Abstract

A new method for gain enhancement in a S-band thulium-doped fiber amplifier (TDFA) co-doped with aluminum is demonstrated using a macro-bending approach. The macrobending of the doped fiber in a small radius suppresses both amplified spontaneous emissions (ASEs) at 800 and 1800 nm band and thus increases the population inversion in the S-band region. The numerical aperture and core radius of the doped fiber are optimized so that 800 nm ASE propagates with higher order modes to achieve a significant suppression while the loss is minimum in the S-band region. Meanwhile, the 1050 nm pump wavelength should propagate in the fundamental mode to maximize the overlap factor and thulium ion absorption so that the ASE loss is maximum at the 1800 nm region. Gain enhancements of about 5–8 dB are obtained with macrobending at the wavelength region between 1420 and 1470 nm.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T. Sakamoto, S. Aozasa, M. Yamada, M. Shimizu, "Hybrid fiber amplifiers consisting of cascaded TDFA and EDFA for WDM signals," J. Lightw. Technol. 24, 2287-2295 (2006).
  2. P. R. Watekar, W. T. Han, "A small-signal power model for Tm-doped silica-glass optical fiber amplifier," IEEE Photon. Technol. Lett. 18, 2035-2037 (2006).
  3. T. Komukai, "Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm," IEEE J. Quantum Electron. 31, 1880-1889 (1995).
  4. P. R. Watekar, S. Ju, W. T. Han, "Analysis of 1064-nm pumped Tm-doped silica glass fiber amplifier operating at 1470 nm," J. Lightw. Technol. 25, 1045-1052 (2007).
  5. B. Faure, W. Blanc, B. Dussardier, G. Monnom, "Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy," J. Non-Crystall. Solids 353, 2767-2773 (2007).
  6. B. Faure, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, "Thulium-doped silica-fiber based S-band amplifier with increased efficiency by aluminum co-doping," presented at the Opt. Amplif. Appl. Conf./Integr. Photon. Res., Tech. Dig. San FranciscoCA (2004).
  7. P. Peterka, B. Faure, W. Blanc, M. Karásek, B. Dussardier, "Theoretical modelling of S-band thulium-doped silica fibre amplifiers," Opt. Quantum Electron. 36, 201-212 (2004).
  8. J. Michael, F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC Press, 2001).
  9. S. D. Agger, J. H. Povlsen, "Emission and absorption cross section of thulium doped silica fibers," Opt. Exp. 14, 50-57 (2006).
  10. P. Peterka, I. Kasik, A. Dhar, B. Dussardier, W. Blanc, "Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime," Opt. Exp. 19, 2773-2781 (2011).
  11. C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, A. Jha, "Theoretical modeling of a 2 μm Tm3+-doped tellurite fiber laser: The influence of cross relaxation," J. Lightw. Technol. 27, 4026-4032 (2009).
  12. C. Floridia, M. T. Carvalho, M. L. Sundheimer, A. S. L. Gomes, "Modeling the distributed gain of single (1050 nm or 1400 nm) and dual-wavelength (800 nm +1050 nm or 800 nm +1410 nm) pumped TDFAs," Proc. Opt. Fiber Commun. Conf. (2004) pp. 23-27.
  13. S. S. H. Yam, Y. Akasaka, Y. Kubota, H. Inoue, K. Parameswaran, "Novel pumping schemes for fluoride-based thulium-doped fiber amplifier at 690 and 1050 nm (or 1400 nm)," IEEE Photon. Technol. Lett. 17, 1001-1003 (2005).
  14. T. Kasamatsu, Y. Yano, T. Ono, "1.49-μm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems," J. Lightw. Technol. 20, 1826-1838 (2002).
  15. S. D. Emami, S. W. Harun, F. Abd-rahman, H. Ahmad, "Effect of an auxiliary pump on performance of TDFA," Laser Phys. 18, 977-982 (2008).
  16. S. D. Emami, P. Hajireza, F. Abd-Rahman, H. A. Abdul-Rashid, H. Ahmad, S. W. Harun, "Wide-band hybrid amplifier operating in s-band region," Progr. Electromagn. Res., PIER 102, 301-313 (2010).
  17. S. Aozasa, H. Masuda, M. Shimizu, M. Yamada, "Highly efficient S-band thulium-doped fiber amplifier employing high-thulium-concentration doping technique," J. Lightw. Technol. 25, 2108-2114 (2007).
  18. S. S. H. Yam, J. Kim, "Ground state absorption in thulium-doped fiber amplifier: Experiment and modeling," IEEE J. Quantum Electron. 12, 797-803 (2006).
  19. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).
  20. D. Marcuse, "Field deformation and loss caused by curvature of optical fibers," J. Opt. Soc. Amer. 66, 311-320 (1976).
  21. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Amer. B 66, 216-220 (1976).
  22. D. Marcuse, "Influence of curvature on the losses of doubly clad fibers," Appl. Opt. 21, 4208-4213 (1982).
  23. D. Marcuse, Light Transmission Optics (Van Nostrand, 1982) pp. 406-414.
  24. S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. A. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, F. A. Rahman, "Gain and noise figure improvements in a shorter wavelength region of EDFA using a macro-bending approach," Laser Phys. 18, 1-3 (2008).
  25. S. A. Daud, S. D. Emami, K. S. Mohamed, H. A. Abdul-Rashidi, S. W. Harun, H. Ahmad, M. R. Mokhtarl, Z. Yusoff', F. A. Rahman, "Shorter wavelength gain shift in EDFA using a macro-bending approach," Proc. IEEE Photon. Global Conf. (2008) pp. 1-3.
  26. A. B. Sharma, A. H. Ai-Ani, S. J. Halme, "Constant-curvature loss in monomode fibers: An experimental investigation," Appl. Opt. 23, 3297-3301 (1984).
  27. R. T. Schermer, H. Cole, "Improved bend loss formula verified for optical fiber by simulation and experiment," IEEE J. Quantum Electron. 43, 899-909 (2007).
  28. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997).
  29. T. Kasamatsu, Y. Yano, H. Sekita, "1.50-mm-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-mm dual-wavelength pumping," Opt. Lett. 24, 1684-1686 (1999).
  30. S. Aozasa, T. Sakamoto, T. Kanamori, K. Hoshino, K. Kobayashi, M. Shimizu, "Tm-doped fiber amplifiers for 1470-nm-band WDM signals," IEEE Photon. Technol. Lett. 12, 1331-1333 (2000).
  31. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).
  32. J. C. Martin, "Erbium transversal distribution influence on the effectiveness of a doped fiber: Optimization of its performance," Opt. Commun. 194, 331-339 (2001).
  33. S. D. Emami, H. A. Abdul-Rashid, H. Ahmad, A. Ahmadi, S. W. Harun, "Effect of transverse distribution profile of thulium on the performance of thulium-doped fibre amplifiers," Ukr. J. Phys. Opt. 13, 74-81 (2011).
  34. J. R. James, A. W. Lan, Optical Fiber Communication System Comprising Mode-Stripping Means U.S. Patent 4 912 523 (1990).
  35. M. Karasek, "Optimum design of Er3+/Yb3+ co-doped fibers for large signal high-pump-power applications," IEEE J. Quantum Electron. 33, 1699-1705 (1997).
  36. M. Eichhorn, "Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers," IEEE J. Quantum Electron. 41, 1574-1581 (2005).

