, S. Tingting, S. Jiyong, and A. A. Mariod, “Near-infrared (NIR) spectroscopy for rapid measurement of antioxidant properties and discrimination of Sudanese honeys from different botanical origin,” Food Analytical Methods, 2016, to be published, doi: .
  20. A. M. González-Paramás, R. J. García-Villanova, J. A. Gómez-Bárez, J. Sánchez Sánchez, and R. Ardanuy Albajar, “Botanic origin of monovarietal dark honeys (from heather, holm, oak, pyrenean oak and sweet chestnut) based on their chromatic characters and amino acid profiles,” Eur. Food Res. Technol., vol. 226, pp. 87–92, 2007.
  21. J. Bong, K. M. Loomes, R. C. Schlothauer and J. M. Stephes, “Fluorescence markers in some New Zealand honeys,” Food Chem., vol. 192, pp. 1006–1014, 2016.
  22. L. Lenhardt, R. Bro, I. Zeković. T. Gramićanin, and M. D. Dramianin, “Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey,” Food Chem., vol. 175, pp. 284–291, 2015.
  23. K. Nikolova, T. Eftimov, and A. Aladjadjiyan, “Fluorescence spectroscopy as a method for quality control of honey,” Adv. Res., vol. 2, pp. 95–108, 2014.
  24. R. Karoui, E. Dufour, J. O. Bosset, and J. De Baerdemaeker, “The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland,” Food Chem., vol. 101, pp. 314–323, 2007.
  25. K. Ruoff, W. Luginbühl, R. Künzli, S. Bogdanov, J. O. Bosset, K. von der Ohe, W. von der Ohe, and R. Amadò, “Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6858–6866, 2006.
  26. K. Ruoff, R. Karoui, E. Dufour, W. Luginbühl, J. O. Bosset, S. Bogdanov, and R. Amadò, “Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study,” J. Agricultural Food Chem., vol. 53, pp. 1343–1347, 2005.
  27. N. Ghosh, Y. Verma, S. K. Majumder, and P. K. Gupta, “A fluorescence spectroscopic study of honey and cane sugar syrup,” Food Sci. Technol. Res., vol. 11, pp. 59–62, 2005.
  28. B. Özbalci, I. H. Boyaci, A. Topcu, C. Kadılar, and U. Tamer, “Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks,” Food Chem., vol. 136, pp. 1444–1452, 2013.
  29. S. Li, Y. Shan, X. Zhu, X. Zhang, and G. Ling, “Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy,” J. Food Composition Anal., vol. 28, pp. 69–74, 2012.
  30. R. Goodacre, B. S. Radovic, and E. Anklam, “Progress toward the rapid nondestructive assessment of the floral origin of European honey using dispersive Raman spectroscopy,” Appl. Spectrosc., vol. 56, pp. 521–527, 2002.
  31. J. A. Fernández Pierna, O. Abbas, P. Dardenne, and V. Baeten, “Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics,” Biotechnol. Agronomical Soc. Environ., vol. 15, pp. 75–84, 2011.
  32. A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris, E. K. Alissandrakis, C. S. Pappas, P. A. Tarantilis, P. C. Harizanis, and M. G. Polissiou, “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” J. Agricultural Food Chem., vol. 53, pp. 207–210, 2005.
  33. L. F. C. de Oliveira, R. Colombara, and H. G. M. Edwards, “Fourier transform Raman spectroscopy of honey,” Appl. Spectrosc., vol. 56, pp. 306–311, 2002.
  34. M. M. Paradkar and J. Irudayaraj, “Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy,” Food Chem., vol. 76, pp. 231–239, 2001.
  35. A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, T. Verschooten, H. Ottevaere, and H. Thienpont, “Raman spectroscopy for distinguishing the composition of table-top artificial sweeteners,” Proceedia Eng., vol. 87, pp. 240–243, 2014.
  36. A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, R. Di Sanzo, S. Carabetta, and M. T. Russo, “Dispersive Raman spectroscopy excited at 1064nm to classify the botanic origin of honeys from Calabria and quantify the sugar profile,” Proc. SPIE, Adv. Environ., Chem, Biol. Sens. Technol., vol. 9486, 2015, Art. No. 94860E.
  37. HPAEC-PAED: DIONEX ICS 3000 by Thermo Scientific [Online]. (2016). Available: http://www.thermoscientific.com/
  38. ICP-OES: Horiba Jobin Yvon ULTIMA 2 by HORIBA Scientific [Online]. (2016). Available: http://www.horiba.com/scientific/
  39. P. J. Larkin, IR and Raman Spectroscopy: Principles and Spectral Interpretation. Waltham MA, USA: Elsevier, 2011.
  40. BRAM-1064-HR by Bayspec, Inc. BRAM-1064-HR [Online]. (2016). San Jose CA, USA. Available: www.bayspec.com
  41. P. Missio da Silva, C. Gauche, L. V. Gonzaga, A. C. Oliveira Costa, and R. Fett, “Honey: Chemical composition, stability and authenticity,” Food Chem., vol. 196, pp. 309–323, 2016.
  42. J. E. Jackson, A User's Guide to Principal Components. Hoboken NJ, USA: Wiley, 2003.
  43. L. A. Berrueta, R. M. Alonso-Salces, and K. Héberger, “Supervised pattern recognition in food analysis,” J. Chromatography A, vol. 1158, pp. 196–214, 2007.
  44. B. G. M. Vandeginste, D. L. Massart, L. C. M. Buydens, S. De Jong, D. J. Lewi and J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics. Amsterdam, the Netherlands: Elsevier, 1998, ch. 33.
  45. S. Wold, M. Sjöström, and L. Erikkson, “PLS-regression: A basic tool for chemometrics,” Chemometrics Intell. Lab. Syst., vol. 58, pp. 109–130, 2001.
  46. Version 10.3 [Online]. (2016). Available: http://www.camo.com/rt/Products/Unscrambler/unscrambler.html
  47. K. H. Esbensen, Multivariate Data Analysis—In Practice. Oslo, Norway: CAMO AS, 2009, pp. 163–164.
  48. Q. Ouyang, Q. Chen, and J. Zhao, “Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 154, pp. 42–46, 2016.
  49. J. H. Cheng and D. W. Sun, “Data fusion and hyperspectral imaging in tandem with least squares-support vector machine for prediction of sensory quality index scores of fish fillet,” LWT-Food Sci. Technol., vol. 63, pp. 892–898, 2015.
  50. R. Ferrer-Gallego, J. M. Hernández-Hierro, J. C. Rivas-Gonzalo, and M. T. Escribano-Bailón, “Evaluation of sensory parameters of grapes using near infrared spectroscopy,” J. Food Eng., vol. 118, pp. 333–339, 2013.
  51. M. I. González-Martín, P. Saveriano-Pérez, I. Revilla, A. M. Vivar-Quintana, J. M. Hernández-Hierro, C. González-Pèrez, and I. A. Lobos-Ortega, “Prediction of sensory attributes of cheese by near-infrared spectroscopy,” Food Chem., vol. 127, pp. 256–263, 2011.
  52. M. C. Ortiz, L. Sarabia, R. García-Rey and M. D. Luque de Castro, “Sensitivity and specificity of PLS-class modelling for five sensory characteristics of dry-cured ham using visible and near infrared spectroscopy,” Analytica Chimica Acta, vol. 558, pp. 125–131, 2006.
  53. Q. Wang, S. M. Lonergan, and C. Yu, “Rapid determination of pork sensory quality using Raman spectroscopy,” Meat Sci., vol. 91, pp. 232–239, 2012.
  54. E-Tongue ASTREE by AlphaMOS [Online]. (2016). Available: http://www.alpha-mos.com/analytical-instruments/astree-electronic-tongue.php
  55. Z. Wei, J. Wang, and W. Liao, “Technique potential for classification of honey by electronic tongue,” J. Food Eng., vol. 94, pp. 260–266, 2009.

2016 (3)

J. Bong, K. M. Loomes, R. C. Schlothauer and J. M. Stephes, “Fluorescence markers in some New Zealand honeys,” Food Chem., vol. 192, pp. 1006–1014, 2016.

Q. Ouyang, Q. Chen, and J. Zhao, “Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 154, pp. 42–46, 2016.

P. Missio da Silva, C. Gauche, L. V. Gonzaga, A. C. Oliveira Costa, and R. Fett, “Honey: Chemical composition, stability and authenticity,” Food Chem., vol. 196, pp. 309–323, 2016.

2015 (4)

J. H. Cheng and D. W. Sun, “Data fusion and hyperspectral imaging in tandem with least squares-support vector machine for prediction of sensory quality index scores of fish fillet,” LWT-Food Sci. Technol., vol. 63, pp. 892–898, 2015.

L. Lenhardt, R. Bro, I. Zeković. T. Gramićanin, and M. D. Dramianin, “Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey,” Food Chem., vol. 175, pp. 284–291, 2015.

J. Riedl, S. Esslinger, and C. Fauhl-Hassek, “Review of validation and reporting on non-targeted fingerprinting approaches for food authentication,” Analytica Chimica Acta, vol. 885, pp. 17–32, 2015.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, R. Di Sanzo, S. Carabetta, and M. T. Russo, “Dispersive Raman spectroscopy excited at 1064nm to classify the botanic origin of honeys from Calabria and quantify the sugar profile,” Proc. SPIE, Adv. Environ., Chem, Biol. Sens. Technol., vol. 9486, 2015, Art. No. 94860E.

2014 (3)

K. Nikolova, T. Eftimov, and A. Aladjadjiyan, “Fluorescence spectroscopy as a method for quality control of honey,” Adv. Res., vol. 2, pp. 95–108, 2014.

A. M. Mouazen and A. Al-Walaan, “Glucose adulteration in Saudi honey with visible and near infrared spectroscopy,” Int. J. Food Properties, vol. 17, pp. 2263–2274, 2014.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, T. Verschooten, H. Ottevaere, and H. Thienpont, “Raman spectroscopy for distinguishing the composition of table-top artificial sweeteners,” Proceedia Eng., vol. 87, pp. 240–243, 2014.

