Abstract

In the absence of optical isolation, semiconductor lasers (SLs) are susceptible to external perturbations that determine the dynamical properties of the generated signals. Mutually coupled SL systems have been proved to exhibit diverse dynamics with the potential to behave synchronously. In this study, a multinodal star all-optical network topology is investigated in terms of synchronization and robustness; 50 SLs with varied operating frequencies around a central frequency $\omega_{0}$ operate as star nodes and mutually interact with a central SL (hub) through optical injection signals and under specific conditions exhibit a synchronized behavior. Additional nodes that are subsequently connected to the network or nodes that disconnect from the network do not alter the dynamical behavior and the robustness of the system. Especially for the newly connected nodes, appropriate optimization in their operating conditions includes them in the synchronized cluster.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription