Abstract

The improvement in efficiency of nitride-based light-emitting diodes by the implementation of a vertically stacked tandem structure is investigated. The electrical and optical characteristics of an LED with a tunnel junction inserted between two active regions are modeled, and the wall-plug efficiency gain of the tandem LED is shown to start at 4.2% at low output powers (27.6 mW), with increasing efficiency gains with increased output power due to the alleviation of efficiency droop. The TLED concept further enables optimization of device structure, allowing removal of electron blocking layer, and optimization of number of quantum wells for improvement in efficiency.

© 2014 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. Piprek, "Efficiency droop in nitride-based light-emitting diodes ," Phys. Status Solidi A 207, 2217-2225 (2010).
  2. D. Saguatti, L. Bidinelli, G. Verzellesi, M. Meneghini, G. Meneghesso, E. Zanoni, R. Butendeich, B. Hahn, " Investigation of efficiency-droop mechanisms in multi-quantum-well InGaN/GaN blue light-emitting diodes ," IEEE Trans. Electron. Devices 59, 1402-1409 (2012).
  3. D. S. Meyaard, G.-B. Lin, J. Cho, E. Fred Schubert, H. Shim, S.-H. Han, M.-H. Kim, C. Sone, Y. S. Kim, "Identifying the cause of the efficiency droop in GaInN light-emitting diodes by correlating the onset of high injection with the onset of the efficiency droop ," Appl. Phys. Lett. 102, 251114 (2013).
  4. J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, C. Weisbuch, "Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop," Phys. Rev. Lett. 110, 177406 (2013).
  5. D. Zhu, M. F. Schubert, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, H. Shim, C. Sone, " Genetic algorithm for innovative device designs in high-efficiency III–V nitride light-emitting diodes ," Appl. Phys. Exp. 5, 012102 (2012).
  6. M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, M. R. Krames, "Bulk GaN based violet light-emitting diodes with high efficiency at very high current density," Appl. Phys. Lett. 101, 223509 ( 2012).
  7. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Exp. 19, A991 (2011).
  8. R. A. Arif, Y.-K. Ee, N. Tansu, "Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes," Appl. Phys. Lett. 91, 091110–1- 091110–3 (2007).
  9. S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, S. Nakamura, "Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays," Acta Mater. 61 , 945-951 (2013).
  10. D. F. Feezell, J. S. Speck, S. P. DenBaars, S. Nakamura, "Semipolar (20–2–1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting," J. Disp. Technol. 9, 190-198 (2013).
  11. H. Zhao, G. Liu, J. Zhang, R. A. Arif, N. Tansu, "Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes," J. Disp. Technol. 9, 212 -225 (2013).
  12. S. Choi, M.-H. Ji, J. Kim, H. Jin Kim, M. M. Satter, P. D. Yoder, J.-H. Ryou, R. D. Dupuis, A. M. Fischer, F. A. Ponce, "Efficiency droop due to electron spill-over and limited hole injection in III-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers," Appl. Phys. Lett. 101, 161110 (2012).
  13. G. Liu, J. Zhang, C.-K. Tan, N. Tansu, "Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes," IEEE Photon. J. 5 , 2201011-2201011 (2013).
  14. K. K. Bhuwalka, S. Sedlmaier, A. K. Ludsteck, C. Tolksdorf, J. Schulze, I. Eisele, "Vertical tunnel field-effect transistor," IEEE Trans. Electron Devices 51, 279-282 (2004 ).
  15. S.-R. Jeon, Y.-H. Song, H.-J. Jang, G. M. Yang, S. W. Hwang, S. J. Son, "Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions," Appl. Phys. Lett. 78 , 3265 (2001).
  16. D. L. Miller, "GaAs-AlGaAs tunnel junctions for multigap cascade solar cells ," J. Appl. Phys. 53, 744-748 (1982).
  17. I. Ozden, E. Makarona, A. V. Nurmikko, T. Takeuchi, M. Krames, " A dual-wavelength indium gallium nitride quantum well light emitting diode," Appl. Phys. Lett. 79, 2532-2534 (2001).
  18. J. K. Kim, S. Nakagawa, E. Hall, L. A. Coldren, "Near-room-temperature continuous-wave operation of multiple-active-region 1.55 μm vertical-cavity lasers with high differential efficiency," Appl. Phys. Lett. 77, 3137 -3139 (2000).
  19. M.-C. Tsai, B. Leung, T.-C. Hsu, Y.-K. Kuo, "Low resistivity GaN-based polarization-induced tunnel junctions," J. Light. Technol. 31, 3575 -3581 (2013).
  20. S. Krishnamoorthy, D. N. Nath, F. Akyol, P. S. Park, M. Esposto, S. Rajan, "Polarization-engineered GaN/InGaN/GaN tunnel diodes," Appl. Phys. Lett. 97, 203502–1-203502–3 (2010).
  21. “APSYS User's Manual,” Crosslight Software Inc., Vancouver, BC, Canada, 2013..
  22. S. M. Sze, Ng, Physics of Semiconductor Devices (Wiley-Interscience, 2007).
  23. S. Chuang, C. Chang, " k·p method for strained wurtzite semiconductors," Phys. Rev. B 54, 2491-2504 (1996).
  24. V. O. Turin, "A modified transferred-electron high-field mobility model for GaN devices simulation," Solid-State Electron. 49, 1678-1682 (2005 ).
  25. V. Fiorentini, F. Bernardini, O. Ambacher, "Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures," Appl. Phys. Lett. 80, 1204 ( 2002).
  26. I. Vurgaftman, J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," J. Appl. Phys. 94, 3675-3696 (2003).
  27. Y. Sun, Y.-H. Cho, H.-M. Kim, T. W. Kang, "High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays," Appl. Phys. Lett. 87, 093115 (2005).
  28. K. Kumakura, T. Makimoto, N. Kobayashi, "Mg-acceptor activation mechanism and transport characteristics in p-type InGaN grown by metalorganic vapor phase epitaxy," J. Appl. Phys. 93, 3370-3375 (2003).
  29. H. W. Huang, F. I. Lai, J. K. Huang, C. H. Lin, K. Y. Lee, C. F. Lin, C. C. Yu, H. C. Kuo, "Enhancement of light output power of GaN-based light-emitting diodes using a SiO $_2$ nano-scale structure on a p-GaN surface," Semicond. Sci. Technol. 25, 065007 (2010).
  30. M. F. Schubert, "Polarization-charge tunnel junctions for ultraviolet light-emitters without p-type contact," Appl. Phys. Lett. 96 , 031102 (2010).
  31. C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo, Y. C. Lin, "Nitride-based cascade near white light-emitting diodes," IEEE Photon. Technol. Lett. 14, 908-910 (2002).
  32. K. Matsui, K. Yamashita, M. Kaga, T. Morita, T. Suzuki, T. Takeuch, S. Kamiyama, M. Iwaya, I. Akasaki, "Carrier injections in nitride-based light emitting diodes including two active regions with Mg-doped intermediate layers," Jpn. J. Appl. Phys. 52, 08JG02 (2013).
  33. Y. G. Xiao, Z. Q. Li, M. Lestrade, Z. M. S. Li, "Modeling of InGaN PIN solar cells with defect traps and polarization interface charges," Proc. IEEE 35th Photovoltaic Spec. Conf. ( 2010) pp. 003378-003382.
  34. H. X. Jiang, J. Y. Lin, " AlGaN and InAlGaN alloys – epitaxial growth, optical and electrical properties, and applications ," Opto-Electron. Rev. 10, 271-286 (2002).
  35. S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. P. Lee, D. Y. Noh, D.-J. Kim, Y. C. Kim, S.-J. Park, "Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett. 94, 231123 (2009).
  36. J. P. Liu, J.-H. Ryou, R. D. Dupuis, J. Han, G. D. Shen, H. B. Wang, "Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes," Appl. Phys. Lett. 93, 021102 (2008).

2013

D. S. Meyaard, G.-B. Lin, J. Cho, E. Fred Schubert, H. Shim, S.-H. Han, M.-H. Kim, C. Sone, Y. S. Kim, "Identifying the cause of the efficiency droop in GaInN light-emitting diodes by correlating the onset of high injection with the onset of the efficiency droop ," Appl. Phys. Lett. 102, 251114 (2013).

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, C. Weisbuch, "Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop," Phys. Rev. Lett. 110, 177406 (2013).

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, S. Nakamura, "Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays," Acta Mater. 61 , 945-951 (2013).

D. F. Feezell, J. S. Speck, S. P. DenBaars, S. Nakamura, "Semipolar (20–2–1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting," J. Disp. Technol. 9, 190-198 (2013).

H. Zhao, G. Liu, J. Zhang, R. A. Arif, N. Tansu, "Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes," J. Disp. Technol. 9, 212 -225 (2013).

G. Liu, J. Zhang, C.-K. Tan, N. Tansu, "Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes," IEEE Photon. J. 5 , 2201011-2201011 (2013).

M.-C. Tsai, B. Leung, T.-C. Hsu, Y.-K. Kuo, "Low resistivity GaN-based polarization-induced tunnel junctions," J. Light. Technol. 31, 3575 -3581 (2013).

K. Matsui, K. Yamashita, M. Kaga, T. Morita, T. Suzuki, T. Takeuch, S. Kamiyama, M. Iwaya, I. Akasaki, "Carrier injections in nitride-based light emitting diodes including two active regions with Mg-doped intermediate layers," Jpn. J. Appl. Phys. 52, 08JG02 (2013).

2012

D. Saguatti, L. Bidinelli, G. Verzellesi, M. Meneghini, G. Meneghesso, E. Zanoni, R. Butendeich, B. Hahn, " Investigation of efficiency-droop mechanisms in multi-quantum-well InGaN/GaN blue light-emitting diodes ," IEEE Trans. Electron. Devices 59, 1402-1409 (2012).

S. Choi, M.-H. Ji, J. Kim, H. Jin Kim, M. M. Satter, P. D. Yoder, J.-H. Ryou, R. D. Dupuis, A. M. Fischer, F. A. Ponce, "Efficiency droop due to electron spill-over and limited hole injection in III-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers," Appl. Phys. Lett. 101, 161110 (2012).

D. Zhu, M. F. Schubert, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, H. Shim, C. Sone, " Genetic algorithm for innovative device designs in high-efficiency III–V nitride light-emitting diodes ," Appl. Phys. Exp. 5, 012102 (2012).

2011

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Exp. 19, A991 (2011).

2010

J. Piprek, "Efficiency droop in nitride-based light-emitting diodes ," Phys. Status Solidi A 207, 2217-2225 (2010).

S. Krishnamoorthy, D. N. Nath, F. Akyol, P. S. Park, M. Esposto, S. Rajan, "Polarization-engineered GaN/InGaN/GaN tunnel diodes," Appl. Phys. Lett. 97, 203502–1-203502–3 (2010).

H. W. Huang, F. I. Lai, J. K. Huang, C. H. Lin, K. Y. Lee, C. F. Lin, C. C. Yu, H. C. Kuo, "Enhancement of light output power of GaN-based light-emitting diodes using a SiO $_2$ nano-scale structure on a p-GaN surface," Semicond. Sci. Technol. 25, 065007 (2010).

M. F. Schubert, "Polarization-charge tunnel junctions for ultraviolet light-emitters without p-type contact," Appl. Phys. Lett. 96 , 031102 (2010).

2009

S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. P. Lee, D. Y. Noh, D.-J. Kim, Y. C. Kim, S.-J. Park, "Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett. 94, 231123 (2009).

2008

J. P. Liu, J.-H. Ryou, R. D. Dupuis, J. Han, G. D. Shen, H. B. Wang, "Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes," Appl. Phys. Lett. 93, 021102 (2008).

2007

R. A. Arif, Y.-K. Ee, N. Tansu, "Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes," Appl. Phys. Lett. 91, 091110–1- 091110–3 (2007).

2005

Y. Sun, Y.-H. Cho, H.-M. Kim, T. W. Kang, "High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays," Appl. Phys. Lett. 87, 093115 (2005).

2005

V. O. Turin, "A modified transferred-electron high-field mobility model for GaN devices simulation," Solid-State Electron. 49, 1678-1682 (2005 ).

2004

K. K. Bhuwalka, S. Sedlmaier, A. K. Ludsteck, C. Tolksdorf, J. Schulze, I. Eisele, "Vertical tunnel field-effect transistor," IEEE Trans. Electron Devices 51, 279-282 (2004 ).

2003

I. Vurgaftman, J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," J. Appl. Phys. 94, 3675-3696 (2003).

K. Kumakura, T. Makimoto, N. Kobayashi, "Mg-acceptor activation mechanism and transport characteristics in p-type InGaN grown by metalorganic vapor phase epitaxy," J. Appl. Phys. 93, 3370-3375 (2003).

2002

C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo, Y. C. Lin, "Nitride-based cascade near white light-emitting diodes," IEEE Photon. Technol. Lett. 14, 908-910 (2002).

H. X. Jiang, J. Y. Lin, " AlGaN and InAlGaN alloys – epitaxial growth, optical and electrical properties, and applications ," Opto-Electron. Rev. 10, 271-286 (2002).

2001

S.-R. Jeon, Y.-H. Song, H.-J. Jang, G. M. Yang, S. W. Hwang, S. J. Son, "Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions," Appl. Phys. Lett. 78 , 3265 (2001).

I. Ozden, E. Makarona, A. V. Nurmikko, T. Takeuchi, M. Krames, " A dual-wavelength indium gallium nitride quantum well light emitting diode," Appl. Phys. Lett. 79, 2532-2534 (2001).

2000

J. K. Kim, S. Nakagawa, E. Hall, L. A. Coldren, "Near-room-temperature continuous-wave operation of multiple-active-region 1.55 μm vertical-cavity lasers with high differential efficiency," Appl. Phys. Lett. 77, 3137 -3139 (2000).

1996

S. Chuang, C. Chang, " k·p method for strained wurtzite semiconductors," Phys. Rev. B 54, 2491-2504 (1996).

1982

D. L. Miller, "GaAs-AlGaAs tunnel junctions for multigap cascade solar cells ," J. Appl. Phys. 53, 744-748 (1982).

Appl. Phys. Lett.

R. A. Arif, Y.-K. Ee, N. Tansu, "Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes," Appl. Phys. Lett. 91, 091110–1- 091110–3 (2007).

Phys. Rev. Lett.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, C. Weisbuch, "Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop," Phys. Rev. Lett. 110, 177406 (2013).

Acta Mater.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, S. Nakamura, "Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays," Acta Mater. 61 , 945-951 (2013).

Appl. Phys. Exp.

D. Zhu, M. F. Schubert, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, H. Shim, C. Sone, " Genetic algorithm for innovative device designs in high-efficiency III–V nitride light-emitting diodes ," Appl. Phys. Exp. 5, 012102 (2012).

Appl. Phys. Lett.

M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, M. R. Krames, "Bulk GaN based violet light-emitting diodes with high efficiency at very high current density," Appl. Phys. Lett. 101, 223509 ( 2012).

Appl. Phys. Lett.

S. Choi, M.-H. Ji, J. Kim, H. Jin Kim, M. M. Satter, P. D. Yoder, J.-H. Ryou, R. D. Dupuis, A. M. Fischer, F. A. Ponce, "Efficiency droop due to electron spill-over and limited hole injection in III-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers," Appl. Phys. Lett. 101, 161110 (2012).

S.-R. Jeon, Y.-H. Song, H.-J. Jang, G. M. Yang, S. W. Hwang, S. J. Son, "Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions," Appl. Phys. Lett. 78 , 3265 (2001).

I. Ozden, E. Makarona, A. V. Nurmikko, T. Takeuchi, M. Krames, " A dual-wavelength indium gallium nitride quantum well light emitting diode," Appl. Phys. Lett. 79, 2532-2534 (2001).

J. K. Kim, S. Nakagawa, E. Hall, L. A. Coldren, "Near-room-temperature continuous-wave operation of multiple-active-region 1.55 μm vertical-cavity lasers with high differential efficiency," Appl. Phys. Lett. 77, 3137 -3139 (2000).

S. Krishnamoorthy, D. N. Nath, F. Akyol, P. S. Park, M. Esposto, S. Rajan, "Polarization-engineered GaN/InGaN/GaN tunnel diodes," Appl. Phys. Lett. 97, 203502–1-203502–3 (2010).

Appl. Phys. Lett.

V. Fiorentini, F. Bernardini, O. Ambacher, "Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures," Appl. Phys. Lett. 80, 1204 ( 2002).

Appl. Phys. Lett.

Y. Sun, Y.-H. Cho, H.-M. Kim, T. W. Kang, "High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays," Appl. Phys. Lett. 87, 093115 (2005).

M. F. Schubert, "Polarization-charge tunnel junctions for ultraviolet light-emitters without p-type contact," Appl. Phys. Lett. 96 , 031102 (2010).

D. S. Meyaard, G.-B. Lin, J. Cho, E. Fred Schubert, H. Shim, S.-H. Han, M.-H. Kim, C. Sone, Y. S. Kim, "Identifying the cause of the efficiency droop in GaInN light-emitting diodes by correlating the onset of high injection with the onset of the efficiency droop ," Appl. Phys. Lett. 102, 251114 (2013).

S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. P. Lee, D. Y. Noh, D.-J. Kim, Y. C. Kim, S.-J. Park, "Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett. 94, 231123 (2009).

J. P. Liu, J.-H. Ryou, R. D. Dupuis, J. Han, G. D. Shen, H. B. Wang, "Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes," Appl. Phys. Lett. 93, 021102 (2008).

IEEE Photon. J.

G. Liu, J. Zhang, C.-K. Tan, N. Tansu, "Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes," IEEE Photon. J. 5 , 2201011-2201011 (2013).

IEEE Photon. Technol. Lett.

C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo, Y. C. Lin, "Nitride-based cascade near white light-emitting diodes," IEEE Photon. Technol. Lett. 14, 908-910 (2002).

IEEE Trans. Electron Devices

K. K. Bhuwalka, S. Sedlmaier, A. K. Ludsteck, C. Tolksdorf, J. Schulze, I. Eisele, "Vertical tunnel field-effect transistor," IEEE Trans. Electron Devices 51, 279-282 (2004 ).

IEEE Trans. Electron. Devices

D. Saguatti, L. Bidinelli, G. Verzellesi, M. Meneghini, G. Meneghesso, E. Zanoni, R. Butendeich, B. Hahn, " Investigation of efficiency-droop mechanisms in multi-quantum-well InGaN/GaN blue light-emitting diodes ," IEEE Trans. Electron. Devices 59, 1402-1409 (2012).

J. Appl. Phys.

D. L. Miller, "GaAs-AlGaAs tunnel junctions for multigap cascade solar cells ," J. Appl. Phys. 53, 744-748 (1982).

K. Kumakura, T. Makimoto, N. Kobayashi, "Mg-acceptor activation mechanism and transport characteristics in p-type InGaN grown by metalorganic vapor phase epitaxy," J. Appl. Phys. 93, 3370-3375 (2003).

J. Appl. Phys.

I. Vurgaftman, J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," J. Appl. Phys. 94, 3675-3696 (2003).

J. Disp. Technol.

D. F. Feezell, J. S. Speck, S. P. DenBaars, S. Nakamura, "Semipolar (20–2–1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting," J. Disp. Technol. 9, 190-198 (2013).

H. Zhao, G. Liu, J. Zhang, R. A. Arif, N. Tansu, "Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes," J. Disp. Technol. 9, 212 -225 (2013).

J. Light. Technol.

M.-C. Tsai, B. Leung, T.-C. Hsu, Y.-K. Kuo, "Low resistivity GaN-based polarization-induced tunnel junctions," J. Light. Technol. 31, 3575 -3581 (2013).

Jpn. J. Appl. Phys.

K. Matsui, K. Yamashita, M. Kaga, T. Morita, T. Suzuki, T. Takeuch, S. Kamiyama, M. Iwaya, I. Akasaki, "Carrier injections in nitride-based light emitting diodes including two active regions with Mg-doped intermediate layers," Jpn. J. Appl. Phys. 52, 08JG02 (2013).

Opt. Exp.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Exp. 19, A991 (2011).

Opto-Electron. Rev.

H. X. Jiang, J. Y. Lin, " AlGaN and InAlGaN alloys – epitaxial growth, optical and electrical properties, and applications ," Opto-Electron. Rev. 10, 271-286 (2002).

Phys. Rev. B

S. Chuang, C. Chang, " k·p method for strained wurtzite semiconductors," Phys. Rev. B 54, 2491-2504 (1996).

Phys. Status Solidi A

J. Piprek, "Efficiency droop in nitride-based light-emitting diodes ," Phys. Status Solidi A 207, 2217-2225 (2010).

Semicond. Sci. Technol.

H. W. Huang, F. I. Lai, J. K. Huang, C. H. Lin, K. Y. Lee, C. F. Lin, C. C. Yu, H. C. Kuo, "Enhancement of light output power of GaN-based light-emitting diodes using a SiO $_2$ nano-scale structure on a p-GaN surface," Semicond. Sci. Technol. 25, 065007 (2010).

Solid-State Electron.

V. O. Turin, "A modified transferred-electron high-field mobility model for GaN devices simulation," Solid-State Electron. 49, 1678-1682 (2005 ).

Other

“APSYS User's Manual,” Crosslight Software Inc., Vancouver, BC, Canada, 2013..

S. M. Sze, Ng, Physics of Semiconductor Devices (Wiley-Interscience, 2007).

Y. G. Xiao, Z. Q. Li, M. Lestrade, Z. M. S. Li, "Modeling of InGaN PIN solar cells with defect traps and polarization interface charges," Proc. IEEE 35th Photovoltaic Spec. Conf. ( 2010) pp. 003378-003382.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.