2013 (2)

B. Özbalci, I. H. Boyaci, A. Topcu, C. Kadılar, and U. Tamer, “Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks,” Food Chem., vol. 136, pp. 1444–1452, 2013.

R. Ferrer-Gallego, J. M. Hernández-Hierro, J. C. Rivas-Gonzalo, and M. T. Escribano-Bailón, “Evaluation of sensory parameters of grapes using near infrared spectroscopy,” J. Food Eng., vol. 118, pp. 333–339, 2013.

2012 (4)

S. Li, Y. Shan, X. Zhu, X. Zhang, and G. Ling, “Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy,” J. Food Composition Anal., vol. 28, pp. 69–74, 2012.

Q. Wang, S. M. Lonergan, and C. Yu, “Rapid determination of pork sensory quality using Raman spectroscopy,” Meat Sci., vol. 91, pp. 232–239, 2012.

L. Chen, J. Wang, Z. Ye, J. Zhao, X. Xue, Y. Vander Heyden, and Q. Sun, “Classification of Chinese honeys according to their floral origin by near infrared spectroscopy,” Food Chem., vol. 135, pp. 338–342, 2012.

D. I. Ellis, V. L. Brewster, W. B. Dunn, J. W. Allwood, A. P. Golovanov, and R. Goodacre, “Fingerprinting food: Current technologies for the detection of food adulteration and contamination,” Chem. Soc. Rev., vol. 41, pp. 5569–5868, 2012.

2011 (3)

L. Chen, X. Xue, Z. Ye, J. Zhou, F. Chen, and J. Zhao, “Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy,” Food Chem., vol. 128, pp. 1110–1114, 2011.

J. A. Fernández Pierna, O. Abbas, P. Dardenne, and V. Baeten, “Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics,” Biotechnol. Agronomical Soc. Environ., vol. 15, pp. 75–84, 2011.

M. I. González-Martín, P. Saveriano-Pérez, I. Revilla, A. M. Vivar-Quintana, J. M. Hernández-Hierro, C. González-Pèrez, and I. A. Lobos-Ortega, “Prediction of sensory attributes of cheese by near-infrared spectroscopy,” Food Chem., vol. 127, pp. 256–263, 2011.

2010 (1)

J. Moros, S. Garrigues, and M. de la Guardia, “Vibrational spectroscopy provides a green tool for multi-component analysis,” Trends Analytical Chem., vol. 29, pp. 578–591, 2010.

2009 (2)

T. Woodcock, G. Downey, and C. P. O’Donnell, “Near infrared spectral fingerprinting for confirmation of claimed PDO provenance of honey,” Food Chem., vol. 114, pp. 742–746, 2009.

Z. Wei, J. Wang, and W. Liao, “Technique potential for classification of honey by electronic tongue,” J. Food Eng., vol. 94, pp. 260–266, 2009.

2008 (1)

S. Armenta, S. Garrigues, and M. de la Guardia, “Green analytical chemistry,” Trends Analytical Chem., vol. 27, pp. 497–511, 2008.

2007 (5)

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry,” Eur. Food Res. Technol., vol. 225, pp. 415–423, 2007.

T. Woodcock, G. Downey, J. D. Kelly, and C. O’Donnell, “Geographical classification of honey samples by near-infrared spectroscopy: A feasibility study,” J. Agricultural Food Chem., vol. 55, pp. 9128–9134, 2007.

R. Karoui, E. Dufour, J. O. Bosset, and J. De Baerdemaeker, “The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland,” Food Chem., vol. 101, pp. 314–323, 2007.

L. A. Berrueta, R. M. Alonso-Salces, and K. Héberger, “Supervised pattern recognition in food analysis,” J. Chromatography A, vol. 1158, pp. 196–214, 2007.

A. M. González-Paramás, R. J. García-Villanova, J. A. Gómez-Bárez, J. Sánchez Sánchez, and R. Ardanuy Albajar, “Botanic origin of monovarietal dark honeys (from heather, holm, oak, pyrenean oak and sweet chestnut) based on their chromatic characters and amino acid profiles,” Eur. Food Res. Technol., vol. 226, pp. 87–92, 2007.

2006 (3)

M. C. Ortiz, L. Sarabia, R. García-Rey and M. D. Luque de Castro, “Sensitivity and specificity of PLS-class modelling for five sensory characteristics of dry-cured ham using visible and near infrared spectroscopy,” Analytica Chimica Acta, vol. 558, pp. 125–131, 2006.

K. Ruoff, W. Luginbühl, R. Künzli, S. Bogdanov, J. O. Bosset, K. von der Ohe, W. von der Ohe, and R. Amadò, “Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6858–6866, 2006.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Authentication of the botanical origin of honey by near-infrared spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6867–6872, 2006.

2005 (3)

K. Ruoff, R. Karoui, E. Dufour, W. Luginbühl, J. O. Bosset, S. Bogdanov, and R. Amadò, “Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study,” J. Agricultural Food Chem., vol. 53, pp. 1343–1347, 2005.

N. Ghosh, Y. Verma, S. K. Majumder, and P. K. Gupta, “A fluorescence spectroscopic study of honey and cane sugar syrup,” Food Sci. Technol. Res., vol. 11, pp. 59–62, 2005.

A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris, E. K. Alissandrakis, C. S. Pappas, P. A. Tarantilis, P. C. Harizanis, and M. G. Polissiou, “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” J. Agricultural Food Chem., vol. 53, pp. 207–210, 2005.

2004 (1)

L. Persano Oddo and R. Piro, “Main European unifloral honeys: Descriptive sheets,” Apidologie, vol. 35, pp. S38–S81, 2004.

2003 (1)

G. Downey, V. Fouratier, and J. D. Kelly, “Detection of honey adulteration by addition of fructose and glucose using near infrared transflectance spectroscopy,” J. Near Infrared Spectrosc., vol. 11, pp. 447–456, 2003.

2002 (3)

L. Dvash, O. Afik, S. Shafir, A. Schaffer, Y. Yeselson, A. Dag, and S. Landau, “Determination by near-infrared spectroscopy of perseitol used as a marker for the botanical origin of avocado (Persea Americana Mill.) honey,” J. Agricultural Food Chem., vol. 50, pp. 5283–5287, 2002.

L. F. C. de Oliveira, R. Colombara, and H. G. M. Edwards, “Fourier transform Raman spectroscopy of honey,” Appl. Spectrosc., vol. 56, pp. 306–311, 2002.

R. Goodacre, B. S. Radovic, and E. Anklam, “Progress toward the rapid nondestructive assessment of the floral origin of European honey using dispersive Raman spectroscopy,” Appl. Spectrosc., vol. 56, pp. 521–527, 2002.

2001 (2)

S. Wold, M. Sjöström, and L. Erikkson, “PLS-regression: A basic tool for chemometrics,” Chemometrics Intell. Lab. Syst., vol. 58, pp. 109–130, 2001.

M. M. Paradkar and J. Irudayaraj, “Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy,” Food Chem., vol. 76, pp. 231–239, 2001.

1995 (1)

L. Persano Oddo, M. G. Piazza, A. G. Sabatini, and M. Accorti, “Characterization of unifloral honeys,” Apidologie, vol. 26, pp. 453–465, 1995.

Abbas, O.

J. A. Fernández Pierna, O. Abbas, P. Dardenne, and V. Baeten, “Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics,” Biotechnol. Agronomical Soc. Environ., vol. 15, pp. 75–84, 2011.

Accorti, M.

L. Persano Oddo, M. G. Piazza, A. G. Sabatini, and M. Accorti, “Characterization of unifloral honeys,” Apidologie, vol. 26, pp. 453–465, 1995.

Afik, O.

L. Dvash, O. Afik, S. Shafir, A. Schaffer, Y. Yeselson, A. Dag, and S. Landau, “Determination by near-infrared spectroscopy of perseitol used as a marker for the botanical origin of avocado (Persea Americana Mill.) honey,” J. Agricultural Food Chem., vol. 50, pp. 5283–5287, 2002.

Aladjadjiyan, A.

K. Nikolova, T. Eftimov, and A. Aladjadjiyan, “Fluorescence spectroscopy as a method for quality control of honey,” Adv. Res., vol. 2, pp. 95–108, 2014.

Alissandrakis, E. K.

A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris, E. K. Alissandrakis, C. S. Pappas, P. A. Tarantilis, P. C. Harizanis, and M. G. Polissiou, “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” J. Agricultural Food Chem., vol. 53, pp. 207–210, 2005.

Allwood, J. W.

D. I. Ellis, V. L. Brewster, W. B. Dunn, J. W. Allwood, A. P. Golovanov, and R. Goodacre, “Fingerprinting food: Current technologies for the detection of food adulteration and contamination,” Chem. Soc. Rev., vol. 41, pp. 5569–5868, 2012.

Alonso-Salces, R. M.

L. A. Berrueta, R. M. Alonso-Salces, and K. Héberger, “Supervised pattern recognition in food analysis,” J. Chromatography A, vol. 1158, pp. 196–214, 2007.

Al-Walaan, A.

A. M. Mouazen and A. Al-Walaan, “Glucose adulteration in Saudi honey with visible and near infrared spectroscopy,” Int. J. Food Properties, vol. 17, pp. 2263–2274, 2014.

Amadò, R.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry,” Eur. Food Res. Technol., vol. 225, pp. 415–423, 2007.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Authentication of the botanical origin of honey by near-infrared spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6867–6872, 2006.

K. Ruoff, W. Luginbühl, R. Künzli, S. Bogdanov, J. O. Bosset, K. von der Ohe, W. von der Ohe, and R. Amadò, “Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6858–6866, 2006.

K. Ruoff, R. Karoui, E. Dufour, W. Luginbühl, J. O. Bosset, S. Bogdanov, and R. Amadò, “Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study,” J. Agricultural Food Chem., vol. 53, pp. 1343–1347, 2005.

Anklam, E.

Ardanuy Albajar, R.

A. M. González-Paramás, R. J. García-Villanova, J. A. Gómez-Bárez, J. Sánchez Sánchez, and R. Ardanuy Albajar, “Botanic origin of monovarietal dark honeys (from heather, holm, oak, pyrenean oak and sweet chestnut) based on their chromatic characters and amino acid profiles,” Eur. Food Res. Technol., vol. 226, pp. 87–92, 2007.

Armenta, S.

S. Armenta, S. Garrigues, and M. de la Guardia, “Green analytical chemistry,” Trends Analytical Chem., vol. 27, pp. 497–511, 2008.

Baeten, V.

J. A. Fernández Pierna, O. Abbas, P. Dardenne, and V. Baeten, “Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics,” Biotechnol. Agronomical Soc. Environ., vol. 15, pp. 75–84, 2011.

Batsoulis, A. N.

A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris, E. K. Alissandrakis, C. S. Pappas, P. A. Tarantilis, P. C. Harizanis, and M. G. Polissiou, “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” J. Agricultural Food Chem., vol. 53, pp. 207–210, 2005.

Berrueta, L. A.

L. A. Berrueta, R. M. Alonso-Salces, and K. Héberger, “Supervised pattern recognition in food analysis,” J. Chromatography A, vol. 1158, pp. 196–214, 2007.

Bogdanov, S.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry,” Eur. Food Res. Technol., vol. 225, pp. 415–423, 2007.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Authentication of the botanical origin of honey by near-infrared spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6867–6872, 2006.

K. Ruoff, W. Luginbühl, R. Künzli, S. Bogdanov, J. O. Bosset, K. von der Ohe, W. von der Ohe, and R. Amadò, “Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6858–6866, 2006.

K. Ruoff, R. Karoui, E. Dufour, W. Luginbühl, J. O. Bosset, S. Bogdanov, and R. Amadò, “Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study,” J. Agricultural Food Chem., vol. 53, pp. 1343–1347, 2005.

Bong, J.

J. Bong, K. M. Loomes, R. C. Schlothauer and J. M. Stephes, “Fluorescence markers in some New Zealand honeys,” Food Chem., vol. 192, pp. 1006–1014, 2016.

Bosset, J. O.

R. Karoui, E. Dufour, J. O. Bosset, and J. De Baerdemaeker, “The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland,” Food Chem., vol. 101, pp. 314–323, 2007.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry,” Eur. Food Res. Technol., vol. 225, pp. 415–423, 2007.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Authentication of the botanical origin of honey by near-infrared spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6867–6872, 2006.

K. Ruoff, W. Luginbühl, R. Künzli, S. Bogdanov, J. O. Bosset, K. von der Ohe, W. von der Ohe, and R. Amadò, “Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6858–6866, 2006.

K. Ruoff, R. Karoui, E. Dufour, W. Luginbühl, J. O. Bosset, S. Bogdanov, and R. Amadò, “Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study,” J. Agricultural Food Chem., vol. 53, pp. 1343–1347, 2005.

Boyaci, I. H.

B. Özbalci, I. H. Boyaci, A. Topcu, C. Kadılar, and U. Tamer, “Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks,” Food Chem., vol. 136, pp. 1444–1452, 2013.

Brewster, V. L.

D. I. Ellis, V. L. Brewster, W. B. Dunn, J. W. Allwood, A. P. Golovanov, and R. Goodacre, “Fingerprinting food: Current technologies for the detection of food adulteration and contamination,” Chem. Soc. Rev., vol. 41, pp. 5569–5868, 2012.

Bro, R.

L. Lenhardt, R. Bro, I. Zeković. T. Gramićanin, and M. D. Dramianin, “Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey,” Food Chem., vol. 175, pp. 284–291, 2015.

Buydens, L. C. M.

B. G. M. Vandeginste, D. L. Massart, L. C. M. Buydens, S. De Jong, D. J. Lewi and J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics. Amsterdam, the Netherlands: Elsevier, 1998, ch. 33.

Carabetta, S.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, R. Di Sanzo, S. Carabetta, and M. T. Russo, “Dispersive Raman spectroscopy excited at 1064nm to classify the botanic origin of honeys from Calabria and quantify the sugar profile,” Proc. SPIE, Adv. Environ., Chem, Biol. Sens. Technol., vol. 9486, 2015, Art. No. 94860E.

Chen, F.

L. Chen, X. Xue, Z. Ye, J. Zhou, F. Chen, and J. Zhao, “Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy,” Food Chem., vol. 128, pp. 1110–1114, 2011.

Chen, L.

L. Chen, J. Wang, Z. Ye, J. Zhao, X. Xue, Y. Vander Heyden, and Q. Sun, “Classification of Chinese honeys according to their floral origin by near infrared spectroscopy,” Food Chem., vol. 135, pp. 338–342, 2012.

L. Chen, X. Xue, Z. Ye, J. Zhou, F. Chen, and J. Zhao, “Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy,” Food Chem., vol. 128, pp. 1110–1114, 2011.

Chen, Q.

Q. Ouyang, Q. Chen, and J. Zhao, “Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 154, pp. 42–46, 2016.

Cheng, J. H.

J. H. Cheng and D. W. Sun, “Data fusion and hyperspectral imaging in tandem with least squares-support vector machine for prediction of sensory quality index scores of fish fillet,” LWT-Food Sci. Technol., vol. 63, pp. 892–898, 2015.

Ciaccheri, L.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, R. Di Sanzo, S. Carabetta, and M. T. Russo, “Dispersive Raman spectroscopy excited at 1064nm to classify the botanic origin of honeys from Calabria and quantify the sugar profile,” Proc. SPIE, Adv. Environ., Chem, Biol. Sens. Technol., vol. 9486, 2015, Art. No. 94860E.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, T. Verschooten, H. Ottevaere, and H. Thienpont, “Raman spectroscopy for distinguishing the composition of table-top artificial sweeteners,” Proceedia Eng., vol. 87, pp. 240–243, 2014.

Colombara, R.

Dag, A.

L. Dvash, O. Afik, S. Shafir, A. Schaffer, Y. Yeselson, A. Dag, and S. Landau, “Determination by near-infrared spectroscopy of perseitol used as a marker for the botanical origin of avocado (Persea Americana Mill.) honey,” J. Agricultural Food Chem., vol. 50, pp. 5283–5287, 2002.

Dardenne, P.

J. A. Fernández Pierna, O. Abbas, P. Dardenne, and V. Baeten, “Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics,” Biotechnol. Agronomical Soc. Environ., vol. 15, pp. 75–84, 2011.

De Baerdemaeker, J.

R. Karoui, E. Dufour, J. O. Bosset, and J. De Baerdemaeker, “The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland,” Food Chem., vol. 101, pp. 314–323, 2007.

De Jong, S.

B. G. M. Vandeginste, D. L. Massart, L. C. M. Buydens, S. De Jong, D. J. Lewi and J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics. Amsterdam, the Netherlands: Elsevier, 1998, ch. 33.

de la Guardia, M.

J. Moros, S. Garrigues, and M. de la Guardia, “Vibrational spectroscopy provides a green tool for multi-component analysis,” Trends Analytical Chem., vol. 29, pp. 578–591, 2010.

S. Armenta, S. Garrigues, and M. de la Guardia, “Green analytical chemistry,” Trends Analytical Chem., vol. 27, pp. 497–511, 2008.

M. de la Guardia and S. Garrigues, Eds., Challenges in Green Analytical Chemistry. Cambridge, U.K.: RSC, 2011.

de Oliveira, L. F. C.

Di Sanzo, R.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, R. Di Sanzo, S. Carabetta, and M. T. Russo, “Dispersive Raman spectroscopy excited at 1064nm to classify the botanic origin of honeys from Calabria and quantify the sugar profile,” Proc. SPIE, Adv. Environ., Chem, Biol. Sens. Technol., vol. 9486, 2015, Art. No. 94860E.

Downey, G.

T. Woodcock, G. Downey, and C. P. O’Donnell, “Near infrared spectral fingerprinting for confirmation of claimed PDO provenance of honey,” Food Chem., vol. 114, pp. 742–746, 2009.

T. Woodcock, G. Downey, J. D. Kelly, and C. O’Donnell, “Geographical classification of honey samples by near-infrared spectroscopy: A feasibility study,” J. Agricultural Food Chem., vol. 55, pp. 9128–9134, 2007.

G. Downey, V. Fouratier, and J. D. Kelly, “Detection of honey adulteration by addition of fructose and glucose using near infrared transflectance spectroscopy,” J. Near Infrared Spectrosc., vol. 11, pp. 447–456, 2003.

Dramianin, M. D.

L. Lenhardt, R. Bro, I. Zeković. T. Gramićanin, and M. D. Dramianin, “Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey,” Food Chem., vol. 175, pp. 284–291, 2015.

Dufour, E.

R. Karoui, E. Dufour, J. O. Bosset, and J. De Baerdemaeker, “The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland,” Food Chem., vol. 101, pp. 314–323, 2007.

K. Ruoff, R. Karoui, E. Dufour, W. Luginbühl, J. O. Bosset, S. Bogdanov, and R. Amadò, “Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study,” J. Agricultural Food Chem., vol. 53, pp. 1343–1347, 2005.

Dunn, W. B.

D. I. Ellis, V. L. Brewster, W. B. Dunn, J. W. Allwood, A. P. Golovanov, and R. Goodacre, “Fingerprinting food: Current technologies for the detection of food adulteration and contamination,” Chem. Soc. Rev., vol. 41, pp. 5569–5868, 2012.

Dvash, L.

L. Dvash, O. Afik, S. Shafir, A. Schaffer, Y. Yeselson, A. Dag, and S. Landau, “Determination by near-infrared spectroscopy of perseitol used as a marker for the botanical origin of avocado (Persea Americana Mill.) honey,” J. Agricultural Food Chem., vol. 50, pp. 5283–5287, 2002.

Edwards, H. G. M.

Eftimov, T.

K. Nikolova, T. Eftimov, and A. Aladjadjiyan, “Fluorescence spectroscopy as a method for quality control of honey,” Adv. Res., vol. 2, pp. 95–108, 2014.

Ellis, D. I.

D. I. Ellis, V. L. Brewster, W. B. Dunn, J. W. Allwood, A. P. Golovanov, and R. Goodacre, “Fingerprinting food: Current technologies for the detection of food adulteration and contamination,” Chem. Soc. Rev., vol. 41, pp. 5569–5868, 2012.

Erikkson, L.

S. Wold, M. Sjöström, and L. Erikkson, “PLS-regression: A basic tool for chemometrics,” Chemometrics Intell. Lab. Syst., vol. 58, pp. 109–130, 2001.

Esbensen, K. H.

K. H. Esbensen, Multivariate Data Analysis—In Practice. Oslo, Norway: CAMO AS, 2009, pp. 163–164.

Escribano-Bailón, M. T.

R. Ferrer-Gallego, J. M. Hernández-Hierro, J. C. Rivas-Gonzalo, and M. T. Escribano-Bailón, “Evaluation of sensory parameters of grapes using near infrared spectroscopy,” J. Food Eng., vol. 118, pp. 333–339, 2013.

Esslinger, S.

J. Riedl, S. Esslinger, and C. Fauhl-Hassek, “Review of validation and reporting on non-targeted fingerprinting approaches for food authentication,” Analytica Chimica Acta, vol. 885, pp. 17–32, 2015.

Estermann, B.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry,” Eur. Food Res. Technol., vol. 225, pp. 415–423, 2007.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Authentication of the botanical origin of honey by near-infrared spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6867–6872, 2006.

Fauhl-Hassek, C.

J. Riedl, S. Esslinger, and C. Fauhl-Hassek, “Review of validation and reporting on non-targeted fingerprinting approaches for food authentication,” Analytica Chimica Acta, vol. 885, pp. 17–32, 2015.

Fernández Pierna, J. A.

J. A. Fernández Pierna, O. Abbas, P. Dardenne, and V. Baeten, “Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics,” Biotechnol. Agronomical Soc. Environ., vol. 15, pp. 75–84, 2011.

Ferrer-Gallego, R.

R. Ferrer-Gallego, J. M. Hernández-Hierro, J. C. Rivas-Gonzalo, and M. T. Escribano-Bailón, “Evaluation of sensory parameters of grapes using near infrared spectroscopy,” J. Food Eng., vol. 118, pp. 333–339, 2013.

Fett, R.

P. Missio da Silva, C. Gauche, L. V. Gonzaga, A. C. Oliveira Costa, and R. Fett, “Honey: Chemical composition, stability and authenticity,” Food Chem., vol. 196, pp. 309–323, 2016.

Fouratier, V.

G. Downey, V. Fouratier, and J. D. Kelly, “Detection of honey adulteration by addition of fructose and glucose using near infrared transflectance spectroscopy,” J. Near Infrared Spectrosc., vol. 11, pp. 447–456, 2003.

Gan, Z.

Z. Gan, Y. Yang, J. Li, X. Wen, M. Zhu, Y. Jiang, and Y. Ni, “Using sensor and spectral analysis to classify botanic origin and determine adulteration of raw honeys,” J. Food Eng., vol. 178, pp. 151–158.

García-Rey, R.

M. C. Ortiz, L. Sarabia, R. García-Rey and M. D. Luque de Castro, “Sensitivity and specificity of PLS-class modelling for five sensory characteristics of dry-cured ham using visible and near infrared spectroscopy,” Analytica Chimica Acta, vol. 558, pp. 125–131, 2006.

García-Villanova, R. J.

A. M. González-Paramás, R. J. García-Villanova, J. A. Gómez-Bárez, J. Sánchez Sánchez, and R. Ardanuy Albajar, “Botanic origin of monovarietal dark honeys (from heather, holm, oak, pyrenean oak and sweet chestnut) based on their chromatic characters and amino acid profiles,” Eur. Food Res. Technol., vol. 226, pp. 87–92, 2007.

Garrigues, S.

J. Moros, S. Garrigues, and M. de la Guardia, “Vibrational spectroscopy provides a green tool for multi-component analysis,” Trends Analytical Chem., vol. 29, pp. 578–591, 2010.

S. Armenta, S. Garrigues, and M. de la Guardia, “Green analytical chemistry,” Trends Analytical Chem., vol. 27, pp. 497–511, 2008.

M. de la Guardia and S. Garrigues, Eds., Challenges in Green Analytical Chemistry. Cambridge, U.K.: RSC, 2011.

Gauche, C.

P. Missio da Silva, C. Gauche, L. V. Gonzaga, A. C. Oliveira Costa, and R. Fett, “Honey: Chemical composition, stability and authenticity,” Food Chem., vol. 196, pp. 309–323, 2016.

Ghosh, N.

N. Ghosh, Y. Verma, S. K. Majumder, and P. K. Gupta, “A fluorescence spectroscopic study of honey and cane sugar syrup,” Food Sci. Technol. Res., vol. 11, pp. 59–62, 2005.

Golovanov, A. P.

D. I. Ellis, V. L. Brewster, W. B. Dunn, J. W. Allwood, A. P. Golovanov, and R. Goodacre, “Fingerprinting food: Current technologies for the detection of food adulteration and contamination,” Chem. Soc. Rev., vol. 41, pp. 5569–5868, 2012.

Gómez-Bárez, J. A.

A. M. González-Paramás, R. J. García-Villanova, J. A. Gómez-Bárez, J. Sánchez Sánchez, and R. Ardanuy Albajar, “Botanic origin of monovarietal dark honeys (from heather, holm, oak, pyrenean oak and sweet chestnut) based on their chromatic characters and amino acid profiles,” Eur. Food Res. Technol., vol. 226, pp. 87–92, 2007.

Gonzaga, L. V.

P. Missio da Silva, C. Gauche, L. V. Gonzaga, A. C. Oliveira Costa, and R. Fett, “Honey: Chemical composition, stability and authenticity,” Food Chem., vol. 196, pp. 309–323, 2016.

González-Martín, M. I.

M. I. González-Martín, P. Saveriano-Pérez, I. Revilla, A. M. Vivar-Quintana, J. M. Hernández-Hierro, C. González-Pèrez, and I. A. Lobos-Ortega, “Prediction of sensory attributes of cheese by near-infrared spectroscopy,” Food Chem., vol. 127, pp. 256–263, 2011.

González-Paramás, A. M.

A. M. González-Paramás, R. J. García-Villanova, J. A. Gómez-Bárez, J. Sánchez Sánchez, and R. Ardanuy Albajar, “Botanic origin of monovarietal dark honeys (from heather, holm, oak, pyrenean oak and sweet chestnut) based on their chromatic characters and amino acid profiles,” Eur. Food Res. Technol., vol. 226, pp. 87–92, 2007.

González-Pèrez, C.

M. I. González-Martín, P. Saveriano-Pérez, I. Revilla, A. M. Vivar-Quintana, J. M. Hernández-Hierro, C. González-Pèrez, and I. A. Lobos-Ortega, “Prediction of sensory attributes of cheese by near-infrared spectroscopy,” Food Chem., vol. 127, pp. 256–263, 2011.

Goodacre, R.

D. I. Ellis, V. L. Brewster, W. B. Dunn, J. W. Allwood, A. P. Golovanov, and R. Goodacre, “Fingerprinting food: Current technologies for the detection of food adulteration and contamination,” Chem. Soc. Rev., vol. 41, pp. 5569–5868, 2012.

R. Goodacre, B. S. Radovic, and E. Anklam, “Progress toward the rapid nondestructive assessment of the floral origin of European honey using dispersive Raman spectroscopy,” Appl. Spectrosc., vol. 56, pp. 521–527, 2002.

Gramicanin, T.

L. Lenhardt, R. Bro, I. Zeković. T. Gramićanin, and M. D. Dramianin, “Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey,” Food Chem., vol. 175, pp. 284–291, 2015.

Gupta, P. K.

N. Ghosh, Y. Verma, S. K. Majumder, and P. K. Gupta, “A fluorescence spectroscopic study of honey and cane sugar syrup,” Food Sci. Technol. Res., vol. 11, pp. 59–62, 2005.

Harizanis, P. C.

A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris, E. K. Alissandrakis, C. S. Pappas, P. A. Tarantilis, P. C. Harizanis, and M. G. Polissiou, “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” J. Agricultural Food Chem., vol. 53, pp. 207–210, 2005.

Héberger, K.

L. A. Berrueta, R. M. Alonso-Salces, and K. Héberger, “Supervised pattern recognition in food analysis,” J. Chromatography A, vol. 1158, pp. 196–214, 2007.

Hernández-Hierro, J. M.

R. Ferrer-Gallego, J. M. Hernández-Hierro, J. C. Rivas-Gonzalo, and M. T. Escribano-Bailón, “Evaluation of sensory parameters of grapes using near infrared spectroscopy,” J. Food Eng., vol. 118, pp. 333–339, 2013.

M. I. González-Martín, P. Saveriano-Pérez, I. Revilla, A. M. Vivar-Quintana, J. M. Hernández-Hierro, C. González-Pèrez, and I. A. Lobos-Ortega, “Prediction of sensory attributes of cheese by near-infrared spectroscopy,” Food Chem., vol. 127, pp. 256–263, 2011.

Irudayaraj, J.

M. M. Paradkar and J. Irudayaraj, “Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy,” Food Chem., vol. 76, pp. 231–239, 2001.

Jackson, J. E.

J. E. Jackson, A User's Guide to Principal Components. Hoboken NJ, USA: Wiley, 2003.

Jiang, Y.

Z. Gan, Y. Yang, J. Li, X. Wen, M. Zhu, Y. Jiang, and Y. Ni, “Using sensor and spectral analysis to classify botanic origin and determine adulteration of raw honeys,” J. Food Eng., vol. 178, pp. 151–158.

Jiyong, S.

H. E. Tahir, Z. Xiaobo, S. Tingting, S. Jiyong, and A. A. Mariod, “Near-infrared (NIR) spectroscopy for rapid measurement of antioxidant properties and discrimination of Sudanese honeys from different botanical origin,” Food Analytical Methods, 2016, to be published, doi: .

Kadilar, C.

B. Özbalci, I. H. Boyaci, A. Topcu, C. Kadılar, and U. Tamer, “Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks,” Food Chem., vol. 136, pp. 1444–1452, 2013.

Karoui, R.

R. Karoui, E. Dufour, J. O. Bosset, and J. De Baerdemaeker, “The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland,” Food Chem., vol. 101, pp. 314–323, 2007.

K. Ruoff, R. Karoui, E. Dufour, W. Luginbühl, J. O. Bosset, S. Bogdanov, and R. Amadò, “Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study,” J. Agricultural Food Chem., vol. 53, pp. 1343–1347, 2005.

Kelly, J. D.

T. Woodcock, G. Downey, J. D. Kelly, and C. O’Donnell, “Geographical classification of honey samples by near-infrared spectroscopy: A feasibility study,” J. Agricultural Food Chem., vol. 55, pp. 9128–9134, 2007.

G. Downey, V. Fouratier, and J. D. Kelly, “Detection of honey adulteration by addition of fructose and glucose using near infrared transflectance spectroscopy,” J. Near Infrared Spectrosc., vol. 11, pp. 447–456, 2003.

Kheradmandan, S.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry,” Eur. Food Res. Technol., vol. 225, pp. 415–423, 2007.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Authentication of the botanical origin of honey by near-infrared spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6867–6872, 2006.

Kimbaris, A. C.

A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris, E. K. Alissandrakis, C. S. Pappas, P. A. Tarantilis, P. C. Harizanis, and M. G. Polissiou, “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” J. Agricultural Food Chem., vol. 53, pp. 207–210, 2005.

Künzli, R.

K. Ruoff, W. Luginbühl, R. Künzli, S. Bogdanov, J. O. Bosset, K. von der Ohe, W. von der Ohe, and R. Amadò, “Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6858–6866, 2006.

Landau, S.

L. Dvash, O. Afik, S. Shafir, A. Schaffer, Y. Yeselson, A. Dag, and S. Landau, “Determination by near-infrared spectroscopy of perseitol used as a marker for the botanical origin of avocado (Persea Americana Mill.) honey,” J. Agricultural Food Chem., vol. 50, pp. 5283–5287, 2002.

Larkin, P. J.

P. J. Larkin, IR and Raman Spectroscopy: Principles and Spectral Interpretation. Waltham MA, USA: Elsevier, 2011.

Lenhardt, L.

L. Lenhardt, R. Bro, I. Zeković. T. Gramićanin, and M. D. Dramianin, “Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey,” Food Chem., vol. 175, pp. 284–291, 2015.

Lewi, D. J.

B. G. M. Vandeginste, D. L. Massart, L. C. M. Buydens, S. De Jong, D. J. Lewi and J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics. Amsterdam, the Netherlands: Elsevier, 1998, ch. 33.

Li, J.

Z. Gan, Y. Yang, J. Li, X. Wen, M. Zhu, Y. Jiang, and Y. Ni, “Using sensor and spectral analysis to classify botanic origin and determine adulteration of raw honeys,” J. Food Eng., vol. 178, pp. 151–158.

Li, S.

S. Li, Y. Shan, X. Zhu, X. Zhang, and G. Ling, “Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy,” J. Food Composition Anal., vol. 28, pp. 69–74, 2012.

Liao, W.

Z. Wei, J. Wang, and W. Liao, “Technique potential for classification of honey by electronic tongue,” J. Food Eng., vol. 94, pp. 260–266, 2009.

Ling, G.

S. Li, Y. Shan, X. Zhu, X. Zhang, and G. Ling, “Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy,” J. Food Composition Anal., vol. 28, pp. 69–74, 2012.

Lobos-Ortega, I. A.

M. I. González-Martín, P. Saveriano-Pérez, I. Revilla, A. M. Vivar-Quintana, J. M. Hernández-Hierro, C. González-Pèrez, and I. A. Lobos-Ortega, “Prediction of sensory attributes of cheese by near-infrared spectroscopy,” Food Chem., vol. 127, pp. 256–263, 2011.

Lonergan, S. M.

Q. Wang, S. M. Lonergan, and C. Yu, “Rapid determination of pork sensory quality using Raman spectroscopy,” Meat Sci., vol. 91, pp. 232–239, 2012.

Loomes, K. M.

J. Bong, K. M. Loomes, R. C. Schlothauer and J. M. Stephes, “Fluorescence markers in some New Zealand honeys,” Food Chem., vol. 192, pp. 1006–1014, 2016.

Luginbühl, W.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry,” Eur. Food Res. Technol., vol. 225, pp. 415–423, 2007.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Authentication of the botanical origin of honey by near-infrared spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6867–6872, 2006.

K. Ruoff, W. Luginbühl, R. Künzli, S. Bogdanov, J. O. Bosset, K. von der Ohe, W. von der Ohe, and R. Amadò, “Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6858–6866, 2006.

K. Ruoff, R. Karoui, E. Dufour, W. Luginbühl, J. O. Bosset, S. Bogdanov, and R. Amadò, “Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study,” J. Agricultural Food Chem., vol. 53, pp. 1343–1347, 2005.

Luque de Castro, M. D.

M. C. Ortiz, L. Sarabia, R. García-Rey and M. D. Luque de Castro, “Sensitivity and specificity of PLS-class modelling for five sensory characteristics of dry-cured ham using visible and near infrared spectroscopy,” Analytica Chimica Acta, vol. 558, pp. 125–131, 2006.

Majumder, S. K.

N. Ghosh, Y. Verma, S. K. Majumder, and P. K. Gupta, “A fluorescence spectroscopic study of honey and cane sugar syrup,” Food Sci. Technol. Res., vol. 11, pp. 59–62, 2005.

Mariod, A. A.

H. E. Tahir, Z. Xiaobo, S. Tingting, S. Jiyong, and A. A. Mariod, “Near-infrared (NIR) spectroscopy for rapid measurement of antioxidant properties and discrimination of Sudanese honeys from different botanical origin,” Food Analytical Methods, 2016, to be published, doi: .

Massart, D. L.

B. G. M. Vandeginste, D. L. Massart, L. C. M. Buydens, S. De Jong, D. J. Lewi and J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics. Amsterdam, the Netherlands: Elsevier, 1998, ch. 33.

Mencaglia, A. A.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, R. Di Sanzo, S. Carabetta, and M. T. Russo, “Dispersive Raman spectroscopy excited at 1064nm to classify the botanic origin of honeys from Calabria and quantify the sugar profile,” Proc. SPIE, Adv. Environ., Chem, Biol. Sens. Technol., vol. 9486, 2015, Art. No. 94860E.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, T. Verschooten, H. Ottevaere, and H. Thienpont, “Raman spectroscopy for distinguishing the composition of table-top artificial sweeteners,” Proceedia Eng., vol. 87, pp. 240–243, 2014.

Mignani, A. G.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, R. Di Sanzo, S. Carabetta, and M. T. Russo, “Dispersive Raman spectroscopy excited at 1064nm to classify the botanic origin of honeys from Calabria and quantify the sugar profile,” Proc. SPIE, Adv. Environ., Chem, Biol. Sens. Technol., vol. 9486, 2015, Art. No. 94860E.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, T. Verschooten, H. Ottevaere, and H. Thienpont, “Raman spectroscopy for distinguishing the composition of table-top artificial sweeteners,” Proceedia Eng., vol. 87, pp. 240–243, 2014.

Missio da Silva, P.

P. Missio da Silva, C. Gauche, L. V. Gonzaga, A. C. Oliveira Costa, and R. Fett, “Honey: Chemical composition, stability and authenticity,” Food Chem., vol. 196, pp. 309–323, 2016.

Moros, J.

J. Moros, S. Garrigues, and M. de la Guardia, “Vibrational spectroscopy provides a green tool for multi-component analysis,” Trends Analytical Chem., vol. 29, pp. 578–591, 2010.

Mouazen, A. M.

A. M. Mouazen and A. Al-Walaan, “Glucose adulteration in Saudi honey with visible and near infrared spectroscopy,” Int. J. Food Properties, vol. 17, pp. 2263–2274, 2014.

Ni, Y.

Z. Gan, Y. Yang, J. Li, X. Wen, M. Zhu, Y. Jiang, and Y. Ni, “Using sensor and spectral analysis to classify botanic origin and determine adulteration of raw honeys,” J. Food Eng., vol. 178, pp. 151–158.

Nikolova, K.

K. Nikolova, T. Eftimov, and A. Aladjadjiyan, “Fluorescence spectroscopy as a method for quality control of honey,” Adv. Res., vol. 2, pp. 95–108, 2014.

O’Donnell, C.

T. Woodcock, G. Downey, J. D. Kelly, and C. O’Donnell, “Geographical classification of honey samples by near-infrared spectroscopy: A feasibility study,” J. Agricultural Food Chem., vol. 55, pp. 9128–9134, 2007.

O’Donnell, C. P.

T. Woodcock, G. Downey, and C. P. O’Donnell, “Near infrared spectral fingerprinting for confirmation of claimed PDO provenance of honey,” Food Chem., vol. 114, pp. 742–746, 2009.

Oliveira Costa, A. C.

P. Missio da Silva, C. Gauche, L. V. Gonzaga, A. C. Oliveira Costa, and R. Fett, “Honey: Chemical composition, stability and authenticity,” Food Chem., vol. 196, pp. 309–323, 2016.

Ortiz, M. C.

M. C. Ortiz, L. Sarabia, R. García-Rey and M. D. Luque de Castro, “Sensitivity and specificity of PLS-class modelling for five sensory characteristics of dry-cured ham using visible and near infrared spectroscopy,” Analytica Chimica Acta, vol. 558, pp. 125–131, 2006.

Ottevaere, H.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, T. Verschooten, H. Ottevaere, and H. Thienpont, “Raman spectroscopy for distinguishing the composition of table-top artificial sweeteners,” Proceedia Eng., vol. 87, pp. 240–243, 2014.

Ouyang, Q.

Q. Ouyang, Q. Chen, and J. Zhao, “Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 154, pp. 42–46, 2016.

Özbalci, B.

B. Özbalci, I. H. Boyaci, A. Topcu, C. Kadılar, and U. Tamer, “Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks,” Food Chem., vol. 136, pp. 1444–1452, 2013.

Pappas, C. S.

A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris, E. K. Alissandrakis, C. S. Pappas, P. A. Tarantilis, P. C. Harizanis, and M. G. Polissiou, “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” J. Agricultural Food Chem., vol. 53, pp. 207–210, 2005.

Paradkar, M. M.

M. M. Paradkar and J. Irudayaraj, “Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy,” Food Chem., vol. 76, pp. 231–239, 2001.

Persano Oddo, L.

L. Persano Oddo and R. Piro, “Main European unifloral honeys: Descriptive sheets,” Apidologie, vol. 35, pp. S38–S81, 2004.

L. Persano Oddo, M. G. Piazza, A. G. Sabatini, and M. Accorti, “Characterization of unifloral honeys,” Apidologie, vol. 26, pp. 453–465, 1995.

Piazza, M. G.

L. Persano Oddo, M. G. Piazza, A. G. Sabatini, and M. Accorti, “Characterization of unifloral honeys,” Apidologie, vol. 26, pp. 453–465, 1995.

Piro, R.

L. Persano Oddo and R. Piro, “Main European unifloral honeys: Descriptive sheets,” Apidologie, vol. 35, pp. S38–S81, 2004.

Polissiou, M. G.

A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris, E. K. Alissandrakis, C. S. Pappas, P. A. Tarantilis, P. C. Harizanis, and M. G. Polissiou, “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” J. Agricultural Food Chem., vol. 53, pp. 207–210, 2005.

Radovic, B. S.

Revilla, I.

M. I. González-Martín, P. Saveriano-Pérez, I. Revilla, A. M. Vivar-Quintana, J. M. Hernández-Hierro, C. González-Pèrez, and I. A. Lobos-Ortega, “Prediction of sensory attributes of cheese by near-infrared spectroscopy,” Food Chem., vol. 127, pp. 256–263, 2011.

Riedl, J.

J. Riedl, S. Esslinger, and C. Fauhl-Hassek, “Review of validation and reporting on non-targeted fingerprinting approaches for food authentication,” Analytica Chimica Acta, vol. 885, pp. 17–32, 2015.

Rivas-Gonzalo, J. C.

R. Ferrer-Gallego, J. M. Hernández-Hierro, J. C. Rivas-Gonzalo, and M. T. Escribano-Bailón, “Evaluation of sensory parameters of grapes using near infrared spectroscopy,” J. Food Eng., vol. 118, pp. 333–339, 2013.

Ruoff, K.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry,” Eur. Food Res. Technol., vol. 225, pp. 415–423, 2007.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Authentication of the botanical origin of honey by near-infrared spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6867–6872, 2006.

K. Ruoff, W. Luginbühl, R. Künzli, S. Bogdanov, J. O. Bosset, K. von der Ohe, W. von der Ohe, and R. Amadò, “Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6858–6866, 2006.

K. Ruoff, R. Karoui, E. Dufour, W. Luginbühl, J. O. Bosset, S. Bogdanov, and R. Amadò, “Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study,” J. Agricultural Food Chem., vol. 53, pp. 1343–1347, 2005.

Russo, M. T.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, R. Di Sanzo, S. Carabetta, and M. T. Russo, “Dispersive Raman spectroscopy excited at 1064nm to classify the botanic origin of honeys from Calabria and quantify the sugar profile,” Proc. SPIE, Adv. Environ., Chem, Biol. Sens. Technol., vol. 9486, 2015, Art. No. 94860E.

Sabatini, A. G.

L. Persano Oddo, M. G. Piazza, A. G. Sabatini, and M. Accorti, “Characterization of unifloral honeys,” Apidologie, vol. 26, pp. 453–465, 1995.

Sánchez Sánchez, J.

A. M. González-Paramás, R. J. García-Villanova, J. A. Gómez-Bárez, J. Sánchez Sánchez, and R. Ardanuy Albajar, “Botanic origin of monovarietal dark honeys (from heather, holm, oak, pyrenean oak and sweet chestnut) based on their chromatic characters and amino acid profiles,” Eur. Food Res. Technol., vol. 226, pp. 87–92, 2007.

Sarabia, L.

M. C. Ortiz, L. Sarabia, R. García-Rey and M. D. Luque de Castro, “Sensitivity and specificity of PLS-class modelling for five sensory characteristics of dry-cured ham using visible and near infrared spectroscopy,” Analytica Chimica Acta, vol. 558, pp. 125–131, 2006.

Saveriano-Pérez, P.

M. I. González-Martín, P. Saveriano-Pérez, I. Revilla, A. M. Vivar-Quintana, J. M. Hernández-Hierro, C. González-Pèrez, and I. A. Lobos-Ortega, “Prediction of sensory attributes of cheese by near-infrared spectroscopy,” Food Chem., vol. 127, pp. 256–263, 2011.

Schaffer, A.

L. Dvash, O. Afik, S. Shafir, A. Schaffer, Y. Yeselson, A. Dag, and S. Landau, “Determination by near-infrared spectroscopy of perseitol used as a marker for the botanical origin of avocado (Persea Americana Mill.) honey,” J. Agricultural Food Chem., vol. 50, pp. 5283–5287, 2002.

Schlothauer, R. C.

J. Bong, K. M. Loomes, R. C. Schlothauer and J. M. Stephes, “Fluorescence markers in some New Zealand honeys,” Food Chem., vol. 192, pp. 1006–1014, 2016.

Shafir, S.

L. Dvash, O. Afik, S. Shafir, A. Schaffer, Y. Yeselson, A. Dag, and S. Landau, “Determination by near-infrared spectroscopy of perseitol used as a marker for the botanical origin of avocado (Persea Americana Mill.) honey,” J. Agricultural Food Chem., vol. 50, pp. 5283–5287, 2002.

Shan, Y.

S. Li, Y. Shan, X. Zhu, X. Zhang, and G. Ling, “Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy,” J. Food Composition Anal., vol. 28, pp. 69–74, 2012.

Siatis, N. G.

A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris, E. K. Alissandrakis, C. S. Pappas, P. A. Tarantilis, P. C. Harizanis, and M. G. Polissiou, “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” J. Agricultural Food Chem., vol. 53, pp. 207–210, 2005.

Sjöström, M.

S. Wold, M. Sjöström, and L. Erikkson, “PLS-regression: A basic tool for chemometrics,” Chemometrics Intell. Lab. Syst., vol. 58, pp. 109–130, 2001.

Smeyers-Verbeke, J.

B. G. M. Vandeginste, D. L. Massart, L. C. M. Buydens, S. De Jong, D. J. Lewi and J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics. Amsterdam, the Netherlands: Elsevier, 1998, ch. 33.

Stephes, J. M.

J. Bong, K. M. Loomes, R. C. Schlothauer and J. M. Stephes, “Fluorescence markers in some New Zealand honeys,” Food Chem., vol. 192, pp. 1006–1014, 2016.

Sun, D. W.

J. H. Cheng and D. W. Sun, “Data fusion and hyperspectral imaging in tandem with least squares-support vector machine for prediction of sensory quality index scores of fish fillet,” LWT-Food Sci. Technol., vol. 63, pp. 892–898, 2015.

Sun, Q.

L. Chen, J. Wang, Z. Ye, J. Zhao, X. Xue, Y. Vander Heyden, and Q. Sun, “Classification of Chinese honeys according to their floral origin by near infrared spectroscopy,” Food Chem., vol. 135, pp. 338–342, 2012.

Tahir, H. E.

H. E. Tahir, Z. Xiaobo, S. Tingting, S. Jiyong, and A. A. Mariod, “Near-infrared (NIR) spectroscopy for rapid measurement of antioxidant properties and discrimination of Sudanese honeys from different botanical origin,” Food Analytical Methods, 2016, to be published, doi: .

Tamer, U.

B. Özbalci, I. H. Boyaci, A. Topcu, C. Kadılar, and U. Tamer, “Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks,” Food Chem., vol. 136, pp. 1444–1452, 2013.

Tarantilis, P. A.

A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris, E. K. Alissandrakis, C. S. Pappas, P. A. Tarantilis, P. C. Harizanis, and M. G. Polissiou, “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” J. Agricultural Food Chem., vol. 53, pp. 207–210, 2005.

Thienpont, H.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, T. Verschooten, H. Ottevaere, and H. Thienpont, “Raman spectroscopy for distinguishing the composition of table-top artificial sweeteners,” Proceedia Eng., vol. 87, pp. 240–243, 2014.

Tingting, S.

H. E. Tahir, Z. Xiaobo, S. Tingting, S. Jiyong, and A. A. Mariod, “Near-infrared (NIR) spectroscopy for rapid measurement of antioxidant properties and discrimination of Sudanese honeys from different botanical origin,” Food Analytical Methods, 2016, to be published, doi: .

Topcu, A.

