Abstract

In this paper, the modal analysis of a novel design of three trenched single mode channel plasmon polariton is introduced and analyzed using the full-vectorial finite difference method for linear oblique and curved interfaces (FVFD-LOCI). The analyzed parameters are the real effective index, propagation length, and lateral mode radius r<sub>3dB</sub>. In addition, the figure of merit (FOM) defined as the ratio between propagation length and lateral mode radius is also studied. The analysis is performed for different channel plasmon polariton (CPP) waveguides; trenched-groove, V-groove and the suggested three trenched structure over a specific spectral range (200–550 THz). The selected band of frequency is chosen to ensure the existence of the CPP fundamental mode. The reported design offers very high FOM at low frequency band (200–350 THz) compared to the well known V-groove structure. However, the lateral mode radius r<sub>3dB</sub> of the suggested three trenched structure is slightly smaller than that of the V-groove structure. For high frequency band (350–550 THz), the FOM is still higher than that of the V-groove structure while the lateral mode radius r<sub>3dB</sub> is slightly greater than that of the V-groove structure.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. L. Brongersma, P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
  2. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Exp. 9467-9476 (2006).
  3. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
  4. P. Berini, "Plasmon-polariton modes guided by a metal film of finite width," Opt. Lett. 24, 1011-1013 (1999).
  5. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
  6. I. V. Novikov, A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403-1-035403-13 (2002).
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
  8. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, S. I. Bozhevolnyi, "Channel plasmonpolaritons: Modal shape, dispersion, losses," Opt. Lett. 31, 3447-344 (2006).
  9. K. Tananka, M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
  10. D. K. Gramotnev, D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmonpolaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).
  11. A. Dhawan, M. Canva, T. Vo-Dinh, "Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing," Opt. Exp. 19, 787-813 (2011).
  12. I. M. Lee, J. Jung, J. Park, H. Kim, B. Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Opt. Exp. 15, 16598(1–8) (2007).
  13. L. Liu, Z. Han, S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650 (2005).
  14. Y.-C. Chiang, Y.-P. Chiou, H.-C. Chang, "Improved Full-Vectorial Finite-Difference Mode Solver for Optical Waveguides With Step-Index Profiles," J. Lightw. Technol. 20, 1609-1618 (2002).
  15. W. C. Chew, J. M. Jin, E. Michielssen, "Complex coordinate stretching as a generalized absorbing boundary condition," Microw. Opt. Technol. Lett. 15, 363-369 (1997).
  16. A. B. Fallahkhair, K. S. Li, T. E. Murphy, "Vector finite difference modesolver for anisotropic dielectric waveguides," J. Lightw. Technol. 26, 1423-1431 (2008).
  17. S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, "Tunability of the refractive index of gold nanoparticle dispersions," Nano Letters 7, 3418-3423 (2007).

2011 (1)

A. Dhawan, M. Canva, T. Vo-Dinh, "Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing," Opt. Exp. 19, 787-813 (2011).

2008 (1)

A. B. Fallahkhair, K. S. Li, T. E. Murphy, "Vector finite difference modesolver for anisotropic dielectric waveguides," J. Lightw. Technol. 26, 1423-1431 (2008).

2007 (2)

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, "Tunability of the refractive index of gold nanoparticle dispersions," Nano Letters 7, 3418-3423 (2007).

I. M. Lee, J. Jung, J. Park, H. Kim, B. Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Opt. Exp. 15, 16598(1–8) (2007).

2006 (3)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, S. I. Bozhevolnyi, "Channel plasmonpolaritons: Modal shape, dispersion, losses," Opt. Lett. 31, 3447-344 (2006).

S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Exp. 9467-9476 (2006).

2005 (2)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).

L. Liu, Z. Han, S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650 (2005).

2004 (1)

D. K. Gramotnev, D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmonpolaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).

2003 (2)

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).

K. Tananka, M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).

2002 (2)

I. V. Novikov, A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403-1-035403-13 (2002).

Y.-C. Chiang, Y.-P. Chiou, H.-C. Chang, "Improved Full-Vectorial Finite-Difference Mode Solver for Optical Waveguides With Step-Index Profiles," J. Lightw. Technol. 20, 1609-1618 (2002).

1999 (1)

1997 (1)

W. C. Chew, J. M. Jin, E. Michielssen, "Complex coordinate stretching as a generalized absorbing boundary condition," Microw. Opt. Technol. Lett. 15, 363-369 (1997).

Appl. Phys. Lett. (3)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).

K. Tananka, M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).

D. K. Gramotnev, D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmonpolaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).

J. Lightw. Technol. (1)

A. B. Fallahkhair, K. S. Li, T. E. Murphy, "Vector finite difference modesolver for anisotropic dielectric waveguides," J. Lightw. Technol. 26, 1423-1431 (2008).

J. Lightw. Technol. (1)

Y.-C. Chiang, Y.-P. Chiou, H.-C. Chang, "Improved Full-Vectorial Finite-Difference Mode Solver for Optical Waveguides With Step-Index Profiles," J. Lightw. Technol. 20, 1609-1618 (2002).

Microw. Opt. Technol. Lett. (1)

W. C. Chew, J. M. Jin, E. Michielssen, "Complex coordinate stretching as a generalized absorbing boundary condition," Microw. Opt. Technol. Lett. 15, 363-369 (1997).

Nano Letters (1)

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, "Tunability of the refractive index of gold nanoparticle dispersions," Nano Letters 7, 3418-3423 (2007).

Nature (2)

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).

Opt. Exp. (4)

A. Dhawan, M. Canva, T. Vo-Dinh, "Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing," Opt. Exp. 19, 787-813 (2011).

I. M. Lee, J. Jung, J. Park, H. Kim, B. Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Opt. Exp. 15, 16598(1–8) (2007).

L. Liu, Z. Han, S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650 (2005).

S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Exp. 9467-9476 (2006).

Opt. Lett. (2)

P. Berini, "Plasmon-polariton modes guided by a metal film of finite width," Opt. Lett. 24, 1011-1013 (1999).

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, S. I. Bozhevolnyi, "Channel plasmonpolaritons: Modal shape, dispersion, losses," Opt. Lett. 31, 3447-344 (2006).

Phys. Rev. B (1)

I. V. Novikov, A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403-1-035403-13 (2002).

Other (1)

M. L. Brongersma, P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.