Abstract

In this study, an analytical model for calculating the nonlinear harmonic/intermodulation distortion for RF signals in silicon-based electro-optic modulators is investigated by considering the nonlinearity on the effective index change curve with the operation point and the device structure simultaneously. Distortion expressions are obtained and theoretical results are presented showing that optimal modulator parameters can be found to linearize it. Moreover, the harmonic distortion of a 1 mm silicon-based asymmetric MZI is RF characterized and used to corroborate the theoretical results. Based on the present model, the nonlinear distortion in terms of bias voltage or operating wavelength is calculated and validated by comparing with the experimental data, showing a good agreement between measurements and theory. Analog photonic link quality parameter like carrier-to-distortion is one of the parameters that can be found with that model. Finally, the modulation depth is measured to assure that no over-modulation is produced.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription