Abstract

We show that fading noise in phase-noise compensated optical frequency domain reflectometry (PNC-OFDR) can be effectively reduced by applying an optical comb light source without any degradation in the reflectometry performance. The optical comb light source provides broad wavelength tunability, which is required for the frequency shift averaging (FSAV) for fading noise reduction while maintaining a narrow linewidth of the fiber laser used as a seed lightwave. We also clarify that PNC-OFDR with a reference interferometer simultaneously compensates for both phase noise and group velocity dispersion (GVD) induced by wideband measurement and a dispersive medium. These PNC-OFDR functions enable us to realize a high accuracy measurement of Rayleigh scattering level with low fading noise and high spatial resolution over 10 km range.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. K. Barnoski, S. M. Jensen, "Rayleigh scattering on an optical fiber," Appl. Opt. 15, 2112-2115 (1976).
  2. Z. He, T. Tomizawa, K. Hotate, "High-speed high-reflectance-resolution reflectometry by synthesis of optical coherence function," IEICE Electron. Exp. 3, 122-128 (2006).
  3. W. Eickhoff, R. Ulrich, "Optical frequency domain reflectometry in single-mode fiber," Appl. Phys. Lett. 39, 693-695 (1981).
  4. H. Barfuss, E. Brinkmeyer, "Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems," J. Lightw. Technol. 7, 3-10 (1989).
  5. K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995).
  6. B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Exp. 13, 666-674 (2005).
  7. G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, "-152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry," Electron. Lett. 32, 926-927 (1996).
  8. X. Fan, Y. Koshikiya, F. Ito, "Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method," Opt. Lett. 32, 3227-3229 (2007).
  9. Y. Koshikiya, X. Fan, F. Ito, "Sub-cm spatial resolution reflectometry over 10 km based on phase noise compensated OFDR with third order sideband sweeping," Proc. 35th Eur. Conf. Opt. Commun. (ECOC'2009) (2009).
  10. P. Healey, "Fading in heterodyne OTDR," Electron. Lett. 20, 30-32 (1984).
  11. P. Healey, "Statistics of Rayleigh backscatter from a single-mode optical fiber," Electron. Lett. 21, 226-228 (1985).
  12. K. Shimizu, T. Horiguchi, Y. Koyamada, "Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components," J. Lightw. Technol. 10, 982-987 (1992).
  13. X. Fan, Y. Koshikiya, F. Ito, "10 cm spatial resolution and 20 km range full polarimetric reflectometry for distributed DGD measurement of high PMD fibres," Proc. ECOC' (2009).
  14. E. Brinkmeyer, R. Ulrich, "High-resolution OCDR in dispersive waveguide," Electron. Lett. 26, 413-414 (1990).
  15. A. Kohlhaas, C. Fromchen, E. Brinkmeyer, "High-resolution OCDR for testing integrated-optical waveguides: Dispersion-corrupted experimental data corrected by a numerical algorithm," J. Lightw. Technol. 9, 1493-1502 (1991).
  16. U. Glombitza, E. Brinkmeyer, "Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguide," J. Lightw. Technol. 11, 1377-1384 (1993).
  17. X. Fan, Y. Koshikiya, F. Ito, "Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR," Opt. Exp. 19, 19122-19128 (2011).
  18. T. Yamamoto, T. Komukai, K. Suzuki, A. Takada, "Multicarrier light source with flattened spectrum using phase modulator and dispersion medium," J. Lightw. Technol. 27, 4297-4305 (2009).
  19. Y. Koshikiya, X. Fan, F. Ito, "Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser," J. Lightw. Technol. 26, 3287-3294 (2008).
  20. Y. Koshikiya, X. Fan, F. Ito, "Influence of acoustic perturbation of fibers in phase-noise compensated optical frequency domain reflectometry," J. Lightw. Technol. 28, 3323-3328 (2010).

2011 (1)

X. Fan, Y. Koshikiya, F. Ito, "Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR," Opt. Exp. 19, 19122-19128 (2011).

2010 (1)

Y. Koshikiya, X. Fan, F. Ito, "Influence of acoustic perturbation of fibers in phase-noise compensated optical frequency domain reflectometry," J. Lightw. Technol. 28, 3323-3328 (2010).

2009 (1)

T. Yamamoto, T. Komukai, K. Suzuki, A. Takada, "Multicarrier light source with flattened spectrum using phase modulator and dispersion medium," J. Lightw. Technol. 27, 4297-4305 (2009).

2008 (1)

Y. Koshikiya, X. Fan, F. Ito, "Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser," J. Lightw. Technol. 26, 3287-3294 (2008).

2007 (1)

X. Fan, Y. Koshikiya, F. Ito, "Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method," Opt. Lett. 32, 3227-3229 (2007).

