Abstract

Frequency quadrupling for tunable microwave and sub-terahertz generation using a single polarization modulator (PolM) in a Sagnac loop without using an optical filter or a wideband microwave phase shifter is proposed and experimentally demonstrated. In the proposed system, a linearly polarized continuous wave from a tunable laser source (TLS) is split into two orthogonally polarized optical waves by a polarization beam splitter (PBS) and sent to the Sagnac loop traveling along the clockwise and counter-clockwise directions. A PolM to which a reference microwave signal is applied is incorporated in the loop. The PolM is a traveling-wave modulator, due to the velocity mismatch only the clockwise light wave is effectively modulated by the reference microwave signal, and the counter-clockwise light wave is not modulated. This is the key point that ensures the cancelation of the optical carrier without the need of an optical filter. Along the clockwise direction, the joint operation of the PolM, a polarization controller (PC), and a polarizer corresponds to a Mach–Zehnder modulator (MZM) with the bias point controlled to suppress the odd-order sidebands. The optical carrier is then suppressed by the counter-clockwise light wave at the polarizer. As a result, only two ±2nd-order sidebands are generated, which are applied to a photodetector (PD) to generate a microwave signal with a frequency that is four times that of the reference microwave signal. A theoretical analysis is developed, which is validated by an experiment. A frequency-quadrupled electrical signal with a large tunable range from 2.04 to 100 GHz is generated. The performance of the proposed system in terms of stability and phase noise is also evaluated.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).
  2. L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, "Microwave signal generation with injection locked laser diodes," Electron. Lett. 19, 491-493 (1983).
  3. L. Goldberg, A. Yurek, H. F. Taylor, J. F. Weller, "35 GHz microwave signal generation with injection locked laser diode," Electron. Lett. 21, 714-715 (1985).
  4. Z. Deng, J. P. Yao, "Photonic generation of microwave signal using a rational harmonic mode-locked fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 763-767 (2006).
  5. A. C. Bordonalli, B. Cai, A. J. Seeds, P. J. Williams, "Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure," IEEE Photon. Technol. Lett. 8, 151-153 (1996).
  6. U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjær, S. Lindgren, B. Broberg, "A wideband heterodyne optical phase locked loop for generation of 3–18 GHz microwave carriers," IEEE Photon. Technol. Lett. 4, 936-938 (1992).
  7. Z. Fan, M. Dagenais, "Optical generation of a mHz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop," IEEE Trans. Microw. Theory Tech. 45, 1296-1300 (1997).
  8. X. Chen, Z. Deng, J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 804-809 (2006) pt. 2.
  9. J. Sun, Y. Dai, Y. Zhang, X. Chen, S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).
  10. F. Van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, F. Lelarge, "Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation," Proc. MWP/APMP (2011) pp. 73-76.
  11. W. Li, J. P. Yao, "Investigation of photonically assisted microwave frequency multiplication based on external modulation," IEEE Trans. Microw. Theory Tech. 58, 3259-3268 (2010).
  12. J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2310 (1992).
  13. J. J. O'Reilly, P. M. Lane, "Fiber-supported optical generation and delivery of 60 GHz signals," Electron. Lett. 30, 1329-1330 (1994).
  14. P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, B. N. Ellison, "High-purity millimeter-wave photonic local oscillator generation and delivery," Proc. Int. Microw. Photon. Topical Meeting (2003) pp. 189-192.
  15. G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, S. Paquet, "Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53, 3090-3097 (2005).
  16. W. Li, J. P. Yao, "Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tunability," IEEE Photon. J. 2, 954-959 (2010).
  17. J. Zhang, H. Chen, M. Chen, T. Wang, S. Xie, "A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression," IEEE Photon. Technol. Lett. 19, 1057-1059 (2007).
  18. C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, S. Chi, "Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering," IEEE Photon. Technol. Lett. 20, 1027-1029 (2008).
  19. P. Shi, S. Yu, Z. Li, S. Huang, J. Shen, Y. Qiao, J. Zhang, W. Gu, "A frequency sextupling scheme for high-quality optical millimeter-wave signal generation without optical filter," Opt. Fiber Technol. 17, 236-241 (2011).
  20. J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, P. Ghanipour, "40 GHz electro-optic polarization modulator for fiber optic communications systems," Proc. SPIE (2004) pp. 133-143.
  21. B. G. Koehler, J. E. Bowers, "In-line single-mode fiber polarization controllers at 1.55, 1.3, and 0.63 µm," Appl. Opt. 24, 349-353 (1985).
  22. R. T. Logan, Jr."All-optical heterodyne RF signal generation using a mode-locked-laser frequency comb: Theory and experiments," IEEE MTT-S Int. Microw. Symp. Dig. (2000) pp. 1741-1744.
  23. S. Pan, J. P. Yao, "UWB over fibre communications: Modulation and transmission," J. Lightw. Technol. 28, 2445-2455 (2010).
  24. S. Feng, Q. Mao, L. Shang, J. W. Y. Lit, "Reflectivity characteristics of the fiber loop mirror with a polarization controller," Opt. Commun. 277, 322-328 (2007).

2011 (1)

P. Shi, S. Yu, Z. Li, S. Huang, J. Shen, Y. Qiao, J. Zhang, W. Gu, "A frequency sextupling scheme for high-quality optical millimeter-wave signal generation without optical filter," Opt. Fiber Technol. 17, 236-241 (2011).

2010 (3)

S. Pan, J. P. Yao, "UWB over fibre communications: Modulation and transmission," J. Lightw. Technol. 28, 2445-2455 (2010).

W. Li, J. P. Yao, "Investigation of photonically assisted microwave frequency multiplication based on external modulation," IEEE Trans. Microw. Theory Tech. 58, 3259-3268 (2010).

W. Li, J. P. Yao, "Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tunability," IEEE Photon. J. 2, 954-959 (2010).

2008 (1)

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, S. Chi, "Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering," IEEE Photon. Technol. Lett. 20, 1027-1029 (2008).

2007 (2)

J. Zhang, H. Chen, M. Chen, T. Wang, S. Xie, "A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression," IEEE Photon. Technol. Lett. 19, 1057-1059 (2007).

S. Feng, Q. Mao, L. Shang, J. W. Y. Lit, "Reflectivity characteristics of the fiber loop mirror with a polarization controller," Opt. Commun. 277, 322-328 (2007).

2006 (4)

A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).

Z. Deng, J. P. Yao, "Photonic generation of microwave signal using a rational harmonic mode-locked fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 763-767 (2006).

X. Chen, Z. Deng, J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 804-809 (2006) pt. 2.

J. Sun, Y. Dai, Y. Zhang, X. Chen, S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).

2005 (1)

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, S. Paquet, "Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53, 3090-3097 (2005).

1997 (1)

Z. Fan, M. Dagenais, "Optical generation of a mHz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop," IEEE Trans. Microw. Theory Tech. 45, 1296-1300 (1997).

1996 (1)

A. C. Bordonalli, B. Cai, A. J. Seeds, P. J. Williams, "Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure," IEEE Photon. Technol. Lett. 8, 151-153 (1996).

1994 (1)

J. J. O'Reilly, P. M. Lane, "Fiber-supported optical generation and delivery of 60 GHz signals," Electron. Lett. 30, 1329-1330 (1994).

1992 (2)

J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2310 (1992).

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjær, S. Lindgren, B. Broberg, "A wideband heterodyne optical phase locked loop for generation of 3–18 GHz microwave carriers," IEEE Photon. Technol. Lett. 4, 936-938 (1992).

1985 (2)

L. Goldberg, A. Yurek, H. F. Taylor, J. F. Weller, "35 GHz microwave signal generation with injection locked laser diode," Electron. Lett. 21, 714-715 (1985).

B. G. Koehler, J. E. Bowers, "In-line single-mode fiber polarization controllers at 1.55, 1.3, and 0.63 µm," Appl. Opt. 24, 349-353 (1985).

1983 (1)

L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, "Microwave signal generation with injection locked laser diodes," Electron. Lett. 19, 491-493 (1983).

Appl. Opt. (1)

Electron. Lett. (2)

L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, "Microwave signal generation with injection locked laser diodes," Electron. Lett. 19, 491-493 (1983).

J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2310 (1992).

Electron. Lett. (2)

J. J. O'Reilly, P. M. Lane, "Fiber-supported optical generation and delivery of 60 GHz signals," Electron. Lett. 30, 1329-1330 (1994).

L. Goldberg, A. Yurek, H. F. Taylor, J. F. Weller, "35 GHz microwave signal generation with injection locked laser diode," Electron. Lett. 21, 714-715 (1985).

IEEE Photon. Technol. Lett. (2)

J. Zhang, H. Chen, M. Chen, T. Wang, S. Xie, "A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression," IEEE Photon. Technol. Lett. 19, 1057-1059 (2007).

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, S. Chi, "Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering," IEEE Photon. Technol. Lett. 20, 1027-1029 (2008).

IEEE Photon. J. (1)

W. Li, J. P. Yao, "Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tunability," IEEE Photon. J. 2, 954-959 (2010).

IEEE Photon. Technol. Lett. (1)

J. Sun, Y. Dai, Y. Zhang, X. Chen, S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).

IEEE Photon. Technol. Lett. (2)

A. C. Bordonalli, B. Cai, A. J. Seeds, P. J. Williams, "Generation of microwave signals by active mode locking in a gain bandwidth restricted laser structure," IEEE Photon. Technol. Lett. 8, 151-153 (1996).

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjær, S. Lindgren, B. Broberg, "A wideband heterodyne optical phase locked loop for generation of 3–18 GHz microwave carriers," IEEE Photon. Technol. Lett. 4, 936-938 (1992).

IEEE Trans. Microw. Theory Tech. (1)

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, S. Paquet, "Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53, 3090-3097 (2005).

IEEE Trans. Microw. Theory Tech. (4)

Z. Fan, M. Dagenais, "Optical generation of a mHz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop," IEEE Trans. Microw. Theory Tech. 45, 1296-1300 (1997).

X. Chen, Z. Deng, J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 804-809 (2006) pt. 2.

Z. Deng, J. P. Yao, "Photonic generation of microwave signal using a rational harmonic mode-locked fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 763-767 (2006).

W. Li, J. P. Yao, "Investigation of photonically assisted microwave frequency multiplication based on external modulation," IEEE Trans. Microw. Theory Tech. 58, 3259-3268 (2010).

J. Lightw. Technol. (2)

A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).

S. Pan, J. P. Yao, "UWB over fibre communications: Modulation and transmission," J. Lightw. Technol. 28, 2445-2455 (2010).

Opt. Fiber Technol. (1)

P. Shi, S. Yu, Z. Li, S. Huang, J. Shen, Y. Qiao, J. Zhang, W. Gu, "A frequency sextupling scheme for high-quality optical millimeter-wave signal generation without optical filter," Opt. Fiber Technol. 17, 236-241 (2011).

Opt. Commun. (1)

S. Feng, Q. Mao, L. Shang, J. W. Y. Lit, "Reflectivity characteristics of the fiber loop mirror with a polarization controller," Opt. Commun. 277, 322-328 (2007).

Other (4)

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, P. Ghanipour, "40 GHz electro-optic polarization modulator for fiber optic communications systems," Proc. SPIE (2004) pp. 133-143.

R. T. Logan, Jr."All-optical heterodyne RF signal generation using a mode-locked-laser frequency comb: Theory and experiments," IEEE MTT-S Int. Microw. Symp. Dig. (2000) pp. 1741-1744.

P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, B. N. Ellison, "High-purity millimeter-wave photonic local oscillator generation and delivery," Proc. Int. Microw. Photon. Topical Meeting (2003) pp. 189-192.

F. Van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, F. Lelarge, "Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation," Proc. MWP/APMP (2011) pp. 73-76.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.