Abstract

In this paper, the influence of packaging-induced RF signal degradation on an optoelectronic modulator module is investigated. A directly modulated laser (DML) is modeled and packaged in a butterfly-type package. A distributed 3-D electromagnetic model is built based on this laser module. In the packaging assembly procedure, impedance mismatching and ground discontinuity on microwave transmission will cause unwanted signal decays and resonances. We specify the RF degradation in three regions: 1) the RF connector, 2) the RF substrate, and 3) the mode transition region between the optoelectronic subsystem and the package. The RF transmission characteristics in these regions are extracted and analyzed in detail. The results indicate that by optimizing the packaging design, strong resonances and signal decays can be eliminated or compensated over a wide frequency range. The measured scattering parameters show that the proposed packaging assembly has a resonance-free bandwidth of 31.2 GHz, and the DML module exhibits a wide 3 dB bandwidth of 15.1 GHz.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. K. Sakai, H. Aruga, S. I. Takagi, M. Kawano, M. Negishi, Y. Kondoh, S.-I. Kaneko, "1.3 μm uncooled DFB laser-diode module with a coupled differential feed for 10-Gb/s Ethernet application," J. Lightw. Technol. 22, 574-581 (2004).
  2. A. Benzoni, M. Downie, B. Kasper, J. Paslaski, E. Peral, W. M. Xin, T. Schrans, M. Swass, C. Tsai, I. Ury, "High speed, high performance laser module," Proc. Electron. Compon. Technol. Conf. (2000) pp. 465-468.
  3. W. Han, N. H. Zhu, X. Liang, M. Ren, K. Sun, B. H. Zhang, L. Li, H. G. Zhang, "Injection locked Fabry-Perot laser diodes for WDM passive optical network spare function," Opt. Commun. 282, 3553-3557 (2009).
  4. F. Deshours, C. Algani, F. Blache, G. Alquié, C. Kazmierski, C. Jany, "New nonlinear electrical modeling of high-speed electroabsorption modulators for 40 Gb/s optical networks," J. Lightw. Technol. 29, 880-887 (2011).
  5. K. Tsuzuki, T. Ishibashi, T. Ito, N. Kikuchi, F. Kano, "80 Gb/s InP Mach-Zehnder modulator module using liquid crystal polymer (LCP) transmission line," Proc. Eur Conf. Opt. Commun. (2009) pp. 1-2.
  6. N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, W. Wang, "Electrical and optical coupling in an electroabsorption modulator integrated with a DFB laser," IEEE J. Quantum Electron. 43, 535-544 (2007).
  7. T. T. Shih, M. C. Lin, W. H. Cheng, "High-performance low-cost 10-Gb/s coaxial DFB laser module packaging by conventional TO-Can materials and processes," IEEE J. Sel. Topics Quantum Electron. 12, 1009-1016 (2006).
  8. K. Sakai, H. Aruga, S. I. Takagi, M. Kawano, M. Negishi, Y. Kondoh, S.-I. Kaneko, "1.3 μm uncooled DFB laser-diode module with a coupled differential feed for 10-Gb/s Ethernet application," J. Lightw. Technol. 22, 574-581 (2004).
  9. R. S. Tucker, "High speed modulation of semiconductor lasers," J. Lightw. Technol. LT-3, 1180-1192 (1985).
  10. D. Bang, J. Shim, J. Kang, M. Um, S. Park, S. Lee, D. Jang, Y. Eo, "High-temperature and high-speed operation of a 1.3-μm uncooled InGaAsP/InP DFB laser," IEEE Photon. Technol. Lett. 14, 1240-1242 (2002).
  11. J. Schlafer, R. B. Lauer, "Microwave packaging of optoelectronic components," IEEE Trans. Microw. Theory Tech. 38, 518-522 (1990).
  12. W. Han, P. O'Brien, M. Resing, H. Yang, F. H. Peters, "Electromagnetic optimization of high-speed to laser modules," Proc. SPIE/COS Photon. Asia (2010) pp. 23.
  13. J. H. Song, H. N. J. Fernando, B. Roycroft, B. Corbett, F. H. Peters, "Practical design of lensed fibers for semiconductor laser packaging using laser welding technique," J. Lightw. Technol. 27, 1533-1539 (2009).
  14. N. H. Zhu, G. Z. Xu, W. Hofmann, "Small-signal equivalent-circuit model and characterization of 1.55-um buried tunnel junction vertical-cavity surface-emitting lasers," IEEE Trans. Microw. Theory Tech. 58, 1283-1289 (2010).
  15. R. S. Tucker, D. J. Pope, "Microwave circuit models of semiconductor injection lasers," IEEE Trans. Microw. Theory Tech. MTT-83, 289-294 (1983).
  16. J. Lee, S. Nam, S. H. Lee, J. J. Jeong, "A complete small-signal equivalent circuit model of cooled butterfly-type 2.5 Gbps DFB laser modules and its application to improve high frequency characteristics," IEEE Trans. Adv. Packag. 25, 543-548 (2002).
  17. D. Ton, G. W. Yoffe, J. F. Heanue, M. A. Emanuel, S. Y. Zou, J. Kubicky, B. Pezeshki, E. C. Vail, "2.5-Gb/s modulated widely tunable laser using an electroabsorption modulated DFB array and MEMS selection," IEEE Photon. Technol. Lett. 16, 1573-1575 (2004).
  18. P. I. Kuindersma, P. P. G. Mols, G. L. A. Vonderhoftad, G. Cuypers, M. Tomesen, T. Ondongen, J. J. M. Binsma, "Packaged, integrated DBF/EA-MOD for repeaterless transmission of 10 Gbit/s over 107 km standard fibre," Electron. Lett. 29, 1876-1878 (1993).
  19. De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer Vector Network Analyzer (2004) Agilent Application Note 1364-1.
  20. N. H. Zhu, J. M. Wen, S. J. Zhang, "High-frequency characterization of packaging network in to-can photodiode modules," Microw. Opt. Technol. Lett. 50, 1219-1223 (2008).
  21. R. J. P. Douville, D. S. James, "Experimental study of symmetric microstrip bends and their compensation," IEEE Trans. Microw. Theory Tech. MTT-26, 175-182 (1978).
  22. A. Smith, R.-S. Chang, "Microstrip transmission line with finite-width dielectric and ground plane," IEEE Trans. Microw. Theory Tech. MTT-33, 835-839 (1985).

2011 (1)

F. Deshours, C. Algani, F. Blache, G. Alquié, C. Kazmierski, C. Jany, "New nonlinear electrical modeling of high-speed electroabsorption modulators for 40 Gb/s optical networks," J. Lightw. Technol. 29, 880-887 (2011).

2010 (1)

N. H. Zhu, G. Z. Xu, W. Hofmann, "Small-signal equivalent-circuit model and characterization of 1.55-um buried tunnel junction vertical-cavity surface-emitting lasers," IEEE Trans. Microw. Theory Tech. 58, 1283-1289 (2010).

2009 (2)

J. H. Song, H. N. J. Fernando, B. Roycroft, B. Corbett, F. H. Peters, "Practical design of lensed fibers for semiconductor laser packaging using laser welding technique," J. Lightw. Technol. 27, 1533-1539 (2009).

W. Han, N. H. Zhu, X. Liang, M. Ren, K. Sun, B. H. Zhang, L. Li, H. G. Zhang, "Injection locked Fabry-Perot laser diodes for WDM passive optical network spare function," Opt. Commun. 282, 3553-3557 (2009).

2008 (1)

N. H. Zhu, J. M. Wen, S. J. Zhang, "High-frequency characterization of packaging network in to-can photodiode modules," Microw. Opt. Technol. Lett. 50, 1219-1223 (2008).

2007 (1)

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, W. Wang, "Electrical and optical coupling in an electroabsorption modulator integrated with a DFB laser," IEEE J. Quantum Electron. 43, 535-544 (2007).

2006 (1)

T. T. Shih, M. C. Lin, W. H. Cheng, "High-performance low-cost 10-Gb/s coaxial DFB laser module packaging by conventional TO-Can materials and processes," IEEE J. Sel. Topics Quantum Electron. 12, 1009-1016 (2006).

2004 (3)

K. Sakai, H. Aruga, S. I. Takagi, M. Kawano, M. Negishi, Y. Kondoh, S.-I. Kaneko, "1.3 μm uncooled DFB laser-diode module with a coupled differential feed for 10-Gb/s Ethernet application," J. Lightw. Technol. 22, 574-581 (2004).

K. Sakai, H. Aruga, S. I. Takagi, M. Kawano, M. Negishi, Y. Kondoh, S.-I. Kaneko, "1.3 μm uncooled DFB laser-diode module with a coupled differential feed for 10-Gb/s Ethernet application," J. Lightw. Technol. 22, 574-581 (2004).

D. Ton, G. W. Yoffe, J. F. Heanue, M. A. Emanuel, S. Y. Zou, J. Kubicky, B. Pezeshki, E. C. Vail, "2.5-Gb/s modulated widely tunable laser using an electroabsorption modulated DFB array and MEMS selection," IEEE Photon. Technol. Lett. 16, 1573-1575 (2004).

2002 (2)

J. Lee, S. Nam, S. H. Lee, J. J. Jeong, "A complete small-signal equivalent circuit model of cooled butterfly-type 2.5 Gbps DFB laser modules and its application to improve high frequency characteristics," IEEE Trans. Adv. Packag. 25, 543-548 (2002).

D. Bang, J. Shim, J. Kang, M. Um, S. Park, S. Lee, D. Jang, Y. Eo, "High-temperature and high-speed operation of a 1.3-μm uncooled InGaAsP/InP DFB laser," IEEE Photon. Technol. Lett. 14, 1240-1242 (2002).

1993 (1)

P. I. Kuindersma, P. P. G. Mols, G. L. A. Vonderhoftad, G. Cuypers, M. Tomesen, T. Ondongen, J. J. M. Binsma, "Packaged, integrated DBF/EA-MOD for repeaterless transmission of 10 Gbit/s over 107 km standard fibre," Electron. Lett. 29, 1876-1878 (1993).

1990 (1)

J. Schlafer, R. B. Lauer, "Microwave packaging of optoelectronic components," IEEE Trans. Microw. Theory Tech. 38, 518-522 (1990).

1985 (2)

R. S. Tucker, "High speed modulation of semiconductor lasers," J. Lightw. Technol. LT-3, 1180-1192 (1985).

A. Smith, R.-S. Chang, "Microstrip transmission line with finite-width dielectric and ground plane," IEEE Trans. Microw. Theory Tech. MTT-33, 835-839 (1985).

1983 (1)

R. S. Tucker, D. J. Pope, "Microwave circuit models of semiconductor injection lasers," IEEE Trans. Microw. Theory Tech. MTT-83, 289-294 (1983).

1978 (1)

R. J. P. Douville, D. S. James, "Experimental study of symmetric microstrip bends and their compensation," IEEE Trans. Microw. Theory Tech. MTT-26, 175-182 (1978).

Electron. Lett. (1)

P. I. Kuindersma, P. P. G. Mols, G. L. A. Vonderhoftad, G. Cuypers, M. Tomesen, T. Ondongen, J. J. M. Binsma, "Packaged, integrated DBF/EA-MOD for repeaterless transmission of 10 Gbit/s over 107 km standard fibre," Electron. Lett. 29, 1876-1878 (1993).

IEEE J. Quantum Electron. (1)

N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, W. Wang, "Electrical and optical coupling in an electroabsorption modulator integrated with a DFB laser," IEEE J. Quantum Electron. 43, 535-544 (2007).

IEEE Trans. Adv. Packag. (1)

J. Lee, S. Nam, S. H. Lee, J. J. Jeong, "A complete small-signal equivalent circuit model of cooled butterfly-type 2.5 Gbps DFB laser modules and its application to improve high frequency characteristics," IEEE Trans. Adv. Packag. 25, 543-548 (2002).

IEEE Trans. Microw. Theory Tech. (2)

R. J. P. Douville, D. S. James, "Experimental study of symmetric microstrip bends and their compensation," IEEE Trans. Microw. Theory Tech. MTT-26, 175-182 (1978).

A. Smith, R.-S. Chang, "Microstrip transmission line with finite-width dielectric and ground plane," IEEE Trans. Microw. Theory Tech. MTT-33, 835-839 (1985).

IEEE J. Sel. Topics Quantum Electron. (1)

T. T. Shih, M. C. Lin, W. H. Cheng, "High-performance low-cost 10-Gb/s coaxial DFB laser module packaging by conventional TO-Can materials and processes," IEEE J. Sel. Topics Quantum Electron. 12, 1009-1016 (2006).

