Abstract

Visible light communication (VLC) systems have typically operated at data rates below 10 Gb/s and operation at this data rate was shown to be feasible by using laser diodes (LDs), imaging receivers and delay adaptation techniques (DAT imaging LDs-VLC). However, higher data rates, beyond 10 Gb/s, are challenging due to the low signal to noise ratio (SNR) and inter symbol interference (ISI). In this paper, for the first time, to the best of our knowledge, we propose, design, and evaluate a VLC system that employs beam steering (of part of the VLC beam) using adaptive finite vocabulary of holograms in conjunction with an imaging receiver and a DAT to enhance SNR and to mitigate the impact of ISI at high data rates (20 Gb/s). An algorithm was used to estimate the receiver location, so that part of the white light can be directed towards a desired target (receiver) using beam steering to improve SNR. Simulation results of our location estimation algorithm (LEA) indicated that the required time to estimate the position of the VLC receiver is typically within 224 ms in our system and environment. A finite vocabulary of stored holograms is introduced to reduce the computation time required by LEA to identify the best location to steer the beam to the receiver location. The beam steering approach improved the SNR of the fully adaptive VLC system by 15 dB at high data rates (20 Gb/s) over the DAT imaging LDs-VLC system in the worst-case scenario. In addition, we examined our new proposed system in a very harsh environment with mobility. The results showed that our proposed VLC system has strong robustness against shadowing, signal blockage, and mobility.

© 2015 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. O Brien, L. Zeng, H. L. Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proc. IEEE 19th Int. Symp. Pers. Indoor Mobile Radio Commun., 2008, pp. 1–5.
  2. A. T. Hussein and J. M. H. Elmirghani, “A Survey of optical and terahertz (THz) wireless communication systems,” IEEE Commun. Surveys Tuts., 2015, to be published.
  3. P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput. Commun. Appl. Conf., 2012, pp. 315–355.
  4. K. K. Wong and T. O’Farrell, “Spread spectrum techniques for indoor wireless IR communications,” IEEE Wireless Commun., vol. 10, no. 2, pp. 54–63, 2003.
  5. D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.
  6. S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge, U.K.: Cambridge Univ. Press, 2015.
  7. T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun., vol. 61, no. 2, pp. 733–742, 2013.
  8. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. 501–506, 2012.
  9. A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Exp., vol. 19, no. 104, pp. 982–990, 2011.
  10. K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.
  11. D. S. Weber, A. Buck, and D. C. Amann, “Laser light in the BMW i8 design, system integration and test,” ATZ Worldwide, vol. 116, no. 9, pp. 44–49, 2014.
  12. A. T. Hussein and J. M. H. Elmirghani, “Mobile multi-gigabit visible light communication system employing laser diodes, imaging receivers and delay adaptation technique in realistic indoor environment,” J. Lightw. Technol., vol. 33, no. 15, pp. 3293–3307, 2015.
  13. A. T. Hussein and J. M. H. Elmirghani, “High-Speed indoor visible light communication system employing laser diodes and angle diversity receivers,” presented at the 17th Int. Conf. Transparent Optical Networks, Budapest, Hungary, 2015.
  14. A. T. Hussein and J. M. H. Elmirghani, “Performance evaluation of multi-gigabit indoor visible light communication system,” presented at the 20th European Conf. Networks Optical Communications, London, U.K., 2015.
  15. A. T. Hussein and J. M. H. Elmirghani, “10 Gbps Mobile visible light communication system employing angle diversity, imaging receivers and relay nodes,” J. Opt. Commun. Netw., vol. 7, no. 8, pp. 718–735, 2015.
  16. D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Exp., vol. 23, no. 2, pp. 1627–1637, 2015.
  17. C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.
  18. M. T. Alresheedi and J. M. H. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1328–1340, 2011.
  19. F. E. Alsaadi and J. M. H. Elmirghani, “High-speed spot diffusing mobile optical wireless system employing beam angle and power adaptation and imaging receivers,” J. Lightw. Technol., vol. 28, no. 16, pp. 2191–2206, 2010.
  20. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett., vol. 21, no. 9, pp. 689–691, 1996.
  21. L. Wu, Z. Zhang, and H. Liu, “Transmit beamforming for MIMO optical wireless communication systems,” Wireless Pers. Commun., vol. 78, no. 1, pp 615–628, 2014.
  22. S.-M. Kim and S.-M. Kim, “Wireless optical energy transmission using optical beamforming,” Opt. Eng., vol. 2, no. 4, pp. 205–210, 2013.
  23. Visible Light Communication System: Nakagawa Group. (2010). Available. [Online]. http://www.youtube.com/watch?v = QEh5f49LsB4
  24. K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett., vol. 48, no. 4, pp. 228–230, 2012.
  25. S. Jung, S. Hann, and C. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, 2011.
  26. W. Zhang and M. Kavehrad, “Comparison of VLC-based indoor positioning techniques,” Broadband Access Commun. Technol., vol. 86, no. 45, pp. 226–232, 2013.
  27. M. T. Alresheedi and J.M.H. Elmirghani, “High-speed indoor optical wireless links employing fast angle and power adaptive computer-generated holograms with imaging receivers,” IEEE J. Commun., 2015, submitted for publication.
  28. M. T. Alresheedi and J. M. H. Elmirghan, “Hologram selection in realistic indoor optical wireless systems with angle diversity receivers,” IEEE J. Opt. Commun. Netw., vol. 7, no. 8, pp. 797–813, 2015.
  29. F. E. Alsaadi, M. A. Alhartomi, and J. M. H. Elmirghani, “Fast and efficient adaptation algorithms for multi-gigabit wireless infrared systems,” J. Lightw. Technol., vol. 31, no. 23, pp. 3735–3751, 2013.
  30. F. E. Alsaadi and J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1663–1675, 2009.
  31. P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, 2000.
  32. M. T. Alresheedi and J. M. H. Elmirghani, “10 Gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with imaging detection,” J. Lightw. Technol., vol. 30, no. 12, pp. 1843–1856, 2012.
  33. F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.
  34. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.
  35. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 22, pp. 367–379, 1993.
  36. Lighting of Indoor Work Places, European Standard EN 12464-1 [Online] Available: http://www.etaplighting.com/uploadedFiles/Downloadable_documentation/documentatie/EN12464_E_OK.pdf
  37. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.
  38. A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, 2004.
  39. M. Biagi, T. Borogovac, and T. D. C. Little, “Adaptive receiver for indoor visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3676–3686, 2013.
  40. A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, 2004.
  41. M. A. Alhartomi, F. E. Alsaadi, and J. M. H. Elmirghani, “Mobile optical wireless system using fast beam Angle, delay and power adaptation with angle diversity receivers,” in Proc. 14th Int. Conf. Transparent Opt. Netw., 2012, pp. 1–5.
  42. J. M. Senior and M. Y. Jamro, Optical Fiber Communications: Principles Practice, 3rd ed. New York, NY, USA: Pearson, 2009.
  43. J. A. Gimlett, “new low noise 16 GHz PIN/HEMT optical receiver,” in Proc. 14th Eur. Conf. Opt. Commun., vol. 1, no. 292, pp. 13–16, 1988.
  44. F. E. Alsaadi and J. M. H. Elmirghani, “Beam power and angle adaptation in multibeam 2.5 gbit/s spot diffusing mobile optical wireless system,” IEEE J. Sel. Areas Commun., vol. 28, no. 6, pp. 913–927, 2010.
  45. IEEE Standard Local Metropolitan Area Netw.-Part 15.7: Short-Range Wireless Opt. Commun. Using Visible Light, pp. 1–309, 2011.
  46. M. Biagi, S. Pergoloni, and A. M. Vegni, “LAST: A framework to localize, access, schedule and transmit in indoor VLC systems,” IEEE J. Lightw. Technol., vol. 33, no. 9, pp. 1872–1887, 2015.
  47. J. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt., vol. 39, no. 10, pp. 1549–1554, 2000.
  48. (Jul. 15, 2015). Spatial Light Modulators. [Online]. Available: http://holoeye.com/wp-content/uploads/Spatial_Light_Modulators.pdf.
  49. M. Tolstrup, “Indoor radio planning: A practical guide for GSM, DCS, UMTS, HSPA and LTE,” Hoboken, NJ, USA: Wiley, 2011.
  50. P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, 2002.
  51. P. Carnevali, L. Coletti, and S. Patarnello, “Image processing by simulated annealing,” IBM J. Res. Develop., vol. 29, no. 6, pp. 569–579, 1985.
  52. M. A. Seldowitz, J. P. Allebach, and D. E. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt., vol. 26, pp. 2788–2798, 1987.
  53. A. P. Tang, J. M. Kahn, and H. Keang-Po, “Wireless infrared communication links using multi-beam transmitters and imaging receivers,” in Proc. IEEE Int. Conf. Commun. Converging Technol. Tomorrow's Appl., 1996, pp. 180–186.
  54. A. G. Al-Ghamdi, and J.M.H. Elmirghani, “Performance comparison of LSMS and conventional diffuse and hybrid optical wireless techniques in a real indoor environment,” Proc. IEE Optoelectron., vol. 152, no. 4, pp. 230–238, 2005.
  55. S. D. Personick, “Receiver design for digital fiber optical communication system, Part I and II,” J. Bell Syst. Technol., vol. 52, no. 6, pp. 843–886, 1973.
  56. (Jul. 15, 2015). 40 GB/s optical transponder [Online]. Available: http://onelink.finisar.com/sites/default/files/pdf/54TRAAV2GPL-40G-SFF-NRZ-Transponder-product-brief-RevA.pdf.
  57. G. W. Marsh and J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization,” IEEE Photon Technol. Lett., vol. 6, no. 10, pp. 1268–1270, 1994.
  58. T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2892–2900, 2009.
  59. A. Georgiou, T. D. Wilkinson, N. Collings, and W. A. Crossland, “Algorithm for computing spot-generating holograms,” J. Opt. A, Pure Appl. Opt., vol. 10, no. 1, p. 015306, 2008.

2015 (7)

M. T. Alresheedi and J. M. H. Elmirghan, “Hologram selection in realistic indoor optical wireless systems with angle diversity receivers,” IEEE J. Opt. Commun. Netw., vol. 7, no. 8, pp. 797–813, 2015.

M. Biagi, S. Pergoloni, and A. M. Vegni, “LAST: A framework to localize, access, schedule and transmit in indoor VLC systems,” IEEE J. Lightw. Technol., vol. 33, no. 9, pp. 1872–1887, 2015.

A. T. Hussein and J. M. H. Elmirghani, “A Survey of optical and terahertz (THz) wireless communication systems,” IEEE Commun. Surveys Tuts., 2015, to be published.

A. T. Hussein and J. M. H. Elmirghani, “Mobile multi-gigabit visible light communication system employing laser diodes, imaging receivers and delay adaptation technique in realistic indoor environment,” J. Lightw. Technol., vol. 33, no. 15, pp. 3293–3307, 2015.

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Exp., vol. 23, no. 2, pp. 1627–1637, 2015.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.

A. T. Hussein and J. M. H. Elmirghani, “10 Gbps Mobile visible light communication system employing angle diversity, imaging receivers and relay nodes,” J. Opt. Commun. Netw., vol. 7, no. 8, pp. 718–735, 2015.

2014 (3)

D. S. Weber, A. Buck, and D. C. Amann, “Laser light in the BMW i8 design, system integration and test,” ATZ Worldwide, vol. 116, no. 9, pp. 44–49, 2014.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

L. Wu, Z. Zhang, and H. Liu, “Transmit beamforming for MIMO optical wireless communication systems,” Wireless Pers. Commun., vol. 78, no. 1, pp 615–628, 2014.

2013 (6)

S.-M. Kim and S.-M. Kim, “Wireless optical energy transmission using optical beamforming,” Opt. Eng., vol. 2, no. 4, pp. 205–210, 2013.

F. E. Alsaadi, M. A. Alhartomi, and J. M. H. Elmirghani, “Fast and efficient adaptation algorithms for multi-gigabit wireless infrared systems,” J. Lightw. Technol., vol. 31, no. 23, pp. 3735–3751, 2013.

W. Zhang and M. Kavehrad, “Comparison of VLC-based indoor positioning techniques,” Broadband Access Commun. Technol., vol. 86, no. 45, pp. 226–232, 2013.

M. Biagi, T. Borogovac, and T. D. C. Little, “Adaptive receiver for indoor visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3676–3686, 2013.

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun., vol. 61, no. 2, pp. 733–742, 2013.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

2012 (3)

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. 501–506, 2012.

M. T. Alresheedi and J. M. H. Elmirghani, “10 Gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with imaging detection,” J. Lightw. Technol., vol. 30, no. 12, pp. 1843–1856, 2012.

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett., vol. 48, no. 4, pp. 228–230, 2012.

2011 (3)

S. Jung, S. Hann, and C. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, 2011.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Exp., vol. 19, no. 104, pp. 982–990, 2011.

M. T. Alresheedi and J. M. H. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1328–1340, 2011.

2010 (2)

F. E. Alsaadi and J. M. H. Elmirghani, “High-speed spot diffusing mobile optical wireless system employing beam angle and power adaptation and imaging receivers,” J. Lightw. Technol., vol. 28, no. 16, pp. 2191–2206, 2010.

F. E. Alsaadi and J. M. H. Elmirghani, “Beam power and angle adaptation in multibeam 2.5 gbit/s spot diffusing mobile optical wireless system,” IEEE J. Sel. Areas Commun., vol. 28, no. 6, pp. 913–927, 2010.

2009 (2)

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2892–2900, 2009.

F. E. Alsaadi and J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1663–1675, 2009.

2008 (1)

A. Georgiou, T. D. Wilkinson, N. Collings, and W. A. Crossland, “Algorithm for computing spot-generating holograms,” J. Opt. A, Pure Appl. Opt., vol. 10, no. 1, p. 015306, 2008.

2005 (1)

A. G. Al-Ghamdi, and J.M.H. Elmirghani, “Performance comparison of LSMS and conventional diffuse and hybrid optical wireless techniques in a real indoor environment,” Proc. IEE Optoelectron., vol. 152, no. 4, pp. 230–238, 2005.

2004 (3)

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, 2004.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, 2004.

2003 (1)

K. K. Wong and T. O’Farrell, “Spread spectrum techniques for indoor wireless IR communications,” IEEE Wireless Commun., vol. 10, no. 2, pp. 54–63, 2003.

2002 (1)

P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, 2002.

2000 (2)

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, 2000.

J. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt., vol. 39, no. 10, pp. 1549–1554, 2000.

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

1996 (1)

1994 (1)

G. W. Marsh and J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization,” IEEE Photon Technol. Lett., vol. 6, no. 10, pp. 1268–1270, 1994.

1993 (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 22, pp. 367–379, 1993.

1987 (1)

1985 (1)

P. Carnevali, L. Coletti, and S. Patarnello, “Image processing by simulated annealing,” IBM J. Res. Develop., vol. 29, no. 6, pp. 569–579, 1985.

1979 (1)

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

1973 (1)

S. D. Personick, “Receiver design for digital fiber optical communication system, Part I and II,” J. Bell Syst. Technol., vol. 52, no. 6, pp. 843–886, 1973.

Al-Ghamdi, A. G.

A. G. Al-Ghamdi, and J.M.H. Elmirghani, “Performance comparison of LSMS and conventional diffuse and hybrid optical wireless techniques in a real indoor environment,” Proc. IEE Optoelectron., vol. 152, no. 4, pp. 230–238, 2005.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, 2004.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, 2004.

Alhartomi, M. A.

F. E. Alsaadi, M. A. Alhartomi, and J. M. H. Elmirghani, “Fast and efficient adaptation algorithms for multi-gigabit wireless infrared systems,” J. Lightw. Technol., vol. 31, no. 23, pp. 3735–3751, 2013.

M. A. Alhartomi, F. E. Alsaadi, and J. M. H. Elmirghani, “Mobile optical wireless system using fast beam Angle, delay and power adaptation with angle diversity receivers,” in Proc. 14th Int. Conf. Transparent Opt. Netw., 2012, pp. 1–5.

Allebach, J. P.

Alresheedi, M. T.

M. T. Alresheedi and J. M. H. Elmirghan, “Hologram selection in realistic indoor optical wireless systems with angle diversity receivers,” IEEE J. Opt. Commun. Netw., vol. 7, no. 8, pp. 797–813, 2015.

