Abstract

In this paper, the influence of packaging-induced RF signal degradation on an optoelectronic modulator module is investigated. A directly modulated laser (DML) is modeled and packaged in a butterfly-type package. A distributed 3-D electromagnetic model is built based on this laser module. In the packaging assembly procedure, impedance mismatching and ground discontinuity on microwave transmission will cause unwanted signal decays and resonances. We specify the RF degradation in three regions: 1) the RF connector, 2) the RF substrate, and 3) the mode transition region between the optoelectronic subsystem and the package. The RF transmission characteristics in these regions are extracted and analyzed in detail. The results indicate that by optimizing the packaging design, strong resonances and signal decays can be eliminated or compensated over a wide frequency range. The measured scattering parameters show that the proposed packaging assembly has a resonance-free bandwidth of 31.2 GHz, and the DML module exhibits a wide 3 dB bandwidth of 15.1 GHz.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription