Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 9,
  • pp. 1462-1467
  • (2013)

Maximized Soliton Self-Frequency Shift in Non-Uniform Microwires by the Control of Third-Order Dispersion Perturbation

Not Accessible

Your library or personal account may give you access

Abstract

We present a simple method based on the soliton perturbative theory to design microwires of non-uniform diameter profiles. In contrast to previous methods, the one presented here relies on minimizing the soliton perturbation by third order dispersion (TOD) while taking into account the change of the soliton local duration along the microwire. The method leads to a design that maximizes the soliton self-frequency shift in non-uniform microwires. The microwire design comprises a unique dispersion profile such that a wavelength-shifting soliton experiences only weak perturbations from the TOD and avoids shedding its energy into the dispersive waves. The TOD perturbation is quantified with an analytic expression $\epsilon$ that is kept below a threshold value, thus keeping a soliton weakly perturbed by TOD in every position within the microwire. Numerical simulations are conducted to check the validity of the method. We consider a fundamental soliton centered at a wavelength of 2000 nm propagating in As2Se3 microwires of length as short as 10 cm. The results show that optimized non-uniform diameter profile allows the tuning of the self-frequency shifted soliton over a spectral range of 860 nm.

© 2013 IEEE

PDF Article
More Like This
Mid-infrared sources based on the soliton self-frequency shift

Alaa M. Al-kadry and Martin Rochette
J. Opt. Soc. Am. B 29(6) 1347-1355 (2012)

Complete compensation for the soliton self-frequency shift and third-order dispersion of a fiber

Shan-liang Liu and Wen-zheng Wang
Opt. Lett. 18(22) 1911-1912 (1993)

Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers

O. Vanvincq, A. Kudlinski, A. Bétourné, Y. Quiquempois, and G. Bouwmans
J. Opt. Soc. Am. B 27(11) 2328-2335 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.