M. T. Alresheedi and J. M. H. Elmirghani, “10 Gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with imaging detection,” J. Lightw. Technol., vol. 30, no. 12, pp. 1843–1856, 2012.

M. T. Alresheedi and J. M. H. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1328–1340, 2011.

M. T. Alresheedi and J.M.H. Elmirghani, “High-speed indoor optical wireless links employing fast angle and power adaptive computer-generated holograms with imaging receivers,” IEEE J. Commun., 2015, submitted for publication.

Alsaadi, F. E.

F. E. Alsaadi, M. A. Alhartomi, and J. M. H. Elmirghani, “Fast and efficient adaptation algorithms for multi-gigabit wireless infrared systems,” J. Lightw. Technol., vol. 31, no. 23, pp. 3735–3751, 2013.

F. E. Alsaadi and J. M. H. Elmirghani, “Beam power and angle adaptation in multibeam 2.5 gbit/s spot diffusing mobile optical wireless system,” IEEE J. Sel. Areas Commun., vol. 28, no. 6, pp. 913–927, 2010.

F. E. Alsaadi and J. M. H. Elmirghani, “High-speed spot diffusing mobile optical wireless system employing beam angle and power adaptation and imaging receivers,” J. Lightw. Technol., vol. 28, no. 16, pp. 2191–2206, 2010.

F. E. Alsaadi and J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1663–1675, 2009.

M. A. Alhartomi, F. E. Alsaadi, and J. M. H. Elmirghani, “Mobile optical wireless system using fast beam Angle, delay and power adaptation with angle diversity receivers,” in Proc. 14th Int. Conf. Transparent Opt. Netw., 2012, pp. 1–5.

Amann, D. C.

D. S. Weber, A. Buck, and D. C. Amann, “Laser light in the BMW i8 design, system integration and test,” ATZ Worldwide, vol. 116, no. 9, pp. 44–49, 2014.

Armstrong, J.

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett., vol. 48, no. 4, pp. 228–230, 2012.

Bapst, U.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 22, pp. 367–379, 1993.

Bentley, E.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput. Commun. Appl. Conf., 2012, pp. 315–355.

Biagi, M.

M. Biagi, S. Pergoloni, and A. M. Vegni, “LAST: A framework to localize, access, schedule and transmit in indoor VLC systems,” IEEE J. Lightw. Technol., vol. 33, no. 9, pp. 1872–1887, 2015.

M. Biagi, T. Borogovac, and T. D. C. Little, “Adaptive receiver for indoor visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3676–3686, 2013.

Borogovac, T.

M. Biagi, T. Borogovac, and T. D. C. Little, “Adaptive receiver for indoor visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3676–3686, 2013.

Bowers, J. E.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.

Brien, D. C. O

D. C. O Brien, L. Zeng, H. L. Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proc. IEEE 19th Int. Symp. Pers. Indoor Mobile Radio Commun., 2008, pp. 1–5.

Brueck, S.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Exp., vol. 19, no. 104, pp. 982–990, 2011.

Buck, A.

D. S. Weber, A. Buck, and D. C. Amann, “Laser light in the BMW i8 design, system integration and test,” ATZ Worldwide, vol. 116, no. 9, pp. 44–49, 2014.

Cantore, M.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

Carnevali, P.

P. Carnevali, L. Coletti, and S. Patarnello, “Image processing by simulated annealing,” IBM J. Res. Develop., vol. 29, no. 6, pp. 569–579, 1985.

Chao, L.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput. Commun. Appl. Conf., 2012, pp. 315–355.

Choudhury, P.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. 501–506, 2012.

Chun, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

Ciaramella, E.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. 501–506, 2012.

Coletti, L.

P. Carnevali, L. Coletti, and S. Patarnello, “Image processing by simulated annealing,” IBM J. Res. Develop., vol. 29, no. 6, pp. 569–579, 1985.

Collings, N.

A. Georgiou, T. D. Wilkinson, N. Collings, and W. A. Crossland, “Algorithm for computing spot-generating holograms,” J. Opt. A, Pure Appl. Opt., vol. 10, no. 1, p. 015306, 2008.

Corsini, R.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. 501–506, 2012.

Cossu, G.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. 501–506, 2012.

Cottrell, D. M.

Crossland, W. A.

A. Georgiou, T. D. Wilkinson, N. Collings, and W. A. Crossland, “Algorithm for computing spot-generating holograms,” J. Opt. A, Pure Appl. Opt., vol. 10, no. 1, p. 015306, 2008.

Davis, J.

Davis, W.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Exp., vol. 19, no. 104, pp. 982–990, 2011.

Dawson, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

Denault, K. A.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

DenBaars, S. P.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

Dimitrov, S.

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge, U.K.: Cambridge Univ. Press, 2015.

Djahani, P.

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, 2000.

Dorschner, T. A.

Elmirghan, J. M. H.

M. T. Alresheedi and J. M. H. Elmirghan, “Hologram selection in realistic indoor optical wireless systems with angle diversity receivers,” IEEE J. Opt. Commun. Netw., vol. 7, no. 8, pp. 797–813, 2015.

Elmirghani, J. M. H.

A. T. Hussein and J. M. H. Elmirghani, “Mobile multi-gigabit visible light communication system employing laser diodes, imaging receivers and delay adaptation technique in realistic indoor environment,” J. Lightw. Technol., vol. 33, no. 15, pp. 3293–3307, 2015.

A. T. Hussein and J. M. H. Elmirghani, “10 Gbps Mobile visible light communication system employing angle diversity, imaging receivers and relay nodes,” J. Opt. Commun. Netw., vol. 7, no. 8, pp. 718–735, 2015.