B. Özbalci, I. H. Boyaci, A. Topcu, C. Kadılar, and U. Tamer, “Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks,” Food Chem., vol. 136, pp. 1444–1452, 2013.

Vandeginste, B. G. M.

B. G. M. Vandeginste, D. L. Massart, L. C. M. Buydens, S. De Jong, D. J. Lewi and J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics. Amsterdam, the Netherlands: Elsevier, 1998, ch. 33.

Vander Heyden, Y.

L. Chen, J. Wang, Z. Ye, J. Zhao, X. Xue, Y. Vander Heyden, and Q. Sun, “Classification of Chinese honeys according to their floral origin by near infrared spectroscopy,” Food Chem., vol. 135, pp. 338–342, 2012.

Verma, Y.

N. Ghosh, Y. Verma, S. K. Majumder, and P. K. Gupta, “A fluorescence spectroscopic study of honey and cane sugar syrup,” Food Sci. Technol. Res., vol. 11, pp. 59–62, 2005.

Verschooten, T.

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, T. Verschooten, H. Ottevaere, and H. Thienpont, “Raman spectroscopy for distinguishing the composition of table-top artificial sweeteners,” Proceedia Eng., vol. 87, pp. 240–243, 2014.

Vivar-Quintana, A. M.

M. I. González-Martín, P. Saveriano-Pérez, I. Revilla, A. M. Vivar-Quintana, J. M. Hernández-Hierro, C. González-Pèrez, and I. A. Lobos-Ortega, “Prediction of sensory attributes of cheese by near-infrared spectroscopy,” Food Chem., vol. 127, pp. 256–263, 2011.

von der Ohe, K.

K. Ruoff, W. Luginbühl, R. Künzli, S. Bogdanov, J. O. Bosset, K. von der Ohe, W. von der Ohe, and R. Amadò, “Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6858–6866, 2006.

von der Ohe, W.

K. Ruoff, W. Luginbühl, R. Künzli, S. Bogdanov, J. O. Bosset, K. von der Ohe, W. von der Ohe, and R. Amadò, “Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6858–6866, 2006.

Wang, J.

L. Chen, J. Wang, Z. Ye, J. Zhao, X. Xue, Y. Vander Heyden, and Q. Sun, “Classification of Chinese honeys according to their floral origin by near infrared spectroscopy,” Food Chem., vol. 135, pp. 338–342, 2012.

Z. Wei, J. Wang, and W. Liao, “Technique potential for classification of honey by electronic tongue,” J. Food Eng., vol. 94, pp. 260–266, 2009.

Wang, Q.

Q. Wang, S. M. Lonergan, and C. Yu, “Rapid determination of pork sensory quality using Raman spectroscopy,” Meat Sci., vol. 91, pp. 232–239, 2012.

Wei, Z.

Z. Wei, J. Wang, and W. Liao, “Technique potential for classification of honey by electronic tongue,” J. Food Eng., vol. 94, pp. 260–266, 2009.

Wen, X.

Z. Gan, Y. Yang, J. Li, X. Wen, M. Zhu, Y. Jiang, and Y. Ni, “Using sensor and spectral analysis to classify botanic origin and determine adulteration of raw honeys,” J. Food Eng., vol. 178, pp. 151–158.

Wold, S.

S. Wold, M. Sjöström, and L. Erikkson, “PLS-regression: A basic tool for chemometrics,” Chemometrics Intell. Lab. Syst., vol. 58, pp. 109–130, 2001.

Woodcock, T.

T. Woodcock, G. Downey, and C. P. O’Donnell, “Near infrared spectral fingerprinting for confirmation of claimed PDO provenance of honey,” Food Chem., vol. 114, pp. 742–746, 2009.

T. Woodcock, G. Downey, J. D. Kelly, and C. O’Donnell, “Geographical classification of honey samples by near-infrared spectroscopy: A feasibility study,” J. Agricultural Food Chem., vol. 55, pp. 9128–9134, 2007.

Xiaobo, Z.

H. E. Tahir, Z. Xiaobo, S. Tingting, S. Jiyong, and A. A. Mariod, “Near-infrared (NIR) spectroscopy for rapid measurement of antioxidant properties and discrimination of Sudanese honeys from different botanical origin,” Food Analytical Methods, 2016, to be published, doi: .

Xue, X.

L. Chen, J. Wang, Z. Ye, J. Zhao, X. Xue, Y. Vander Heyden, and Q. Sun, “Classification of Chinese honeys according to their floral origin by near infrared spectroscopy,” Food Chem., vol. 135, pp. 338–342, 2012.

L. Chen, X. Xue, Z. Ye, J. Zhou, F. Chen, and J. Zhao, “Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy,” Food Chem., vol. 128, pp. 1110–1114, 2011.

Yang, Y.

Z. Gan, Y. Yang, J. Li, X. Wen, M. Zhu, Y. Jiang, and Y. Ni, “Using sensor and spectral analysis to classify botanic origin and determine adulteration of raw honeys,” J. Food Eng., vol. 178, pp. 151–158.

Ye, Z.

L. Chen, J. Wang, Z. Ye, J. Zhao, X. Xue, Y. Vander Heyden, and Q. Sun, “Classification of Chinese honeys according to their floral origin by near infrared spectroscopy,” Food Chem., vol. 135, pp. 338–342, 2012.

L. Chen, X. Xue, Z. Ye, J. Zhou, F. Chen, and J. Zhao, “Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy,” Food Chem., vol. 128, pp. 1110–1114, 2011.

Yeselson, Y.

L. Dvash, O. Afik, S. Shafir, A. Schaffer, Y. Yeselson, A. Dag, and S. Landau, “Determination by near-infrared spectroscopy of perseitol used as a marker for the botanical origin of avocado (Persea Americana Mill.) honey,” J. Agricultural Food Chem., vol. 50, pp. 5283–5287, 2002.

Yu, C.

Q. Wang, S. M. Lonergan, and C. Yu, “Rapid determination of pork sensory quality using Raman spectroscopy,” Meat Sci., vol. 91, pp. 232–239, 2012.

Zekovic, I.

L. Lenhardt, R. Bro, I. Zeković. T. Gramićanin, and M. D. Dramianin, “Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey,” Food Chem., vol. 175, pp. 284–291, 2015.

Zhang, X.

S. Li, Y. Shan, X. Zhu, X. Zhang, and G. Ling, “Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy,” J. Food Composition Anal., vol. 28, pp. 69–74, 2012.

Zhao, J.

Q. Ouyang, Q. Chen, and J. Zhao, “Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 154, pp. 42–46, 2016.

L. Chen, J. Wang, Z. Ye, J. Zhao, X. Xue, Y. Vander Heyden, and Q. Sun, “Classification of Chinese honeys according to their floral origin by near infrared spectroscopy,” Food Chem., vol. 135, pp. 338–342, 2012.

L. Chen, X. Xue, Z. Ye, J. Zhou, F. Chen, and J. Zhao, “Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy,” Food Chem., vol. 128, pp. 1110–1114, 2011.

Zhou, J.

L. Chen, X. Xue, Z. Ye, J. Zhou, F. Chen, and J. Zhao, “Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy,” Food Chem., vol. 128, pp. 1110–1114, 2011.

Zhu, M.

Z. Gan, Y. Yang, J. Li, X. Wen, M. Zhu, Y. Jiang, and Y. Ni, “Using sensor and spectral analysis to classify botanic origin and determine adulteration of raw honeys,” J. Food Eng., vol. 178, pp. 151–158.

Zhu, X.

S. Li, Y. Shan, X. Zhu, X. Zhang, and G. Ling, “Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy,” J. Food Composition Anal., vol. 28, pp. 69–74, 2012.

Ziolko, T.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry,” Eur. Food Res. Technol., vol. 225, pp. 415–423, 2007.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Authentication of the botanical origin of honey by near-infrared spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6867–6872, 2006.

Adv. Res. (1)

K. Nikolova, T. Eftimov, and A. Aladjadjiyan, “Fluorescence spectroscopy as a method for quality control of honey,” Adv. Res., vol. 2, pp. 95–108, 2014.

Analytica Chimica Acta (2)

J. Riedl, S. Esslinger, and C. Fauhl-Hassek, “Review of validation and reporting on non-targeted fingerprinting approaches for food authentication,” Analytica Chimica Acta, vol. 885, pp. 17–32, 2015.

M. C. Ortiz, L. Sarabia, R. García-Rey and M. D. Luque de Castro, “Sensitivity and specificity of PLS-class modelling for five sensory characteristics of dry-cured ham using visible and near infrared spectroscopy,” Analytica Chimica Acta, vol. 558, pp. 125–131, 2006.

Apidologie (2)

L. Persano Oddo, M. G. Piazza, A. G. Sabatini, and M. Accorti, “Characterization of unifloral honeys,” Apidologie, vol. 26, pp. 453–465, 1995.

L. Persano Oddo and R. Piro, “Main European unifloral honeys: Descriptive sheets,” Apidologie, vol. 35, pp. S38–S81, 2004.

Appl. Spectrosc. (2)

Biotechnol. Agronomical Soc. Environ. (1)

J. A. Fernández Pierna, O. Abbas, P. Dardenne, and V. Baeten, “Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics,” Biotechnol. Agronomical Soc. Environ., vol. 15, pp. 75–84, 2011.

Chem. Soc. Rev. (1)

D. I. Ellis, V. L. Brewster, W. B. Dunn, J. W. Allwood, A. P. Golovanov, and R. Goodacre, “Fingerprinting food: Current technologies for the detection of food adulteration and contamination,” Chem. Soc. Rev., vol. 41, pp. 5569–5868, 2012.

Chemometrics Intell. Lab. Syst. (1)

S. Wold, M. Sjöström, and L. Erikkson, “PLS-regression: A basic tool for chemometrics,” Chemometrics Intell. Lab. Syst., vol. 58, pp. 109–130, 2001.

Eur. Food Res. Technol. (2)

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry,” Eur. Food Res. Technol., vol. 225, pp. 415–423, 2007.

A. M. González-Paramás, R. J. García-Villanova, J. A. Gómez-Bárez, J. Sánchez Sánchez, and R. Ardanuy Albajar, “Botanic origin of monovarietal dark honeys (from heather, holm, oak, pyrenean oak and sweet chestnut) based on their chromatic characters and amino acid profiles,” Eur. Food Res. Technol., vol. 226, pp. 87–92, 2007.

Food Chem. (10)

J. Bong, K. M. Loomes, R. C. Schlothauer and J. M. Stephes, “Fluorescence markers in some New Zealand honeys,” Food Chem., vol. 192, pp. 1006–1014, 2016.

L. Lenhardt, R. Bro, I. Zeković. T. Gramićanin, and M. D. Dramianin, “Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey,” Food Chem., vol. 175, pp. 284–291, 2015.

B. Özbalci, I. H. Boyaci, A. Topcu, C. Kadılar, and U. Tamer, “Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks,” Food Chem., vol. 136, pp. 1444–1452, 2013.

R. Karoui, E. Dufour, J. O. Bosset, and J. De Baerdemaeker, “The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland,” Food Chem., vol. 101, pp. 314–323, 2007.

M. M. Paradkar and J. Irudayaraj, “Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy,” Food Chem., vol. 76, pp. 231–239, 2001.

L. Chen, J. Wang, Z. Ye, J. Zhao, X. Xue, Y. Vander Heyden, and Q. Sun, “Classification of Chinese honeys according to their floral origin by near infrared spectroscopy,” Food Chem., vol. 135, pp. 338–342, 2012.

L. Chen, X. Xue, Z. Ye, J. Zhou, F. Chen, and J. Zhao, “Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy,” Food Chem., vol. 128, pp. 1110–1114, 2011.

T. Woodcock, G. Downey, and C. P. O’Donnell, “Near infrared spectral fingerprinting for confirmation of claimed PDO provenance of honey,” Food Chem., vol. 114, pp. 742–746, 2009.

P. Missio da Silva, C. Gauche, L. V. Gonzaga, A. C. Oliveira Costa, and R. Fett, “Honey: Chemical composition, stability and authenticity,” Food Chem., vol. 196, pp. 309–323, 2016.

M. I. González-Martín, P. Saveriano-Pérez, I. Revilla, A. M. Vivar-Quintana, J. M. Hernández-Hierro, C. González-Pèrez, and I. A. Lobos-Ortega, “Prediction of sensory attributes of cheese by near-infrared spectroscopy,” Food Chem., vol. 127, pp. 256–263, 2011.

Food Sci. Technol. Res. (1)

N. Ghosh, Y. Verma, S. K. Majumder, and P. K. Gupta, “A fluorescence spectroscopic study of honey and cane sugar syrup,” Food Sci. Technol. Res., vol. 11, pp. 59–62, 2005.

Int. J. Food Properties (1)

A. M. Mouazen and A. Al-Walaan, “Glucose adulteration in Saudi honey with visible and near infrared spectroscopy,” Int. J. Food Properties, vol. 17, pp. 2263–2274, 2014.

J. Agricultural Food Chem. (6)

L. Dvash, O. Afik, S. Shafir, A. Schaffer, Y. Yeselson, A. Dag, and S. Landau, “Determination by near-infrared spectroscopy of perseitol used as a marker for the botanical origin of avocado (Persea Americana Mill.) honey,” J. Agricultural Food Chem., vol. 50, pp. 5283–5287, 2002.

K. Ruoff, W. Luginbühl, S. Bogdanov, J. O. Bosset, B. Estermann, T. Ziolko, S. Kheradmandan, and R. Amadò, “Authentication of the botanical origin of honey by near-infrared spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6867–6872, 2006.

T. Woodcock, G. Downey, J. D. Kelly, and C. O’Donnell, “Geographical classification of honey samples by near-infrared spectroscopy: A feasibility study,” J. Agricultural Food Chem., vol. 55, pp. 9128–9134, 2007.

A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris, E. K. Alissandrakis, C. S. Pappas, P. A. Tarantilis, P. C. Harizanis, and M. G. Polissiou, “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” J. Agricultural Food Chem., vol. 53, pp. 207–210, 2005.

K. Ruoff, W. Luginbühl, R. Künzli, S. Bogdanov, J. O. Bosset, K. von der Ohe, W. von der Ohe, and R. Amadò, “Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy,” J. Agricultural Food Chem., vol. 54, pp. 6858–6866, 2006.

K. Ruoff, R. Karoui, E. Dufour, W. Luginbühl, J. O. Bosset, S. Bogdanov, and R. Amadò, “Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study,” J. Agricultural Food Chem., vol. 53, pp. 1343–1347, 2005.

J. Chromatography A (1)

L. A. Berrueta, R. M. Alonso-Salces, and K. Héberger, “Supervised pattern recognition in food analysis,” J. Chromatography A, vol. 1158, pp. 196–214, 2007.

J. Food Composition Anal. (1)

S. Li, Y. Shan, X. Zhu, X. Zhang, and G. Ling, “Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy,” J. Food Composition Anal., vol. 28, pp. 69–74, 2012.

J. Food Eng. (3)

Z. Gan, Y. Yang, J. Li, X. Wen, M. Zhu, Y. Jiang, and Y. Ni, “Using sensor and spectral analysis to classify botanic origin and determine adulteration of raw honeys,” J. Food Eng., vol. 178, pp. 151–158.

Z. Wei, J. Wang, and W. Liao, “Technique potential for classification of honey by electronic tongue,” J. Food Eng., vol. 94, pp. 260–266, 2009.

R. Ferrer-Gallego, J. M. Hernández-Hierro, J. C. Rivas-Gonzalo, and M. T. Escribano-Bailón, “Evaluation of sensory parameters of grapes using near infrared spectroscopy,” J. Food Eng., vol. 118, pp. 333–339, 2013.

J. Near Infrared Spectrosc. (1)

G. Downey, V. Fouratier, and J. D. Kelly, “Detection of honey adulteration by addition of fructose and glucose using near infrared transflectance spectroscopy,” J. Near Infrared Spectrosc., vol. 11, pp. 447–456, 2003.

LWT-Food Sci. Technol. (1)

J. H. Cheng and D. W. Sun, “Data fusion and hyperspectral imaging in tandem with least squares-support vector machine for prediction of sensory quality index scores of fish fillet,” LWT-Food Sci. Technol., vol. 63, pp. 892–898, 2015.

Meat Sci. (1)

Q. Wang, S. M. Lonergan, and C. Yu, “Rapid determination of pork sensory quality using Raman spectroscopy,” Meat Sci., vol. 91, pp. 232–239, 2012.

Proc. SPIE, Adv. Environ., Chem, Biol. Sens. Technol. (1)

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, R. Di Sanzo, S. Carabetta, and M. T. Russo, “Dispersive Raman spectroscopy excited at 1064nm to classify the botanic origin of honeys from Calabria and quantify the sugar profile,” Proc. SPIE, Adv. Environ., Chem, Biol. Sens. Technol., vol. 9486, 2015, Art. No. 94860E.

Proceedia Eng. (1)

A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, T. Verschooten, H. Ottevaere, and H. Thienpont, “Raman spectroscopy for distinguishing the composition of table-top artificial sweeteners,” Proceedia Eng., vol. 87, pp. 240–243, 2014.

Spectrochim. Acta A, Mol. Biomol. Spectrosc. (1)

Q. Ouyang, Q. Chen, and J. Zhao, “Intelligent sensing sensory quality of Chinese rice wine using near infrared spectroscopy and nonlinear tools,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 154, pp. 42–46, 2016.

Trends Analytical Chem. (2)

J. Moros, S. Garrigues, and M. de la Guardia, “Vibrational spectroscopy provides a green tool for multi-component analysis,” Trends Analytical Chem., vol. 29, pp. 578–591, 2010.

S. Armenta, S. Garrigues, and M. de la Guardia, “Green analytical chemistry,” Trends Analytical Chem., vol. 27, pp. 497–511, 2008.

Other (12)

[Online]. (2016). Available: http://www.apimondia.com/en

M. de la Guardia and S. Garrigues, Eds., Challenges in Green Analytical Chemistry. Cambridge, U.K.: RSC, 2011.

H. E. Tahir, Z. Xiaobo, S. Tingting, S. Jiyong, and A. A. Mariod, “Near-infrared (NIR) spectroscopy for rapid measurement of antioxidant properties and discrimination of Sudanese honeys from different botanical origin,” Food Analytical Methods, 2016, to be published, doi: .

HPAEC-PAED: DIONEX ICS 3000 by Thermo Scientific [Online]. (2016). Available: http://www.thermoscientific.com/

ICP-OES: Horiba Jobin Yvon ULTIMA 2 by HORIBA Scientific [Online]. (2016). Available: http://www.horiba.com/scientific/

P. J. Larkin, IR and Raman Spectroscopy: Principles and Spectral Interpretation. Waltham MA, USA: Elsevier, 2011.

BRAM-1064-HR by Bayspec, Inc. BRAM-1064-HR [Online]. (2016). San Jose CA, USA. Available: www.bayspec.com

Version 10.3 [Online]. (2016). Available: http://www.camo.com/rt/Products/Unscrambler/unscrambler.html

K. H. Esbensen, Multivariate Data Analysis—In Practice. Oslo, Norway: CAMO AS, 2009, pp. 163–164.

B. G. M. Vandeginste, D. L. Massart, L. C. M. Buydens, S. De Jong, D. J. Lewi and J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics. Amsterdam, the Netherlands: Elsevier, 1998, ch. 33.

J. E. Jackson, A User's Guide to Principal Components. Hoboken NJ, USA: Wiley, 2003.

E-Tongue ASTREE by AlphaMOS [Online]. (2016). Available: http://www.alpha-mos.com/analytical-instruments/astree-electronic-tongue.php

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.