Abstract

In the last few years, much attention has been paid to the researches of metallic helical metamaterials due to their giant circular dichroism for transmitted lights. However, so far as we know, there is little work concerning the study of their reflection properties, which are also significant questions for the helical metamaterials. In this work, we study the reflection properties of the helical metamaterials by using the Finite-Difference Time-Domain (FDTD) method. The circular dichroism and the reflected polarization states of left-handed single-, double-, triple-, and quadruple-helical structures are investigated, respectively. It's found that both the single- and the double-helical structures perform giant circular dichroism, and their reflected polarization states are related to the handedness of helical structure; while triple- and quadruple-helical structures exhibit no circular dichroism at all, and their reflected polarization states are irrelevant to the handedness of helical structure.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. K. Gansel, "Gold helix photonic metamaterial as broadband circular polarizer," Science 325, 1513-1515 (2009).
  2. Z. Y. Yang, M. Zhao, P. X. Lu, Y. F. Lu, "Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures," Opt. Lett. 35, 2588-2590 (2010).
  3. Z. Yang, M. Zhao, P. Lu, "Improving the signal-to-noise ratio for circular polarizers consisting of helical metamaterials," Opt. Exp. 19, 4255-4260 (2011).
  4. L. Wu, Z. Y. Yang, M. Zhao, "Polarization characteristics of the metallic structure with elliptically helical metamaterials," Opt. Exp. 19, 17539-17945 (2011).
  5. S. Kitson, A. Geisow, J. Rudin, T. Taphouse, "Bright color reflective displays with interlayer reflectors," Opt. Exp. 19, 15404-15414 (2011).
  6. Z. H. He, "Reflection chromaticity of cholesteric liquid crystals with sandwiched periodical isotropic defect layers," Opt. Commun. 248, 4022-4027 (2011).
  7. X. T. Yuan, L. P. Zhang, H. Yang, "Study of selectively reflecting characteristics of polymer stabilised chiral nematic liquid crystal films with a temperature-dependent pitch length," Liquid Crystals 37, 445-451 (2010).
  8. Z. H. Cheng, "Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures," Liquid Crystals 38, 233-239 (2011).
  9. O. Aharon, A. Safrani, R. Moses, I. Abdulhalim, "Liquid crystal tunable filters and polarization controllers for biomedical optical imaging," 2008 Int. Conf. Liquid Crystals XII San DiegoCA.
  10. I. V. Semchenko, S. A. Khakhomov, A. P. Balmakov, "Polarization selectivity of artificial anisotropic structures based on DNA-like helices," Crystallography Reports 55, 921-926 (2010).
  11. J. R. Kuhn, Z. Wu, M. Poenie, "Modulated polarization microscopy: A promising new approach to visualizing cytoskeletal dynamics in living cells," Biophys. J. 80, 972-985 (2001).
  12. I. Abdulhalim, R. Moses, R. Sharon, "Biomedical optical applications of liquid crystal devices," ACTA Physica Polonica A 112, 715-722 (2007).
  13. Z. Y. Yang, M. Zhao, P. X. Lu, "A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region," IEEE Photon. Technol. Lett. 22, 1303-1305 (2010).
  14. E. Hecht, Optics (Addison-Wesley, 2002).
  15. P. Harms, R. Mittra, W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propagat. 42, 1317-1324 (1994).
  16. A. D. Rakic, A. B. Djurisic, J. M. Elazar, M. L. Majewski, "Optical properties of metallic films for vertical cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
  17. I. D. Rukhlenko, C. Dissanayake, M. Premaratne, "Visualization of electromagnetic-wave polarization evolution using the Poincaré sphere," Opt. Lett. 35, 2221-2223 (2010).
  18. J. D. Kraus, R. J. Marhefka, Antennas: for All Applications (McGraw-Hill, 2003).
  19. W. L. Stutzman, G. A. Thiele, Antennas Theory and Design (Wiley, 1998).
  20. C. A. Bennett, Principles of Physical Optics (Wiley, 2008).

2011 (5)

Z. Yang, M. Zhao, P. Lu, "Improving the signal-to-noise ratio for circular polarizers consisting of helical metamaterials," Opt. Exp. 19, 4255-4260 (2011).

L. Wu, Z. Y. Yang, M. Zhao, "Polarization characteristics of the metallic structure with elliptically helical metamaterials," Opt. Exp. 19, 17539-17945 (2011).

S. Kitson, A. Geisow, J. Rudin, T. Taphouse, "Bright color reflective displays with interlayer reflectors," Opt. Exp. 19, 15404-15414 (2011).

Z. H. He, "Reflection chromaticity of cholesteric liquid crystals with sandwiched periodical isotropic defect layers," Opt. Commun. 248, 4022-4027 (2011).

Z. H. Cheng, "Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures," Liquid Crystals 38, 233-239 (2011).

2010 (5)

I. V. Semchenko, S. A. Khakhomov, A. P. Balmakov, "Polarization selectivity of artificial anisotropic structures based on DNA-like helices," Crystallography Reports 55, 921-926 (2010).

Z. Y. Yang, M. Zhao, P. X. Lu, Y. F. Lu, "Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures," Opt. Lett. 35, 2588-2590 (2010).

X. T. Yuan, L. P. Zhang, H. Yang, "Study of selectively reflecting characteristics of polymer stabilised chiral nematic liquid crystal films with a temperature-dependent pitch length," Liquid Crystals 37, 445-451 (2010).

Z. Y. Yang, M. Zhao, P. X. Lu, "A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region," IEEE Photon. Technol. Lett. 22, 1303-1305 (2010).

I. D. Rukhlenko, C. Dissanayake, M. Premaratne, "Visualization of electromagnetic-wave polarization evolution using the Poincaré sphere," Opt. Lett. 35, 2221-2223 (2010).

2009 (1)

J. K. Gansel, "Gold helix photonic metamaterial as broadband circular polarizer," Science 325, 1513-1515 (2009).

2007 (1)

I. Abdulhalim, R. Moses, R. Sharon, "Biomedical optical applications of liquid crystal devices," ACTA Physica Polonica A 112, 715-722 (2007).

2001 (1)

J. R. Kuhn, Z. Wu, M. Poenie, "Modulated polarization microscopy: A promising new approach to visualizing cytoskeletal dynamics in living cells," Biophys. J. 80, 972-985 (2001).

1998 (1)

A. D. Rakic, A. B. Djurisic, J. M. Elazar, M. L. Majewski, "Optical properties of metallic films for vertical cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).

1994 (1)

P. Harms, R. Mittra, W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propagat. 42, 1317-1324 (1994).

ACTA Physica Polonica A (1)

I. Abdulhalim, R. Moses, R. Sharon, "Biomedical optical applications of liquid crystal devices," ACTA Physica Polonica A 112, 715-722 (2007).

Appl. Opt. (1)

A. D. Rakic, A. B. Djurisic, J. M. Elazar, M. L. Majewski, "Optical properties of metallic films for vertical cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).

Biophys. J. (1)

J. R. Kuhn, Z. Wu, M. Poenie, "Modulated polarization microscopy: A promising new approach to visualizing cytoskeletal dynamics in living cells," Biophys. J. 80, 972-985 (2001).

Crystallography Reports (1)

I. V. Semchenko, S. A. Khakhomov, A. P. Balmakov, "Polarization selectivity of artificial anisotropic structures based on DNA-like helices," Crystallography Reports 55, 921-926 (2010).

IEEE Photon. Technol. Lett. (1)

Z. Y. Yang, M. Zhao, P. X. Lu, "A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region," IEEE Photon. Technol. Lett. 22, 1303-1305 (2010).

IEEE Trans. Antennas Propagat. (1)

P. Harms, R. Mittra, W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propagat. 42, 1317-1324 (1994).

Liquid Crystals (2)

X. T. Yuan, L. P. Zhang, H. Yang, "Study of selectively reflecting characteristics of polymer stabilised chiral nematic liquid crystal films with a temperature-dependent pitch length," Liquid Crystals 37, 445-451 (2010).

Z. H. Cheng, "Bandwidth-controllable reflective polarisers based on the temperature-dependent chiral conflict in binary chiral mixtures," Liquid Crystals 38, 233-239 (2011).

Opt. Exp. (1)

L. Wu, Z. Y. Yang, M. Zhao, "Polarization characteristics of the metallic structure with elliptically helical metamaterials," Opt. Exp. 19, 17539-17945 (2011).

Opt. Commun. (1)

Z. H. He, "Reflection chromaticity of cholesteric liquid crystals with sandwiched periodical isotropic defect layers," Opt. Commun. 248, 4022-4027 (2011).

Opt. Exp. (2)

Z. Yang, M. Zhao, P. Lu, "Improving the signal-to-noise ratio for circular polarizers consisting of helical metamaterials," Opt. Exp. 19, 4255-4260 (2011).

S. Kitson, A. Geisow, J. Rudin, T. Taphouse, "Bright color reflective displays with interlayer reflectors," Opt. Exp. 19, 15404-15414 (2011).

Opt. Lett. (2)

Science (1)

J. K. Gansel, "Gold helix photonic metamaterial as broadband circular polarizer," Science 325, 1513-1515 (2009).

Other (5)

O. Aharon, A. Safrani, R. Moses, I. Abdulhalim, "Liquid crystal tunable filters and polarization controllers for biomedical optical imaging," 2008 Int. Conf. Liquid Crystals XII San DiegoCA.

J. D. Kraus, R. J. Marhefka, Antennas: for All Applications (McGraw-Hill, 2003).

W. L. Stutzman, G. A. Thiele, Antennas Theory and Design (Wiley, 1998).

C. A. Bennett, Principles of Physical Optics (Wiley, 2008).

E. Hecht, Optics (Addison-Wesley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.