2011 (2)

P. Peterka, I. Kasik, A. Dhar, B. Dussardier, W. Blanc, "Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime," Opt. Exp. 19, 2773-2781 (2011).

S. D. Emami, H. A. Abdul-Rashid, H. Ahmad, A. Ahmadi, S. W. Harun, "Effect of transverse distribution profile of thulium on the performance of thulium-doped fibre amplifiers," Ukr. J. Phys. Opt. 13, 74-81 (2011).

2010 (1)

S. D. Emami, P. Hajireza, F. Abd-Rahman, H. A. Abdul-Rashid, H. Ahmad, S. W. Harun, "Wide-band hybrid amplifier operating in s-band region," Progr. Electromagn. Res., PIER 102, 301-313 (2010).

2009 (1)

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, A. Jha, "Theoretical modeling of a 2 μm Tm3+-doped tellurite fiber laser: The influence of cross relaxation," J. Lightw. Technol. 27, 4026-4032 (2009).

2008 (2)

S. D. Emami, S. W. Harun, F. Abd-rahman, H. Ahmad, "Effect of an auxiliary pump on performance of TDFA," Laser Phys. 18, 977-982 (2008).

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. A. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, F. A. Rahman, "Gain and noise figure improvements in a shorter wavelength region of EDFA using a macro-bending approach," Laser Phys. 18, 1-3 (2008).

2007 (4)

R. T. Schermer, H. Cole, "Improved bend loss formula verified for optical fiber by simulation and experiment," IEEE J. Quantum Electron. 43, 899-909 (2007).

S. Aozasa, H. Masuda, M. Shimizu, M. Yamada, "Highly efficient S-band thulium-doped fiber amplifier employing high-thulium-concentration doping technique," J. Lightw. Technol. 25, 2108-2114 (2007).

P. R. Watekar, S. Ju, W. T. Han, "Analysis of 1064-nm pumped Tm-doped silica glass fiber amplifier operating at 1470 nm," J. Lightw. Technol. 25, 1045-1052 (2007).