A. T. Hussein and J. M. H. Elmirghani, “A Survey of optical and terahertz (THz) wireless communication systems,” IEEE Commun. Surveys Tuts., 2015, to be published.

F. E. Alsaadi, M. A. Alhartomi, and J. M. H. Elmirghani, “Fast and efficient adaptation algorithms for multi-gigabit wireless infrared systems,” J. Lightw. Technol., vol. 31, no. 23, pp. 3735–3751, 2013.

M. T. Alresheedi and J. M. H. Elmirghani, “10 Gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with imaging detection,” J. Lightw. Technol., vol. 30, no. 12, pp. 1843–1856, 2012.

M. T. Alresheedi and J. M. H. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1328–1340, 2011.

F. E. Alsaadi and J. M. H. Elmirghani, “High-speed spot diffusing mobile optical wireless system employing beam angle and power adaptation and imaging receivers,” J. Lightw. Technol., vol. 28, no. 16, pp. 2191–2206, 2010.

F. E. Alsaadi and J. M. H. Elmirghani, “Beam power and angle adaptation in multibeam 2.5 gbit/s spot diffusing mobile optical wireless system,” IEEE J. Sel. Areas Commun., vol. 28, no. 6, pp. 913–927, 2010.

F. E. Alsaadi and J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1663–1675, 2009.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, 2004.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, 2004.

M. A. Alhartomi, F. E. Alsaadi, and J. M. H. Elmirghani, “Mobile optical wireless system using fast beam Angle, delay and power adaptation with angle diversity receivers,” in Proc. 14th Int. Conf. Transparent Opt. Netw., 2012, pp. 1–5.

A. T. Hussein and J. M. H. Elmirghani, “Performance evaluation of multi-gigabit indoor visible light communication system,” presented at the 20th European Conf. Networks Optical Communications, London, U.K., 2015.

A. T. Hussein and J. M. H. Elmirghani, “High-Speed indoor visible light communication system employing laser diodes and angle diversity receivers,” presented at the 17th Int. Conf. Transparent Optical Networks, Budapest, Hungary, 2015.

Elmirghani, J.M.H.

A. G. Al-Ghamdi, and J.M.H. Elmirghani, “Performance comparison of LSMS and conventional diffuse and hybrid optical wireless techniques in a real indoor environment,” Proc. IEE Optoelectron., vol. 152, no. 4, pp. 230–238, 2005.

M. T. Alresheedi and J.M.H. Elmirghani, “High-speed indoor optical wireless links employing fast angle and power adaptive computer-generated holograms with imaging receivers,” IEEE J. Commun., 2015, submitted for publication.

Farrell, R. M.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.

Fath, T.

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun., vol. 61, no. 2, pp. 733–742, 2013.

Faulkner, G.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

D. C. O Brien, L. Zeng, H. L. Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proc. IEEE 19th Int. Symp. Pers. Indoor Mobile Radio Commun., 2008, pp. 1–5.

Friedman, L. J.

Georgiou, A.

A. Georgiou, T. D. Wilkinson, N. Collings, and W. A. Crossland, “Algorithm for computing spot-generating holograms,” J. Opt. A, Pure Appl. Opt., vol. 10, no. 1, p. 015306, 2008.

Gfeller, F. R.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

Ghassemlooy, Z.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput. Commun. Appl. Conf., 2012, pp. 315–355.

Gimlett, J. A.

J. A. Gimlett, “new low noise 16 GHz PIN/HEMT optical receiver,” in Proc. 14th Eur. Conf. Opt. Commun., vol. 1, no. 292, pp. 13–16, 1988.

Gu, E.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

Haas, H.

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Exp., vol. 23, no. 2, pp. 1627–1637, 2015.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun., vol. 61, no. 2, pp. 733–742, 2013.

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge, U.K.: Cambridge Univ. Press, 2015.

Haigh, P. A.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput. Commun. Appl. Conf., 2012, pp. 315–355.

Haji, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

Hann, S.

S. Jung, S. Hann, and C. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, 2011.

Haruyama, S.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2892–2900, 2009.

Hobbs, D. S.

Hussein, A. T.

A. T. Hussein and J. M. H. Elmirghani, “10 Gbps Mobile visible light communication system employing angle diversity, imaging receivers and relay nodes,” J. Opt. Commun. Netw., vol. 7, no. 8, pp. 718–735, 2015.

A. T. Hussein and J. M. H. Elmirghani, “Mobile multi-gigabit visible light communication system employing laser diodes, imaging receivers and delay adaptation technique in realistic indoor environment,” J. Lightw. Technol., vol. 33, no. 15, pp. 3293–3307, 2015.

A. T. Hussein and J. M. H. Elmirghani, “A Survey of optical and terahertz (THz) wireless communication systems,” IEEE Commun. Surveys Tuts., 2015, to be published.

A. T. Hussein and J. M. H. Elmirghani, “Performance evaluation of multi-gigabit indoor visible light communication system,” presented at the 20th European Conf. Networks Optical Communications, London, U.K., 2015.

A. T. Hussein and J. M. H. Elmirghani, “High-Speed indoor visible light communication system employing laser diodes and angle diversity receivers,” presented at the 17th Int. Conf. Transparent Optical Networks, Budapest, Hungary, 2015.

Jamro, M. Y.

J. M. Senior and M. Y. Jamro, Optical Fiber Communications: Principles Practice, 3rd ed. New York, NY, USA: Pearson, 2009.

Jung, S.

S. Jung, S. Hann, and C. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, 2011.

Kahn, J. M.

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, 2000.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

G. W. Marsh and J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization,” IEEE Photon Technol. Lett., vol. 6, no. 10, pp. 1268–1270, 1994.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 22, pp. 367–379, 1993.

A. P. Tang, J. M. Kahn, and H. Keang-Po, “Wireless infrared communication links using multi-beam transmitters and imaging receivers,” in Proc. IEEE Int. Conf. Commun. Converging Technol. Tomorrow's Appl., 1996, pp. 180–186.

Kavehrad, M.

W. Zhang and M. Kavehrad, “Comparison of VLC-based indoor positioning techniques,” Broadband Access Commun. Technol., vol. 86, no. 45, pp. 226–232, 2013.

Keang-Po, H.

A. P. Tang, J. M. Kahn, and H. Keang-Po, “Wireless infrared communication links using multi-beam transmitters and imaging receivers,” in Proc. IEEE Int. Conf. Commun. Converging Technol. Tomorrow's Appl., 1996, pp. 180–186.

Kelly, A.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

Khalid, A. M.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. 501–506, 2012.

Kim, S.-M.

S.-M. Kim and S.-M. Kim, “Wireless optical energy transmission using optical beamforming,” Opt. Eng., vol. 2, no. 4, pp. 205–210, 2013.

S.-M. Kim and S.-M. Kim, “Wireless optical energy transmission using optical beamforming,” Opt. Eng., vol. 2, no. 4, pp. 205–210, 2013.

Komine, T.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2892–2900, 2009.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.

Krause, W. J.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 22, pp. 367–379, 1993.

Laroia, R.

P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, 2002.

Lee, C.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.

Lee, E. A.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 22, pp. 367–379, 1993.

Lee, J. H.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2892–2900, 2009.

Little, T. D. C.

M. Biagi, T. Borogovac, and T. D. C. Little, “Adaptive receiver for indoor visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3676–3686, 2013.

Liu, H.

L. Wu, Z. Zhang, and H. Liu, “Transmit beamforming for MIMO optical wireless communication systems,” Wireless Pers. Commun., vol. 78, no. 1, pp 615–628, 2014.

Margalith, T.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.

Marsh, G. W.

G. W. Marsh and J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization,” IEEE Photon Technol. Lett., vol. 6, no. 10, pp. 1268–1270, 1994.

McKendry, J.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

McNamara, D. E.

Messerschmitt, D. G.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 22, pp. 367–379, 1993.

Minh, H. L.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput. Commun. Appl. Conf., 2012, pp. 315–355.

D. C. O Brien, L. Zeng, H. L. Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proc. IEEE 19th Int. Symp. Pers. Indoor Mobile Radio Commun., 2008, pp. 1–5.

Nakagawa, M.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2892–2900, 2009.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.

Nakamura, S.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

Neumann, A.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Exp., vol. 19, no. 104, pp. 982–990, 2011.

O’Brien, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

O’Farrell, T.

K. K. Wong and T. O’Farrell, “Spread spectrum techniques for indoor wireless IR communications,” IEEE Wireless Commun., vol. 10, no. 2, pp. 54–63, 2003.

Oh, S. H.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.

Ohno, Y.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Exp., vol. 19, no. 104, pp. 982–990, 2011.

Panta, K.

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett., vol. 48, no. 4, pp. 228–230, 2012.

Park, C.

S. Jung, S. Hann, and C. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, 2011.

Patarnello, S.

P. Carnevali, L. Coletti, and S. Patarnello, “Image processing by simulated annealing,” IBM J. Res. Develop., vol. 29, no. 6, pp. 569–579, 1985.

Pergoloni, S.

M. Biagi, S. Pergoloni, and A. M. Vegni, “LAST: A framework to localize, access, schedule and transmit in indoor VLC systems,” IEEE J. Lightw. Technol., vol. 33, no. 9, pp. 1872–1887, 2015.

Personick, S. D.

S. D. Personick, “Receiver design for digital fiber optical communication system, Part I and II,” J. Bell Syst. Technol., vol. 52, no. 6, pp. 843–886, 1973.

Rajbhandari, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

Randel, S.

D. C. O Brien, L. Zeng, H. L. Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proc. IEEE 19th Int. Symp. Pers. Indoor Mobile Radio Commun., 2008, pp. 1–5.

Resler, D. P.

Seldowitz, M. A.

Senior, J. M.

J. M. Senior and M. Y. Jamro, Optical Fiber Communications: Principles Practice, 3rd ed. New York, NY, USA: Pearson, 2009.

Seshadri, R.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

Sharp, R. C.

Son, T. T.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput. Commun. Appl. Conf., 2012, pp. 315–355.

Sonehara, T.

Speck, J. S.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.

Sweeney, D. E.

Tang, A. P.

A. P. Tang, J. M. Kahn, and H. Keang-Po, “Wireless infrared communication links using multi-beam transmitters and imaging receivers,” in Proc. IEEE Int. Conf. Commun. Converging Technol. Tomorrow's Appl., 1996, pp. 180–186.

Tolstrup, M.

M. Tolstrup, “Indoor radio planning: A practical guide for GSM, DCS, UMTS, HSPA and LTE,” Hoboken, NJ, USA: Wiley, 2011.

Tsao, J. Y.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Exp., vol. 19, no. 104, pp. 982–990, 2011.

Tse, D. N. C.

P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, 2002.

Tsonev, D.

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Exp., vol. 23, no. 2, pp. 1627–1637, 2015.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

Vegni, A. M.

M. Biagi, S. Pergoloni, and A. M. Vegni, “LAST: A framework to localize, access, schedule and transmit in indoor VLC systems,” IEEE J. Lightw. Technol., vol. 33, no. 9, pp. 1872–1887, 2015.