IEEE Photon. Technol. Lett. (2)

D. Ton, G. W. Yoffe, J. F. Heanue, M. A. Emanuel, S. Y. Zou, J. Kubicky, B. Pezeshki, E. C. Vail, "2.5-Gb/s modulated widely tunable laser using an electroabsorption modulated DFB array and MEMS selection," IEEE Photon. Technol. Lett. 16, 1573-1575 (2004).

D. Bang, J. Shim, J. Kang, M. Um, S. Park, S. Lee, D. Jang, Y. Eo, "High-temperature and high-speed operation of a 1.3-μm uncooled InGaAsP/InP DFB laser," IEEE Photon. Technol. Lett. 14, 1240-1242 (2002).

IEEE Trans. Microw. Theory Tech. (1)

R. S. Tucker, D. J. Pope, "Microwave circuit models of semiconductor injection lasers," IEEE Trans. Microw. Theory Tech. MTT-83, 289-294 (1983).

IEEE Trans. Microw. Theory Tech. (2)

N. H. Zhu, G. Z. Xu, W. Hofmann, "Small-signal equivalent-circuit model and characterization of 1.55-um buried tunnel junction vertical-cavity surface-emitting lasers," IEEE Trans. Microw. Theory Tech. 58, 1283-1289 (2010).

J. Schlafer, R. B. Lauer, "Microwave packaging of optoelectronic components," IEEE Trans. Microw. Theory Tech. 38, 518-522 (1990).

J. Lightw. Technol. (2)

K. Sakai, H. Aruga, S. I. Takagi, M. Kawano, M. Negishi, Y. Kondoh, S.-I. Kaneko, "1.3 μm uncooled DFB laser-diode module with a coupled differential feed for 10-Gb/s Ethernet application," J. Lightw. Technol. 22, 574-581 (2004).

K. Sakai, H. Aruga, S. I. Takagi, M. Kawano, M. Negishi, Y. Kondoh, S.-I. Kaneko, "1.3 μm uncooled DFB laser-diode module with a coupled differential feed for 10-Gb/s Ethernet application," J. Lightw. Technol. 22, 574-581 (2004).

J. Lightw. Technol. (3)

F. Deshours, C. Algani, F. Blache, G. Alquié, C. Kazmierski, C. Jany, "New nonlinear electrical modeling of high-speed electroabsorption modulators for 40 Gb/s optical networks," J. Lightw. Technol. 29, 880-887 (2011).

R. S. Tucker, "High speed modulation of semiconductor lasers," J. Lightw. Technol. LT-3, 1180-1192 (1985).

J. H. Song, H. N. J. Fernando, B. Roycroft, B. Corbett, F. H. Peters, "Practical design of lensed fibers for semiconductor laser packaging using laser welding technique," J. Lightw. Technol. 27, 1533-1539 (2009).

Microw. Opt. Technol. Lett. (1)

N. H. Zhu, J. M. Wen, S. J. Zhang, "High-frequency characterization of packaging network in to-can photodiode modules," Microw. Opt. Technol. Lett. 50, 1219-1223 (2008).

Opt. Commun. (1)

W. Han, N. H. Zhu, X. Liang, M. Ren, K. Sun, B. H. Zhang, L. Li, H. G. Zhang, "Injection locked Fabry-Perot laser diodes for WDM passive optical network spare function," Opt. Commun. 282, 3553-3557 (2009).

Other (4)

W. Han, P. O'Brien, M. Resing, H. Yang, F. H. Peters, "Electromagnetic optimization of high-speed to laser modules," Proc. SPIE/COS Photon. Asia (2010) pp. 23.

K. Tsuzuki, T. Ishibashi, T. Ito, N. Kikuchi, F. Kano, "80 Gb/s InP Mach-Zehnder modulator module using liquid crystal polymer (LCP) transmission line," Proc. Eur Conf. Opt. Commun. (2009) pp. 1-2.

A. Benzoni, M. Downie, B. Kasper, J. Paslaski, E. Peral, W. M. Xin, T. Schrans, M. Swass, C. Tsai, I. Ury, "High speed, high performance laser module," Proc. Electron. Compon. Technol. Conf. (2000) pp. 465-468.

De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer Vector Network Analyzer (2004) Agilent Application Note 1364-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.