B. Faure, W. Blanc, B. Dussardier, G. Monnom, "Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy," J. Non-Crystall. Solids 353, 2767-2773 (2007).

2006 (4)

T. Sakamoto, S. Aozasa, M. Yamada, M. Shimizu, "Hybrid fiber amplifiers consisting of cascaded TDFA and EDFA for WDM signals," J. Lightw. Technol. 24, 2287-2295 (2006).

P. R. Watekar, W. T. Han, "A small-signal power model for Tm-doped silica-glass optical fiber amplifier," IEEE Photon. Technol. Lett. 18, 2035-2037 (2006).

S. S. H. Yam, J. Kim, "Ground state absorption in thulium-doped fiber amplifier: Experiment and modeling," IEEE J. Quantum Electron. 12, 797-803 (2006).

S. D. Agger, J. H. Povlsen, "Emission and absorption cross section of thulium doped silica fibers," Opt. Exp. 14, 50-57 (2006).

2005 (2)

S. S. H. Yam, Y. Akasaka, Y. Kubota, H. Inoue, K. Parameswaran, "Novel pumping schemes for fluoride-based thulium-doped fiber amplifier at 690 and 1050 nm (or 1400 nm)," IEEE Photon. Technol. Lett. 17, 1001-1003 (2005).

M. Eichhorn, "Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers," IEEE J. Quantum Electron. 41, 1574-1581 (2005).

2004 (1)

P. Peterka, B. Faure, W. Blanc, M. Karásek, B. Dussardier, "Theoretical modelling of S-band thulium-doped silica fibre amplifiers," Opt. Quantum Electron. 36, 201-212 (2004).

2002 (1)

T. Kasamatsu, Y. Yano, T. Ono, "1.49-μm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems," J. Lightw. Technol. 20, 1826-1838 (2002).

2001 (1)

J. C. Martin, "Erbium transversal distribution influence on the effectiveness of a doped fiber: Optimization of its performance," Opt. Commun. 194, 331-339 (2001).

2000 (1)

S. Aozasa, T. Sakamoto, T. Kanamori, K. Hoshino, K. Kobayashi, M. Shimizu, "Tm-doped fiber amplifiers for 1470-nm-band WDM signals," IEEE Photon. Technol. Lett. 12, 1331-1333 (2000).

1999 (1)

1997 (1)

M. Karasek, "Optimum design of Er3+/Yb3+ co-doped fibers for large signal high-pump-power applications," IEEE J. Quantum Electron. 33, 1699-1705 (1997).

1995 (1)

T. Komukai, "Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm," IEEE J. Quantum Electron. 31, 1880-1889 (1995).

1984 (1)

1982 (1)

1976 (2)

D. Marcuse, "Field deformation and loss caused by curvature of optical fibers," J. Opt. Soc. Amer. 66, 311-320 (1976).

D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Amer. B 66, 216-220 (1976).

Appl. Opt. (2)

IEEE J. Quantum Electron. (5)

M. Karasek, "Optimum design of Er3+/Yb3+ co-doped fibers for large signal high-pump-power applications," IEEE J. Quantum Electron. 33, 1699-1705 (1997).

M. Eichhorn, "Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers," IEEE J. Quantum Electron. 41, 1574-1581 (2005).

R. T. Schermer, H. Cole, "Improved bend loss formula verified for optical fiber by simulation and experiment," IEEE J. Quantum Electron. 43, 899-909 (2007).

S. S. H. Yam, J. Kim, "Ground state absorption in thulium-doped fiber amplifier: Experiment and modeling," IEEE J. Quantum Electron. 12, 797-803 (2006).

T. Komukai, "Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm," IEEE J. Quantum Electron. 31, 1880-1889 (1995).

IEEE Photon. Technol. Lett. (3)

P. R. Watekar, W. T. Han, "A small-signal power model for Tm-doped silica-glass optical fiber amplifier," IEEE Photon. Technol. Lett. 18, 2035-2037 (2006).

S. S. H. Yam, Y. Akasaka, Y. Kubota, H. Inoue, K. Parameswaran, "Novel pumping schemes for fluoride-based thulium-doped fiber amplifier at 690 and 1050 nm (or 1400 nm)," IEEE Photon. Technol. Lett. 17, 1001-1003 (2005).

S. Aozasa, T. Sakamoto, T. Kanamori, K. Hoshino, K. Kobayashi, M. Shimizu, "Tm-doped fiber amplifiers for 1470-nm-band WDM signals," IEEE Photon. Technol. Lett. 12, 1331-1333 (2000).