2006 (1)

Z. He, T. Tomizawa, K. Hotate, "High-speed high-reflectance-resolution reflectometry by synthesis of optical coherence function," IEICE Electron. Exp. 3, 122-128 (2006).

2005 (1)

B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Exp. 13, 666-674 (2005).

1996 (1)

G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, "-152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry," Electron. Lett. 32, 926-927 (1996).

1995 (1)

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995).

1993 (1)

U. Glombitza, E. Brinkmeyer, "Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguide," J. Lightw. Technol. 11, 1377-1384 (1993).

1992 (1)

K. Shimizu, T. Horiguchi, Y. Koyamada, "Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components," J. Lightw. Technol. 10, 982-987 (1992).

1991 (1)

A. Kohlhaas, C. Fromchen, E. Brinkmeyer, "High-resolution OCDR for testing integrated-optical waveguides: Dispersion-corrupted experimental data corrected by a numerical algorithm," J. Lightw. Technol. 9, 1493-1502 (1991).

1990 (1)

E. Brinkmeyer, R. Ulrich, "High-resolution OCDR in dispersive waveguide," Electron. Lett. 26, 413-414 (1990).

1989 (1)

H. Barfuss, E. Brinkmeyer, "Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems," J. Lightw. Technol. 7, 3-10 (1989).

1985 (1)

P. Healey, "Statistics of Rayleigh backscatter from a single-mode optical fiber," Electron. Lett. 21, 226-228 (1985).

1984 (1)

P. Healey, "Fading in heterodyne OTDR," Electron. Lett. 20, 30-32 (1984).

1981 (1)

W. Eickhoff, R. Ulrich, "Optical frequency domain reflectometry in single-mode fiber," Appl. Phys. Lett. 39, 693-695 (1981).

1976 (1)

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Eickhoff, R. Ulrich, "Optical frequency domain reflectometry in single-mode fiber," Appl. Phys. Lett. 39, 693-695 (1981).

Electron. Lett. (1)

P. Healey, "Statistics of Rayleigh backscatter from a single-mode optical fiber," Electron. Lett. 21, 226-228 (1985).

Electron. Lett. (3)

E. Brinkmeyer, R. Ulrich, "High-resolution OCDR in dispersive waveguide," Electron. Lett. 26, 413-414 (1990).

G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, "-152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry," Electron. Lett. 32, 926-927 (1996).

P. Healey, "Fading in heterodyne OTDR," Electron. Lett. 20, 30-32 (1984).

IEEE Photon. Technol. Lett. (1)

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995).

IEICE Electron. Exp. (1)

Z. He, T. Tomizawa, K. Hotate, "High-speed high-reflectance-resolution reflectometry by synthesis of optical coherence function," IEICE Electron. Exp. 3, 122-128 (2006).

J. Lightw. Technol. (1)

Y. Koshikiya, X. Fan, F. Ito, "Influence of acoustic perturbation of fibers in phase-noise compensated optical frequency domain reflectometry," J. Lightw. Technol. 28, 3323-3328 (2010).

J. Lightw. Technol. (6)

H. Barfuss, E. Brinkmeyer, "Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems," J. Lightw. Technol. 7, 3-10 (1989).

A. Kohlhaas, C. Fromchen, E. Brinkmeyer, "High-resolution OCDR for testing integrated-optical waveguides: Dispersion-corrupted experimental data corrected by a numerical algorithm," J. Lightw. Technol. 9, 1493-1502 (1991).

U. Glombitza, E. Brinkmeyer, "Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguide," J. Lightw. Technol. 11, 1377-1384 (1993).

K. Shimizu, T. Horiguchi, Y. Koyamada, "Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components," J. Lightw. Technol. 10, 982-987 (1992).

T. Yamamoto, T. Komukai, K. Suzuki, A. Takada, "Multicarrier light source with flattened spectrum using phase modulator and dispersion medium," J. Lightw. Technol. 27, 4297-4305 (2009).

Y. Koshikiya, X. Fan, F. Ito, "Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser," J. Lightw. Technol. 26, 3287-3294 (2008).

Opt. Lett. (1)

X. Fan, Y. Koshikiya, F. Ito, "Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method," Opt. Lett. 32, 3227-3229 (2007).

Opt. Exp. (2)

B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Exp. 13, 666-674 (2005).

X. Fan, Y. Koshikiya, F. Ito, "Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR," Opt. Exp. 19, 19122-19128 (2011).

Other (2)

X. Fan, Y. Koshikiya, F. Ito, "10 cm spatial resolution and 20 km range full polarimetric reflectometry for distributed DGD measurement of high PMD fibres," Proc. ECOC' (2009).

Y. Koshikiya, X. Fan, F. Ito, "Sub-cm spatial resolution reflectometry over 10 km based on phase noise compensated OFDR with third order sideband sweeping," Proc. 35th Eur. Conf. Opt. Commun. (ECOC'2009) (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.