Videv, S.

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Exp., vol. 23, no. 2, pp. 1627–1637, 2015.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

Viswanath, P.

P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, 2002.

Walewski, J. W.

D. C. O Brien, L. Zeng, H. L. Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proc. IEEE 19th Int. Symp. Pers. Indoor Mobile Radio Commun., 2008, pp. 1–5.

Watson, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

Weber, D. S.

D. S. Weber, A. Buck, and D. C. Amann, “Laser light in the BMW i8 design, system integration and test,” ATZ Worldwide, vol. 116, no. 9, pp. 44–49, 2014.

Wierer, J. J.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Exp., vol. 19, no. 104, pp. 982–990, 2011.

Wilkinson, T. D.

A. Georgiou, T. D. Wilkinson, N. Collings, and W. A. Crossland, “Algorithm for computing spot-generating holograms,” J. Opt. A, Pure Appl. Opt., vol. 10, no. 1, p. 015306, 2008.

Wong, K. K.

K. K. Wong and T. O’Farrell, “Spread spectrum techniques for indoor wireless IR communications,” IEEE Wireless Commun., vol. 10, no. 2, pp. 54–63, 2003.

Wu, L.

L. Wu, Z. Zhang, and H. Liu, “Transmit beamforming for MIMO optical wireless communication systems,” Wireless Pers. Commun., vol. 78, no. 1, pp 615–628, 2014.

Zeng, L.

D. C. O Brien, L. Zeng, H. L. Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proc. IEEE 19th Int. Symp. Pers. Indoor Mobile Radio Commun., 2008, pp. 1–5.

Zhang, C.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.

Zhang, W.

W. Zhang and M. Kavehrad, “Comparison of VLC-based indoor positioning techniques,” Broadband Access Commun. Technol., vol. 86, no. 45, pp. 226–232, 2013.

Zhang, Z.

L. Wu, Z. Zhang, and H. Liu, “Transmit beamforming for MIMO optical wireless communication systems,” Wireless Pers. Commun., vol. 78, no. 1, pp 615–628, 2014.

AIP Adv. (1)

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

Appl. Opt. (2)

ATZ Worldwide (1)

D. S. Weber, A. Buck, and D. C. Amann, “Laser light in the BMW i8 design, system integration and test,” ATZ Worldwide, vol. 116, no. 9, pp. 44–49, 2014.

Broadband Access Commun. Technol. (1)

W. Zhang and M. Kavehrad, “Comparison of VLC-based indoor positioning techniques,” Broadband Access Commun. Technol., vol. 86, no. 45, pp. 226–232, 2013.

Electron. Lett. (1)

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett., vol. 48, no. 4, pp. 228–230, 2012.

IBM J. Res. Develop. (1)

P. Carnevali, L. Coletti, and S. Patarnello, “Image processing by simulated annealing,” IBM J. Res. Develop., vol. 29, no. 6, pp. 569–579, 1985.

IEEE Commun. Surveys Tuts. (1)

A. T. Hussein and J. M. H. Elmirghani, “A Survey of optical and terahertz (THz) wireless communication systems,” IEEE Commun. Surveys Tuts., 2015, to be published.

IEEE J. Lightw. Technol. (1)

M. Biagi, S. Pergoloni, and A. M. Vegni, “LAST: A framework to localize, access, schedule and transmit in indoor VLC systems,” IEEE J. Lightw. Technol., vol. 33, no. 9, pp. 1872–1887, 2015.

IEEE J. Opt. Commun. Netw. (1)

M. T. Alresheedi and J. M. H. Elmirghan, “Hologram selection in realistic indoor optical wireless systems with angle diversity receivers,” IEEE J. Opt. Commun. Netw., vol. 7, no. 8, pp. 797–813, 2015.

IEEE J. Sel. Areas Commun. (4)

F. E. Alsaadi and J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1663–1675, 2009.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 22, pp. 367–379, 1993.

F. E. Alsaadi and J. M. H. Elmirghani, “Beam power and angle adaptation in multibeam 2.5 gbit/s spot diffusing mobile optical wireless system,” IEEE J. Sel. Areas Commun., vol. 28, no. 6, pp. 913–927, 2010.

M. T. Alresheedi and J. M. H. Elmirghani, “Performance evaluation of 5 Gbit/s and 10 Gbit/s mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1328–1340, 2011.

IEEE Photon Technol. Lett. (1)

G. W. Marsh and J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization,” IEEE Photon Technol. Lett., vol. 6, no. 10, pp. 1268–1270, 1994.

IEEE Photon. Technol. Lett. (1)

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 2014.

IEEE Trans. Commun. (4)

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, 2004.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, 2004.

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, 2000.

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun., vol. 61, no. 2, pp. 733–742, 2013.

IEEE Trans. Consum. Electron. (2)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.

S. Jung, S. Hann, and C. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, 2011.

IEEE Trans. Inf. Theory (1)

P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, 2002.

IEEE Trans. Wireless Commun. (1)

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2892–2900, 2009.

IEEE Wireless Commun. (1)

K. K. Wong and T. O’Farrell, “Spread spectrum techniques for indoor wireless IR communications,” IEEE Wireless Commun., vol. 10, no. 2, pp. 54–63, 2003.

J. Bell Syst. Technol. (1)

S. D. Personick, “Receiver design for digital fiber optical communication system, Part I and II,” J. Bell Syst. Technol., vol. 52, no. 6, pp. 843–886, 1973.

J. Lightw. Technol. (5)

F. E. Alsaadi and J. M. H. Elmirghani, “High-speed spot diffusing mobile optical wireless system employing beam angle and power adaptation and imaging receivers,” J. Lightw. Technol., vol. 28, no. 16, pp. 2191–2206, 2010.

A. T. Hussein and J. M. H. Elmirghani, “Mobile multi-gigabit visible light communication system employing laser diodes, imaging receivers and delay adaptation technique in realistic indoor environment,” J. Lightw. Technol., vol. 33, no. 15, pp. 3293–3307, 2015.

M. Biagi, T. Borogovac, and T. D. C. Little, “Adaptive receiver for indoor visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3676–3686, 2013.

F. E. Alsaadi, M. A. Alhartomi, and J. M. H. Elmirghani, “Fast and efficient adaptation algorithms for multi-gigabit wireless infrared systems,” J. Lightw. Technol., vol. 31, no. 23, pp. 3735–3751, 2013.

M. T. Alresheedi and J. M. H. Elmirghani, “10 Gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with imaging detection,” J. Lightw. Technol., vol. 30, no. 12, pp. 1843–1856, 2012.

J. Opt. A, Pure Appl. Opt. (1)

A. Georgiou, T. D. Wilkinson, N. Collings, and W. A. Crossland, “Algorithm for computing spot-generating holograms,” J. Opt. A, Pure Appl. Opt., vol. 10, no. 1, p. 015306, 2008.

J. Opt. Commun. Netw. (1)

Opt. Eng. (1)

S.-M. Kim and S.-M. Kim, “Wireless optical energy transmission using optical beamforming,” Opt. Eng., vol. 2, no. 4, pp. 205–210, 2013.

Opt. Exp. (4)

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. 501–506, 2012.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Exp., vol. 19, no. 104, pp. 982–990, 2011.

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Exp., vol. 23, no. 2, pp. 1627–1637, 2015.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Exp., vol. 23, no. 12, pp. 6232–16237, 2015.

Opt. Lett. (1)

Proc. IEE Optoelectron. (1)

A. G. Al-Ghamdi, and J.M.H. Elmirghani, “Performance comparison of LSMS and conventional diffuse and hybrid optical wireless techniques in a real indoor environment,” Proc. IEE Optoelectron., vol. 152, no. 4, pp. 230–238, 2005.

Proc. IEEE (2)

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

Wireless Pers. Commun. (1)

L. Wu, Z. Zhang, and H. Liu, “Transmit beamforming for MIMO optical wireless communication systems,” Wireless Pers. Commun., vol. 78, no. 1, pp 615–628, 2014.

Other (16)

Lighting of Indoor Work Places, European Standard EN 12464-1 [Online] Available: http://www.etaplighting.com/uploadedFiles/Downloadable_documentation/documentatie/EN12464_E_OK.pdf

Visible Light Communication System: Nakagawa Group. (2010). Available. [Online]. http://www.youtube.com/watch?v = QEh5f49LsB4

M. T. Alresheedi and J.M.H. Elmirghani, “High-speed indoor optical wireless links employing fast angle and power adaptive computer-generated holograms with imaging receivers,” IEEE J. Commun., 2015, submitted for publication.

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge, U.K.: Cambridge Univ. Press, 2015.

D. C. O Brien, L. Zeng, H. L. Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proc. IEEE 19th Int. Symp. Pers. Indoor Mobile Radio Commun., 2008, pp. 1–5.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput. Commun. Appl. Conf., 2012, pp. 315–355.

IEEE Standard Local Metropolitan Area Netw.-Part 15.7: Short-Range Wireless Opt. Commun. Using Visible Light, pp. 1–309, 2011.

M. A. Alhartomi, F. E. Alsaadi, and J. M. H. Elmirghani, “Mobile optical wireless system using fast beam Angle, delay and power adaptation with angle diversity receivers,” in Proc. 14th Int. Conf. Transparent Opt. Netw., 2012, pp. 1–5.

J. M. Senior and M. Y. Jamro, Optical Fiber Communications: Principles Practice, 3rd ed. New York, NY, USA: Pearson, 2009.

J. A. Gimlett, “new low noise 16 GHz PIN/HEMT optical receiver,” in Proc. 14th Eur. Conf. Opt. Commun., vol. 1, no. 292, pp. 13–16, 1988.

A. P. Tang, J. M. Kahn, and H. Keang-Po, “Wireless infrared communication links using multi-beam transmitters and imaging receivers,” in Proc. IEEE Int. Conf. Commun. Converging Technol. Tomorrow's Appl., 1996, pp. 180–186.

(Jul. 15, 2015). Spatial Light Modulators. [Online]. Available: http://holoeye.com/wp-content/uploads/Spatial_Light_Modulators.pdf.

M. Tolstrup, “Indoor radio planning: A practical guide for GSM, DCS, UMTS, HSPA and LTE,” Hoboken, NJ, USA: Wiley, 2011.

A. T. Hussein and J. M. H. Elmirghani, “High-Speed indoor visible light communication system employing laser diodes and angle diversity receivers,” presented at the 17th Int. Conf. Transparent Optical Networks, Budapest, Hungary, 2015.

A. T. Hussein and J. M. H. Elmirghani, “Performance evaluation of multi-gigabit indoor visible light communication system,” presented at the 20th European Conf. Networks Optical Communications, London, U.K., 2015.

(Jul. 15, 2015). 40 GB/s optical transponder [Online]. Available: http://onelink.finisar.com/sites/default/files/pdf/54TRAAV2GPL-40G-SFF-NRZ-Transponder-product-brief-RevA.pdf.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.