J. Lightw. Technol. (5)

T. Kasamatsu, Y. Yano, T. Ono, "1.49-μm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems," J. Lightw. Technol. 20, 1826-1838 (2002).

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, A. Jha, "Theoretical modeling of a 2 μm Tm3+-doped tellurite fiber laser: The influence of cross relaxation," J. Lightw. Technol. 27, 4026-4032 (2009).

T. Sakamoto, S. Aozasa, M. Yamada, M. Shimizu, "Hybrid fiber amplifiers consisting of cascaded TDFA and EDFA for WDM signals," J. Lightw. Technol. 24, 2287-2295 (2006).

P. R. Watekar, S. Ju, W. T. Han, "Analysis of 1064-nm pumped Tm-doped silica glass fiber amplifier operating at 1470 nm," J. Lightw. Technol. 25, 1045-1052 (2007).

S. Aozasa, H. Masuda, M. Shimizu, M. Yamada, "Highly efficient S-band thulium-doped fiber amplifier employing high-thulium-concentration doping technique," J. Lightw. Technol. 25, 2108-2114 (2007).

J. Non-Crystall. Solids (1)

B. Faure, W. Blanc, B. Dussardier, G. Monnom, "Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy," J. Non-Crystall. Solids 353, 2767-2773 (2007).

J. Opt. Soc. Amer. (1)

D. Marcuse, "Field deformation and loss caused by curvature of optical fibers," J. Opt. Soc. Amer. 66, 311-320 (1976).

J. Opt. Soc. Amer. B (1)

D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Amer. B 66, 216-220 (1976).

Laser Phys. (2)

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. A. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, F. A. Rahman, "Gain and noise figure improvements in a shorter wavelength region of EDFA using a macro-bending approach," Laser Phys. 18, 1-3 (2008).

S. D. Emami, S. W. Harun, F. Abd-rahman, H. Ahmad, "Effect of an auxiliary pump on performance of TDFA," Laser Phys. 18, 977-982 (2008).

Opt. Commun. (1)

J. C. Martin, "Erbium transversal distribution influence on the effectiveness of a doped fiber: Optimization of its performance," Opt. Commun. 194, 331-339 (2001).

Opt. Exp. (2)

S. D. Agger, J. H. Povlsen, "Emission and absorption cross section of thulium doped silica fibers," Opt. Exp. 14, 50-57 (2006).

P. Peterka, I. Kasik, A. Dhar, B. Dussardier, W. Blanc, "Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime," Opt. Exp. 19, 2773-2781 (2011).

Opt. Lett. (1)

Opt. Quantum Electron. (1)

P. Peterka, B. Faure, W. Blanc, M. Karásek, B. Dussardier, "Theoretical modelling of S-band thulium-doped silica fibre amplifiers," Opt. Quantum Electron. 36, 201-212 (2004).

Progr. Electromagn. Res., PIER (1)

S. D. Emami, P. Hajireza, F. Abd-Rahman, H. A. Abdul-Rashid, H. Ahmad, S. W. Harun, "Wide-band hybrid amplifier operating in s-band region," Progr. Electromagn. Res., PIER 102, 301-313 (2010).

Ukr. J. Phys. Opt. (1)

S. D. Emami, H. A. Abdul-Rashid, H. Ahmad, A. Ahmadi, S. W. Harun, "Effect of transverse distribution profile of thulium on the performance of thulium-doped fibre amplifiers," Ukr. J. Phys. Opt. 13, 74-81 (2011).

Other (9)

J. R. James, A. W. Lan, Optical Fiber Communication System Comprising Mode-Stripping Means U.S. Patent 4 912 523 (1990).

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997).

S. A. Daud, S. D. Emami, K. S. Mohamed, H. A. Abdul-Rashidi, S. W. Harun, H. Ahmad, M. R. Mokhtarl, Z. Yusoff', F. A. Rahman, "Shorter wavelength gain shift in EDFA using a macro-bending approach," Proc. IEEE Photon. Global Conf. (2008) pp. 1-3.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).

D. Marcuse, Light Transmission Optics (Van Nostrand, 1982) pp. 406-414.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).

C. Floridia, M. T. Carvalho, M. L. Sundheimer, A. S. L. Gomes, "Modeling the distributed gain of single (1050 nm or 1400 nm) and dual-wavelength (800 nm +1050 nm or 800 nm +1410 nm) pumped TDFAs," Proc. Opt. Fiber Commun. Conf. (2004) pp. 23-27.

J. Michael, F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC Press, 2001).

B. Faure, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, "Thulium-doped silica-fiber based S-band amplifier with increased efficiency by aluminum co-doping," presented at the Opt. Amplif. Appl. Conf./Integr. Photon. Res., Tech. Dig. San FranciscoCA (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.