Abstract

We present the design, fabrication, and measurement results of low-insertion-loss and low-crosstalk broadband $2\times 2$ Mach–Zehnder switches for nanosecond-scale optical data routing applications. We propose a simulation framework to calculate the spectral characteristics of switches and use it to design two switches: one based on directional couplers, the other using two-section directional couplers for broader bandwidth. We show that driving the switch in a push–pull manner enables to reduce insertion loss and optical crosstalk at the expense of the optical bandwidth. We achieve a good correlation between simulations and devices fabricated in IBM's 90-nm photonics-enabled CMOS process. We demonstrate a push–pull drive switch with insertion loss of $\sim$1 dB and an optical crosstalk smaller than $-$23 dB over a 45-nm optical bandwidth in the O-band. We further achieve a transition time of $\sim$4 ns with an average phase shifter consumption of 1 mW and a heater efficiency of $\sim$25 mW$/\pi$.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription